nernaidonal

SYNCHRONIZATION OF MULTIAGENT
PLANS USING A TEMPORAL
LOGIC THEOREM PROVER

Technical Note 350

December 13, 1985

By: Christopher Stuart*
Artificial Intelligence Center
Computer Science and Technology Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This work was supported in part by the Office of Naval Research, Contract No.
N00014-85-C-0251, SRI Project 8342, The views and conclusions contained in this
document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of SRI International, the Navy
or the U.5. govenment.

1

*Currently at the Department of Computer Science, Monash University,
Clayton 3168, Victoria, AUSTRALIA .

333 Ravenswood Ave. » Menlo Park, CA 94025
td151 326-6200 « TWX: 910-373-2046 » Telex: 334-486

Contents

1 Introduction 2
2 A theory of action _ 4
2.1 ACHIONS & v o o e 4
2.2 Theenvironment o ittt b st e s e e P K
2.2.1 Strings and execution in an environment 10

23 Agents e 16
2.3.1 Classesof agents 0 it i v i i i it v vt i 17

24 Plansyntax L .. L e e e e e e 26
2.5 Plansemantics i L e e e e e e e e e 27
26 Extenstons tothesyntax 0 it i ittt e e 36

3 The interaction problem 38
3.1 Eventsandeventfailure 39
3.1.1 Restricted propositional environments 39

3.2 Synchronizing Plans 44

4 The plan synchronizer 46
4.1 Interactionm anmalysis e e 46
4.2 PTL constraint generatioll v v v v v v vt v et m e e e e 48
4.3 PTL theorem prover i i i i i it it it e e e 55
4.4 Svnchronized plan generation 60

5 An example 61
6 Conciusion and future work 63
A Notation conventions 66
B Propositional Temporal Logic a7
Bl Syntax e e e e e e e e e e e e e e e 67
B.2 Semantics e e e e e e e e e e e e e e e e 67
References 69

1 Introduction

Most of us at some time have stopped to watch the construction of a house. [t is interesting
to watch the successive stages of the project and the activity of workers engaged in the
varions tasks necessary to reach the desired produet. This simple example is useful in
considering aspects of the planning problem.

The planning problem is to find some plan that can guide the activity of an agent or
agents to achieve a desired goal. The particular subproblem considered here is that of
resolving possible conflicts between elements of a plan. There are several ways subplans

can interact:

e One subplan may achieve the precondition of another. For example, the sides ol a

house must be built for support before the roof is laid.

e One may remove the precondition of another. Plumbing is best connected before the

wall is finished so that access is easier.

¢ One may upset a condition that needs to be maintained for a time. The act of building
the front steps requires that, while the concrete is drying, others should avoid working

on the roof where they may drop things on the new steps.

e They may co-operate. I[a truck is sent to pick up timber, it may be efficient to collect

bricks on the same trip.

All planning systems operate by combining actions or subplans in some way so that the
total plan satisfies some constraint - usually to achieve some goal. They use some means of
modeling actions and the changes they induce in the world, and determine the total effect
of a plan from its constituent parts and the ways in which they interact.

A very common way of using interaction is to choose actions that achieve the goal.
and then plan to achieve the preconditions of those actions. The STRIPS planner[4| uses
this principle. However, it does not consider subplans in parallel and look for interactions
between parallel branches.

In the planning systems NOAH(13] and SIPE{16], consideration of interactions between
subplans is explicit in the planning process. A plan is a partial order of subplans, allowing

potential parallelism to be exploited or deferring the choice of an ordering. The planning

technique is to expand subplans into partial orderings of lower level subplans. After the
expansion, the system looks for conflicts in the new, more detailed plan and attempts to
resolve them. One important way of resolving conflicts is to impose orderings in the plan.

The interaction detection and resolution is performed by critics, which look for particular
types of interaction and use particular means of resolving them. However, these critics will
not necessarily find a correct solution, given that one exists, and the means of resolving
conflicts may be unnecessarily restrictive. For example, if it is. required that two subplans
may not execute at the same time, as will be the case when they use a unique resource,
then NOAH will impose an arbitrary ordering on them.

Following an approach suggested by Georgefl [5], this paper considers the use of synchro-
nizing primitives to resolve conflicts and produce a plan that is as unrestrictive as possible.
In a sense, the whole planning problem is to find actions that interact in such a way that the
plan achieves its goal; in fact, it can be shown that certain general planning problems may
be framed and solved as conflict resolution problems. However, the technique developed
here is designed specifically for resolving conflicts in existing plans, and is not presented as
a means of planning in itself.

We will proceed by considering a theory of action and the world and presenting a simple
planning language that can express a wide variety of plans. A formal definition of an agent
will be given, and plans will be given a semantics in terms of agents. We will show a pleasing
one-to-one correspondence between plans and classes of agents.

A program has been written to synchronize plans in such a way that always allows
the plan to complete successfully despite conflicts and interactions between parts of the
plan, and the theory behind this program is explored. Plan execution and failure will be
discussed, and constraints on plan executions will be found which restrict executions to
all and only those that can be guaranteed not to fail. By framing these constraints in a
propositional temporal logic and passing them to a theorem prover, we can generate an agent
corresponding to the constrained plan. Finally, a revised plan is produced corresponding to
the new agent. Related work on using temporal logic constraints on actions as a framework
for plan generation is also being done by Lansky [10]. In the final sections of the paper, we
consider extensions to the theory and the program, and problems and advantages with the

approach.

2 A Theory of Action

In this section of formal definitions, we will adhere to certain conventions. X* will denote
the set of finite sequences over X; X™ will denote the set of countable sequences over X.
Thus X* € X*. Subscripts will identify elements of a sequence. Multisets will be given as
sequences for convenience: a multiset is in fact an equivalence class of sequences which may
be obtained from each other by permutation, or alternatively a mapping from elements to
integers greater than or equal to zero {we never use infinite multisets).

The standard function pop will be used to remove an element from a sequence. If
o = {0,,04,05...) is a sequence then pop(o) = {¢3,0s...). pop*(c),i > 0 will correspond
to i applications of pop. That is, pop'(¢) = (¢i41,0i42...). It is undefined if ¢ has less
than ¢ elements.

The concatenation operator for sequences is o.

Definition 1 Leto and o' be two sequences. [fo is infinite, thenooo’ = . Otherwise sup-

pose o 13 (0y,02,...,04), and &’ 1s (0},0%,...). Thenooo' isis(o1,00,...,0n,01,0%,...).
We will apply set operators to multisets with the following conventions:
» Union is equivalent to concatenation.

» For multiset difference o\o', for each element o of ¢, the number of oy in the result
is the difference of the number in & and the number in &' {or 0 if the difference is

negative).

As far as possible, we will also be consistent with our use of notation. Where some
symbol is used to represent a class of objects, then we will continue to represent the class of
objects with that same symbol. The symbol ¢ will always refer to the empty set, sequence,
or multiset.

More details on notation are given in an appendix.

2.1 Actions

The world is often considered to be a collection of possible world states, and at a moment
one of those states reflects the way the world is. These states can be considered to be
interpretations for some logical language, and statements made about the world in that

language will be true or false in a particular state.

An agent must have some means of changing the world. This is usually done by having
the agent execute actions. The model of an action used by a reasoning agent must induce
changes in the world model. In many planning systems, this is done by having actions be
modeled as mappings on world states. This is satisfactory for simple sequential plans that
do not need to consider the progression of an action over time. Even NOAH and SIPE,
which allow partially ordered plans with paraliel branches, assume that a plan execution will
be a total ordering of those actions, and so ultimately produce a partial order of primitive
actions that may be considered to be instantaneous.

When multiple agents are operating in parallel, it may be possible for two actions to be
executing simultaneously; therefore, actions must have a beginning and an end, and must
occur over a period of time. Much consideration has been given to more complex models of
action (for example, see [1,2,6,12]). Many of these decompose actions into more primitive
parts that are eflectively instantaneous, although Stuart[14] and Hendrix[7] do consider
actions inducing continuous functions from time into world states.

For this investigation, it is appropriate to consider an action to be decamposed into
discrete transformations of the world, which are called events. An event also has an as-
sociated correctness condition, which must be true at the moment the event is executed.
One might consider that the correctness condition should bc_: true over a period of time; we
will show that in our theory the two cases are equivalent. The mapping associated with an
event will be deterministic. We could introduce a special fas! world state, and incorporate
the correctness condition as part of the mapping, by mapping all incorrect states to the fail
state, but that would be inconvenient when we later restrict the types of mappings allowed
for an event.

In this discussion, we will consider the world to be a set of possible states W, and at

any moment the real world will correspond to some w € W.

Definition 2 Let W be a set of worlds. Then an event for that set of worlds is @ mapping

and a correctness condition.
events(W) = WW x oW

Intuitively, at the moment immediately before an event is executed the world must e
in one of the states in the correctness condition, and the mapping defines for each world

state a unique next state which results from the execution.

An action will be a set of possible finite sequences of events. It is indivisible in the sense
that no control can be exercised over it while it is being executed. It is nondeterministic
in the sense that any of the sequences of events may occur. The internal structure is used
to model progression of the world over time and to define a model of concurrency, which is

the standard interleaving model.

Definition 3 Let W be a set of worlds. Then an action for that set of worlds is a set of

finite sequences of events.

actions(W} = glevents(W)®)

Several things may be noted about this definition of action. First, there is no control
component that guides the choice of sequences of events based on the world state. Since
there is no control over the sequence taken, we must insist that all sequences be finite if
we wish the action to terminate. Second, since actions are nondeterministic, the fact that
events are deterministic is not restrictive. A nondeterministic event can be considered to
be a set of deterministic events, and every sequence of such events can be considered to be

a set of sequences of deterministic events.

2.2 The Environment

Another aspect of the world relevant to an agent is the means by which its actions are
executed. Thus the world state should include the status of actions being executed. The
term environment is used to mean the world in this larger sense.

The intuition used in developing the following theory of action is that we are interested
in agents such as robots, where the agent changes the world through asynchronous devices.
The agent will send an output command to some device, and that device responds at some
moment after the commanc{ is sent. The agent will “know” that the effect of the command
is completed, either by waiting for some period of time or by receiving some data from the
device. The eflect is assumed to have finished at some moment before the time elapsed
or the input was received. Note that some commands (such as “start drive motor”) may
complete with the world in some dynamic state. In general, this paper is not concerned
with such low-level commands. The devices through which the agent sends and receives
messages is called an environment.

An environment at any moment can receive as input some message, or can take the

next step in the execution of some current action. An action execution may also cause the

environment to send a message as output. All these occasions cause the environment to
change state.

More formally, an environment consists ol a set of worlds, a set of operators, and a
mapping from operators to actions. An operator can be viewed as a command to perform

the action associated with the operator.

Definition 4 An environment s a triple <W, A,s>. W (s some set of world states, A s

some set of operators. f 13 a function s : A — actions{W).

The environment corresponds to a machine that changes state as actions are executed.
We make the assumption common in planning systems that the world changes state only as
the result of activity of the agent: in this case, by an event execution, which in turn occurs
only as the result of an action. This paper is concerned with synchronizing the activities of
agents in parallel, and we will show how our formal model of agents can represent multiple
real agents.

By considering one real agent in isolation, other agents may be seen to be part of the
total environment, which will thus be dynamic. Similarly, certain dynamic aspects of a real
environment may be modeled as an agent. Note that we use the term agent in two ways.
An agent may be a real-world object, which we wish to represent in ordéer to reason about it
- a robot or machine or person. An agent also is a mathematical object (yet to be defined)
that interacts with an environment. Where there may be confusion, we will refer to real
agents and formal agents.

An environment may execute several instances of the same operator simultaneously, and
it may be important for an agent to distinguish them. Thus an agent will have a set ¢ of tags
that can be associated with operators, and the environment keeps track of the association.
An (operator, tag) pair will be referred to as an tdentifier.

The function ¢ of an environment is extended to identifiers as follows:
Y(a,z) € Ax . ifa,z) = i(a)

A x 1 may be regarded as an extended set of operators with the constraint that the inter-
pretation does not depend on the tag. We will use A, as shorthand for A x ¢.
At any instant, the environment will be in a certain environment siate. An environment

state has three components:

¢ The world state
e The state of executing actions
o A failure status reflecting whether or not an event has failed.

Definition 5 An environment state for an environment <W, A,1> 13 a S-tuple <w, E,r >,
where w € W is some world state, E 1s a finste mulliset of identifiers with associaled
sequences of events, and 1 1s either fail or succeed depending on whether or not the last
event farled. That 13, for some set ¢

weW
E € (A, x events(W)*)"
r € {fail, succeed}

An environment state will make sense only in the context of some object (such as -an
agent) which defines the set &. ‘

Let the eénvironment be <W, 4,¢>, and let the environment state be <w, E, 7 >.

If the environment receives as input the identifier a € A,, then it arbitrarily selects some
sequence of events ¢ from the set ¢(a), and appends (a,¢) to £.

If the multiset £ is non-empty, the environment may at any time select an arbitrary
element (a,¢) from E for execution. If ¢ is the empty sequence, then the element (a,¢) is
deleted from £ and the identifier « is provided as output. Otherwise let ¢, be the event
(6,+). 6 is a state transformation and - is the correctness condition. If it is not the case
that

wey

then the environment is said to have failed the correctness condition of the event, and r
hecomes fail; otherwise, r becomes succeed. In both cases, ¢ in £ is replaced by the sequence
pop(¢), and w hecomes é(w).

The operation of the environment alsc has a fairness constraint: any sequence in the set
E will eventually execute. Since these sequences are finite, it follows that any action will
eventually complete. The environment is said to quiescent if the set £ is empty. [n this

case it may change state only on receiving some message.

Definition 8 An environment is quiescent iff the environment state < w,E,7 > i3 such

that E = ¢.

An agent is the object with which the environment exchanges messages. For this initial
formalization, we consider agents for which the exchange of messages is the only means of
interaction with the environment. This corresponds to the case where a plan is constructed
with no conditional testing except possibly on variables entirely local to the plan. This is
often the case for simple plans that assume well-defined outside interference (if any) and
for which actions are a high-level abstraction of lower-level routines that perform simple
interaction with the world. For example, a planner may consider a goto operation to be
primitive and have that action implemented as a routine that follows walls in the real world
and otherwise guarantees that the total action result is quite predictable. This is the case
with the STRIPS planner controlling the SHAKEY robot.

Planning for an agent may be done by modeling the real world and the agent’s capa-
bilities as an environment, and finding a plan to exchange messages with the environment
in such a way that it never fails the correctness condition of any event and the sequence of
world states produced satisfies some constraint, usually a condition on the final state of the
world.

An agent is defined formally as a mathematical object that interacts with an environment
only by sending and receiving identifiers. Agents in this formal sense are used to define
semantics for a class of plans. The execution of a plan corresponds to some sequence of
messages between an agent and the environment. Let A, be the set of identifiers. Then the
sequence of messages will be denoted by a string (which means the same as sequence) over
the alphabet {begin,end} x 4,. For @ € A,, {begin &} corresponds to the agent sending o to
the environment to cause the associated action to be executed, and {end a} corresponds to
the environment sending « to the agent to indicate that the associated action has completed.
Where there is no confusion, we refer to strings and assume them to be over this alphabet.
Strings may be infinite,

Note that the agent may receive an end message at any time for an action that is
currently executing, and that the operation of the environment restricts the possible strings
since it will never send an end message unless it has previously received a corresponding

begin.

2.2.1 Strings and Execution in an Environment

[n this section, we consider classes of strings and the way in which they correspond to exe-
cution in an environment. For any string and an environment, we find associated sequences
of string execution states and world states. We define reasonable strings, which correspond
to possible executions in the environment, and fasr strings, which correspond to possible ex-
ecutions in the environment under the fairness constraint. We also find equivalence classes
for sets of strings that induce the same sets of sequences of world states. This section may

be skipped by those who are not interested in that level of detail.

Definition 7 A string over the alphabet {begin, end} x A, is reasonable ¢ff for any a € A,
and any fimite tnitial substring, the number of (begin a) s greater than or equal to the

number of (end a).

The set of reasonable strings corresponds exactly to the set of all possible message

sequences an environment could exchange with an agent, without the fairness constraint.

Definition 8 4 reasonable string ¢2 fair iff any finite instial substring which has more

(begin a) than (end a) is eventually followed by an (end a).

Fair strings correspond to the possible message sequences under the fairmess constraint
that any action is eventually completed. Fair strings can also, however, result from unfair

executions.

Proposition 1 For any finite fair string and any o € A,, the number of (begin a) i1 equal

to the number of (end a).
Proposition 2 Any finite reasonable siring ts the prefiz for some fair string.

Since the agent interacts with the environment only through the sending and receiving of
messages, we will consider the possible sequences of environment states for a given message
sequence. This also will be a more formal description of the operation of an environment.

Suppose the environment < W, A,1> is given. There is a successor relation on environ-
ment states. A state is a successor of another if it can be reached by a single event execution

for a current action.

10

Definition 9 Let <w;, E|, 7 > be an environment state. Then a state < wa, Ea,ra> 15 a

successor of <wp, Ey, > iff

3(&,;)6 El . ¢ ?"' ¢r
= (6:7)1

wy = 6(“1)!

Ez = (E:\{(e,¢)}) U {(e, pop(s)};
il wy) €~ then r» = succeed

else r» = fail

An end message can be regarded as a function between environment states. For consis-
tency with the operation of the begin message, which involves a nondeterministic choice for
an action, we will represent the function as mapping a state to a singleton set of states, or

to the null set if the original state is one which could not send the message.
Definition 10 [f3(a,c) € E . ¢ = ¢ then
(end a)(<w, E,r>) = {<w, E\{{e,¢)}, 7>}

otherwise

(end a)(<w,E,r>)=¢

A begin message can be regarded as a function from environment states to sets of envi-
ronment states.

Definition 11
(begin a)(<w, E,7>) = {<w, EU {{e,5)},7>: ¢ € i(a)}

We can define a successor relation between pairs of environment states and strings. For

convenience, we will refer to an (environment state, string) pair as a string ezecution slate,

Definition 12 Let {<w, E, r>,0) be given. Then (<w' E', 7' >,0') is a successor if one

of the following cases holds:

e g=0¢ and <uw' E' 7> i3 a successor of <w, E, 7>

e o' = pop(o) and <w', E', "> € o1(<w, E, r>).

oy 13 of the form (begin a) or (end a).

11

Now given a string o we can define the associated set of sequences of string execution

states.

Definition 13 Lel o be any siring. A sequence of string ezeculion slales § 1s an associated

sequence for the siring iff the following properties hold:

e & =(<w, ¢, succeed >, o) for somew €W,
o &, 15 a successor of §,— for everyn from 2 to the end of the sequence.

e & 1s infinite, or has a final element &, = (<w, E,r>,0) where 0 = ¢.

The above definitions define carefully the operation of the environment. it always begins
in a quiescent state and it changes state only by executing an event or exchanging a message
with an agent. With the operation of the environment well defined, we can prove the

association between reasonable strings and possible environment executions.

Proposition 3 A4 siring rs reasonable sff it has some associated sequence of siring ezeculion

slales.

We also present the simple but useful result that makes the above definition sensible by

asserting that all the string is eventually used.

Proposition 4 For any reasonable string and any associated sequence of siring ezecution
states, any finile initial prefiz of the original string will eventually be stripped to produce a

string 1n the sequence.

The fairness constraint on the operation of an environment is that any available event

is eventually executed.

Definition 14 A sequence of string ezeculion states £ is fair ¢ff it has the property

o For any & = (< wn, Bn,™a>,04) in &, and for any (a,¢) in E,, there is somem > n
such that
Em = (<wm EmyTm>,0m)
§m-1 = {(<wm=1, Em—1,Tm-1>,0m—1)
(a,¢) € Em-
if¢=¢ then (Em_1\{(a,¢)})
else (Em_1\{(a.)}) U {(a, pop(s))}

12

The following result asserts that the definition of fair strings is sensible.
Proposition 5 A string 15 fair iff some associated sequence of environment states ts fair.

Note that if the environment is always [air, then only fair strings of messages are possible

but there still may be an unfair execution of an environment for a fair string.

Proposition 6 For any fintte fair string, the final state in any associated sequence of

environment states will be quiescent.

We need to capture the idea that the set of tags used in a string is arbitrary: they serve

only to mark operators. Thus we introduce the concept of string isomorphism.

Definition 15 Two strings are isomorphic iff there 13 a one to one mapping between the
sets of tags used {n each string such that transforming all the tags fn one string by that
mapping will give the other siring.

Two sets of strings are isomorphic ¢ff there {3 a one to one mapping between the sets of
tags used in each set such that transforming all the‘tags in a string in one sel will give a

string in the other sel.

The raison d’étre of the planning process is the sequence of world states that is induced
by a plan. Thus we also consider the associated set of world states without regard to the
actual moment of message exchange. This enables us to consider hierarchies of actions,
since it reduces the execution of a plan to a sequence of event executions, which is exactly
the definition of an action execution.

Since we are interested in the failure of events, we must include r in the world state.

Thus we now consider the set of world states to be the set of tuples
W x {fail,succeed}

Note that an event, which has been given as a (state transition, correctness condition)
pair could be given as a single mapping on this extended world state. We choose not to do
this because we will later restrict the class of mappings for events, and it is convenient to

have the mapping separate from the correctness condition.

Definition 16 Le! a string be given. A sequence of world slates 13 associated with the
string if it can be obtained from an associated sequence of string ezecution states £ by the

Jollowing algorithm:

13

1. Remove all &, from the sequence for which the strings in &, and &, are different.

2. For every &, = (<w, E, r>,0) in this reduced sequence, take the pasr (w, 7).

When we come to define agents, we will be interested in the sets of message strings they
could exchénge with an environment, and the resulting sets of sequences of wotld states.

Thus the following definition will be useful.

Definition 17 Two sels of strings are equivalent for an envirc;nment tff every sequence
of world states assoctated with a string in one sel 1s also associated with a string in the
other set. They are equivalent :f they are equivalent for every environment that defines the
.operators used,

Two sets of strings are totally equivalent for an environment ¢ff every sequence of string
ezeculion states associated with a string in one set 1s the same as a sequence of siring
ezecutions stales associaled with a string in the other set ezcept for the tags. They are totally

equivalent if they are totally equivalent for every environment tha! defines the operators used.

Proposition 7 [somorphism implies total equivalence. Total equivalence implies equiva-

lence.
We will attempt to characterize these relations.

Definition 18 Given two strings o and o', ¢’ is a refinement of o 1ff

!

e [fm > n, and o}, = o], = (begin a z), and there are more (begin o z) than
(end o z) in every prefiz of the string (o}, 00, 1,...,00.), then there is some y such

that o = oy = (begin a y).

e Ifm > n, and o/, = (begin a z), and 0!, = (end a z), and there are more (begin a z)
than (end e z) in every prefiz of the string (o}, 001,...,01,_1}, then there is some

y such that o, = (begin a y} and 0, = (end a y).
[ntuitively, a string is a refinement if it is a restriction on the ways operators can overlap.

Definition 19 A4 string o is specific of it is a refinement of every string that 1s itself a

refinement of o.

Intuitively, a specific string defines a unique overlapping of operators. We can use these

definitions to find an alternative definition of total equivalence.

14

Proposition 8 Two strings are totally equsvalent iff every specific string that 1s a refine-
ment of one 1s a refinement of the other.
Two sels of strings are tolally equivalent iff every specific string that 1s a refinement of

some siring in one sel 13 also a refinement of some string in the other sel.

Now we go on to find an alternative definition for equivalence. Given a string, we define
a partial order on instances of identifiers. Intuitively, this expresses the necessary order on
identifiers when they are identified with arbitrary instants somewhere between matching

begin and end messages.

Definition 20 Let N be the set of natural numbers: inlegers Vgrealer than 0. Let A, be the
set of identifiers used in some reasonable string o, and § be some symbol which 13 never
used as an sdentifier. Let Al = A, U {8}. There is a partial order on N x Al corresponding
to o given as follows:

If a,8 € A, then (m,a) < (n,8). iff the m** occurrence of (end a) in ¢ comes before
the n'® occurrence of (begin 8).

If a € A,, and there is an n'*® occurrence of (begin a), then (1,8) < (n,a).

If a € A, and there i3 an n'* occurrence of (end a), then (n,a) < (2,9).

Such a partial order can be considered to be a set of pairs. Thus there is a subset

relation between the orders.

Definition 21 Let o and o2 be two sirings. Then oy is faster than o2 iff the partial order

corresponding lo o= 13 a subsel of that corresponding to 0.

Intuitively, a string ¢, is faster than a string o2 if o) can be formed from o2 by moving
pairs of [_begz‘n a)and {end a) closer together in the sequence. This corresponds to delaying
the start of an action and also requiring it to complete sooner. This corresponds to the case
where an action may delay a while before commencing, and then execute faster to complete
earlier than it did in the first instance.

The following is the key result for finding equivalent sets of strings.

Proposition 9 o, s faster than o2 iff for every environment the set of associaled sequences

of world states for oy is a subset of the set for o-.

As a corollary to the above we get the required characterization of equivalence.

15

Definition 22 The asynchronous closure of a set of strings 1s the set of all strings faster

than some string in the original sel.

Proposition 10 Two sets of strings are equivalent iff thesr asynchronous closures are to-

tally equrvalent.

We choose the term asynchronous closure because it reflects the fact that a faster string
may be obtained from a given string by delaying the start of actions to the last possible
moment and allowing them to complete arbitrarily quickly, instead of insisting on redundant
synchronization of the moments of message exchange.

We will also be interested in sequences of world states that [ail at some stage. The

following definition is useful.

Definition 23 A string is sale for an environment iff no associated sequence of world states

ever contains a world state with a lail status.

2.3 Agents

We have already stated that an agent is some object that exchanges messages with an
environment. It could thus be characterized by the set of strings it will exchange with an
environment.

It is convenient to give an agent some additional structure, and to characterize the
classes of agents able to be represented by plans. The usual means of defining objects that
accept sets of strings is by computation theory - automata or Turing machines. We will

represent an agent as a nondeterministic finite automaton(9].

Definition 24 An agent is a labeled directed graph defined by a 6-tuple <A, ¢, N, I, F,t>.
A 18 a set of operators, v 13 a set of tags, N is a finile sef of nodes, I 13 some element of
N called the initial node, F' 13 some subset of N called final nodes, and ¢ 15 a sef of arcs

between nodes labeled with an identifier and one of the words begin or end. That s
t C N x N x {begin,end} x A,
The first node of an arc 15 called the source; the second is called the destination.

An agent is always in some state represented by a node, and interacts with an environ-

ment by the exchange of identifiers. The term agent state will be used interchangeably with

16

current node; where there is no confusion, simply state ts used. As it sends and receives
messages, the agent changes state.

We will normally consider an arc in an agent to be a triple, consisting of two nodes and
a label from the set {begin, end} x A,.

if there is an arc labeled fbegin a) which has the current state as its source, then the
agent may send the identifier a as output and the destination of the arc becomes the current
state. If there is an arc labeled {end a) which has the current state as its source, and the
identifier « is received as input, then the destination of the arc becomes the current state.
Where there are several such arcs, one is selected nondeterministically. If an identifier is
received as input and there is no arc from the current node labeled fend), then the agent
is said to block. _

The initial state of the agent is the node I. If the state of the agent is ever in the set
F, the agent may termrnate. Once an agent has terminated, it makes no further changes of
state, sends no further messages, and ignores any messages it receives.

We insist that an active agent will not pause indefinitely as long it has the option of

changing state. That is:

¢ An agent will not pause indefinitely at a nonfinal node with an outgoing arc labeled

with a begin message.

¢ An agent will not pause indefinitely at a final node without terminating.

2.3.1 Classes of Agents

In this section, we define formally the operation of an agent and find particular interesting
classes of agents. An agent will induce sets of sequences of world states, and we characterize
classes of agents that induce the same set of world state sequences. We define agent termi-
nation and deadlock. We will be interested only in certain types of agent: complete agents,
which wiil always accept an end message from the environment, and bounded agents, which
correspond to a finite set of real agents, We define a class of regular agents, and claim that
any bounded complete agent is effectively equivalent to some regular agent. This section
may be skipped by those not interested in that level of detail.

The operation of an agent in conjunction with an environment may be defined more
formally with the concept of an agent ezeculion state in the same way as we used a string

execution state to define the operation of an environment.

17

Definition 25 An agent execution state for some given environment and agent with a
common set of operators i3 an (environment state, agent state) pair, where the tags used in

the environment state are those given for the agent.
We define a successor relation on agent execution states.

Definition 206 Let < W, A, > be an environment and < A,, N, I, F,t) be an agent, Let
the agent erecution state (<w, E,7>,n) be given. Then (<, E', 7" >,n') 1s a successor if

one of the following conditions holds:
e =g and <, E', 7> 1s a successorof <w, E, 7>,
e 3p.(nn',p)Etand <u' E' r'>€E p(<w, E, r>).

p 13 of the form (begin a) or (end a), for some a € A,.

Definition 27 Given an environment < W,A,{ > and an agent < A, , N,I,F,t >, a se-
quence of agent ezecution states § 13 an associated sequence for the agent if the following

properties hold:

e & = (<w,d,succeed>, I) for some w € W,

o &, 13 a successor of £,y for everyn from 2 to the end of the sequence.

Each agent execution is associated with some string of communications between agent

and environment in the obvious way.

Definition 28 For any agent ezecution sequence £, the associated string i3 constructed in
the following way. Let £, = (<wy, Eq, Tn >,1n). For every £, for which the size of E, 1s
different from that of E,_,, add a message to the string. If E, has a new element (a,¢),
then add (t;egin a). Otherwise E,_y has an element (a,) missing from E,, so add (end

a).

An agent is more than simply the set of associated strings, since there may be several

different types of execution sequence.

Definition 29 An agent accepts a string iff it corresponds to some finite or infinite path

through the graph.

Definition 30 Given any agent < A,t, N, I, F,t>, and any environment <W, A, 1>

18

e An agent runs on a string iff it i3 associated with some agent execution sequence.

o An agent blocks on a string iff it 13 assocsated with a finite agent ezecution sequence

that ends in a state (<w, E,7>,n) for which
a,¢)€EE .V €N .(n,n',end,a) ¢!t

e An agen! terminates on a string iff it 1s associaled with a finile agent ezecution se-

quence thal ends in a state (<w, E,7>,n) for whichn € F.

e A4n agent deadlocks on a siring iff it 13 assoctated with a finite agent execution sequence

that ends in a state (<w, E,r>,n) for which E = ¢, and
Vn'e N,a € A, . (n,n,begin,a) ¢ ¢
Since an agent is nondeterministic, these cases for a string are not mutually exclusive.

Proposition 11 An agen! runs on a siring iff the agent accepts the string and it 43 rea-
sonable.

An agen! terminates on a siring iff the string is reasonable and corresponds to a finite
path through the graph from the initial node to some final node.

An agent deadlocks on a string iff the string is fasr and corresponds to a finile path
through the graph from the initial node to some nonfinal node, and there are no arcs from
the last node labeled with a begin message.

An agent blocks on a string iff the string 1s reasonable and corresponds to a finite path
through the graph from the instial node to some arbitrary node, and for some a € A, there
are more (begin a) arcs than (end a) arcs on the path, and there i3 no arc from the last

. node labeled with (end a}.

Proposition 12 Given an agent and environment, every finite agent execulion sequence
i3 etther the proper prefiz of another agent ezecution sequence, or else the agent blocks,

deadlocks, or terminates on the associaled string.

Agents may be characterized by the strings that induce these various types of execution.
Note these cases for strings do not depend on the environment chosen since they do not
depend on world states. Intuitively, an agent runs on a string if the string corresponds to a

possible sequence of messages with an environment. The agent will deadlock if it gets into

19

a nonfinal state from which it cannot make further transitions; it may terminate if it gets
into a final state; and it may block if it gets into a state for which the environment might

send a message the agent is not equipped to receive.

Definition 81 Two agents are isomorphic if there is a one to one mapping between the
sets of tags used in the reasonable strings accepted by the agents such that if the tags in
the strings are replaced according to the mapping, then the sets of strings on which they

run/deadlock/terminate/block are the same sn each case.

Note that isomorphism of agents does not correspond to isomorphism of finite automata,
since we only consider the reasonable strings and we give weight to nonterminating paths
through the agent.

We have already stated that a planner’s concern is with the sequences of world states
induced by an agent, where the world state includes the success or failure of events. It
may also be concerned that the agent terminates cleanly in some sense, so we extend world
states to include the termination status of an agent. Thus we will azain extend the set of

world states to be

W x {fail,succeed, terminated,, deadlocked, blocked }

Definition 32 Let an agent and environment be given. A sequence of world states 15 as-
sociated with the agent if st can be obtained from an associated sequence of agent ezecution
states & by the following algorithm. Let & = (<uwy, Ex, 72>, 1n).

1. Remove all &, from the sequence for which the sizes of B, and E,_, are different.

2. For every &, in this reduced sequence, take the pair (wn, m).

3. If the original sequence € was finite and the last state £, was (<w,, E,, 7. >,n,), then

one may optionally add one more world state by one of the following rules:
e Ifn. € F, then {w;,terminated) may be added.

e IfE, = ¢ and n. € F, and there 13 no arc from n, labeled {begin o), then
{w;, deadlocked) may be added.

o If Ha,é) € E. and there is no arc from n, labeled (end a), then {w., blocked)
may be added.

20

We define equivalence for agents as we did for sets of strings.

Definition 38 Two agents are equivalent for an environment sff in conjunction with that
environment they induce the same set of sequences of world states. They are equivalent if
they are equivalent for any environment.

Two agents are totally equivalent for an environment iff in conjunction with that envi-
ronment they induce the same set of sequences of agent execution stales, except for the nodes

and tags used. They are totally equivalent if they are totally equivalent for any environment.

Proposition 13 Two agents are equivalent «ff the sets of strings on which they
run/terminate/deadlock/block are equivalent.
Two agents are totally equivalent tff the sets of strings on which they

run/terminate /deadlock/block are totally equivalent.

Proposition 14 lsomorphic agents are lotally equivalent. Totally equivalent agents are

equivalent.

An agent has no control over when the environment will send a message for a completed
action, and so should accept an end message at any time. In other words, we are not really
interested in agents that may block, and agents that terminate before the environment is

quiescent are at least suspect,

Definition 34 An agent 13 complete sff there 13 no string on which it blocks. [t 1s fully

complete iff it fs complete, and every siring on which it terminales 15 fasr.

Proposition 15 An agent 1s complete iff for any finste agent execution sequence £ for an
arbitrary environment for which the last state in the sequence 18 o = (<wn, En, 7 >.10),
and for a;ny {ttn,¢n) € En, there ezists an agent ezecution sequence which 1s the same as
the original with one state 4, concalenaled, for which E,y, is the same as E, ezcept that
{tny n) 15 replaced by {a,, pop(s.)), or ts deleted if ¢, = ¢.

A complete agent 1s fully complete iff for any finite agent execution sequence £ for an
arbitrary environment for which the last state in the sequence 13 {n = (< wn, En, T >,1n),

and n, € F, it follows that E, = ¢.

Given any agent, we can find a corresponding complete agent that operates in the same

way as the original, except that the new agent ignores messages that the first cannot accept.

21

Definition 35 Given any agent, the corresponding complete agent is made by adding arcs
as follows: take any node for which there 13 a reasonable path from the instial node to that
node with more (begin a) than (end a) for some a € A,, and for which there 13 no outgoing
arc labeled (end o). Add an arc that is labeled (end a) and has that node as source and

destination.

Proposition 16 Given any agent, the corresponding complete agent accepts all strings ac-
cepted by the original, blocks on no strings, deadlocks on all the strings deadlocked on by

the original, and terminates on all the strings terminated on by the original.

The following result gives an extended formal definition of the operation of an agent
that makes an agent effectively the same as its corresponding complete agent; hence we

need not consider any further agents that are not complete.

Proposition 17 If we add a new rule to the definition of the successor relation on agent

erecutron states:
o (<uw! E' 1">,n") is a successor of (<w,E,r>,n) if

n=n,w=u,r=r1" and
Ja€ A . V" €N .(nn"end,a) €t and
(< E' r'>,n') € (end a)(<w, E, 7>, n)

then the sets of associated agent ezecution states for an agent and its corresponding complete

agent are the same.

In general, there is no way of making a corresponding fully complete agent. However, we
can change-the definition of agent execution so that an agent may not terminate unless the
environment is quiescent. Formally, we would change the definition of sequences of world
states associated with an agent by allowing (w,,terminated) to be added to the end of a
sequence iff the last state (<w., B, r: >,1;) in the sequence of agent execution states was
such that p, € F and £, = ¢.

The strings accepted by an agent are not necessarily reasonable, so we make the following

definition.

Definition 36 An agent is consistent iff every string it accepts 1s reasonable.

22

A consistent agent is more clearly representative of agents in the real world in that every
path through the agent corresponds to a string on which the agent will run.

The main result we will be interested in is finding the class of agents that can be
represented by plans. Note that an agent makes no use of sensory input from the world
model. This is a common assumption in planning systems. Agents do, however, “know”
when an action ends, since they may change state on receiving a message that the action has
terminated. However, the exact moment of completion is not known, since an environment
does not return a message until the corresponding sequence has been completed at some
earlier moment. Similarly, the environment may wait an arbitrary time after receiving a
message before executing the first event. This lag corresponds to the intuition that, for any
information-processing agent such as a person or a robot, there is a small but finite time
between the decision to do some act and the moment when it begins to change the real
world. Also, any input from the real world takes a moment to be recognized. This effect is
clearly seen for a comp‘uter program that interacts with the world through communication
channels to some 1/O device. These lags will have some bearing in finding classes of agents

that are equivalent.

Proposition 18 Two complete agents are equivalent iff the asynchronous closures of the

sets of strings on which they run/deadlock/terminate are totally equivalent,

Definition 37 4 complete agent is asynchronously closed if the sets of strings on which it

runs/deadlocks /terminates are all asynchronously closed.
Proposition 19 4ny complete agent 1s equivalent to some asynchronously closed agent.

The class of asynchronously closed agents is still too broad. We will be using agents to
model the activity of some finite number of real agents in the real world. Thus there will be

an upper bound on the number of actions the environment will be executing at any time.

Definition 38 An agent 13 bounded iff there 1s a finite upper bound on the difference
between the number of (begin) arcs and the number of (end a) arcs on an arbitrary (finite

or infinite) reasonable path through the graph and for an arbitrary a € A,.
Proposition 20 Any complete consistent agent is bounded.

Proposition 21 A complete bounded agent 1s isomorphic to a consistent agent.

23

Proposition 22 An agent 13 bounded 1ff for any environment < P, A, 1> such that i{(a) 1s

finite for every a € A,, the agent/environment machine is finite state.

The definition of an agent allows it to terminate before the environment is quiescent.
This implies that the terminated agent could receive messages from the environment that
it will ignore. We have shown how to comstruct a corresponding complete agent which
ignores messages that would otherwise cause it to block. If an agent is bounded, one can
also construct a corresponding fully complete agent, which is exactly like the original, except
that where the first may terminate on some unfair string, the corresponding fully complete
agent will terminate only on any fair string that is formed from the first by adding only end

messages.

t

Definition 39 Given a complete agent a, an agent a' 13 a corresponding fully complete

agent iff the sets of reasonable accepted strings are equal, the set of strings on which a and
a' deadlock are equal, and the set of strings on which o' terminates 13 the set of all fair

strings that can be formed by adding end messages to the strings on which a terminates.

Proposition 23 For any complete agent we can find a corresponding fully complete agent

iff 1t 13 bounded.

We present a class of agents which will be shown to correspond to plans, and then show

the classes of agents equivalent and totally equivalent to such agents.
Definition 40 An agent is specific if every reasonable string it accepls is spectfic.

Definition 41 An agent is regular f

LT fuh’y complete.
o it £s consistent,
e it 13 asynchronously closed.

e 1t 13 specific.

Proposition 24 4An agent 13 asynchronously closed, bounded, and fully complete iff it i3

totally equivalent to some reqular agent.

Proposition 25 An agent 1s complete and bounded ¢ff st is equivalent to some regﬁlar agent.

24

Deadlock will be associated with problems in a synchronization skeleton; therefore, we

will be interested in agents that do not deadlock.
Definition 42 An agent 13 deadlock-free iff there are no strings on which it deadlocks.

Proposition 26 A consistent agent is deadlock-free tff no nonfinal node with no outgoing

arcs 13 reachable from the 1nitial node.

All the properties of agents discussed so far are independent of the environment, as long
as all the necessary operators have interpretations. However, since the planner is concerned
with sequences of world states and event failure, the interpretation of operators will be

important.

Definition 43 An agent 13 safe for an environment iff for every associated sequence of
world states, the status 1s never fail: equivalently, iff every reasonable string it accepts 13

safe.

When we modify plans so that they become safe and deadlock-free, there must be some
relationship between the original and modified agents generated by the plans. We require

that the new agent allow some subset of the sequences of world states allowed by the original.

Definition 44 A complete agent a is included in another complete agent a' if the sets of
strings on which a runs, terminates, and deadlocks are all subsets of the sets of strings on
which a' runs, terminates, and deadlocks, respectively.

Given an environment and a complete agent a, the maximal safe deadlock-free agent a'
13 a complete safe deadlock-free agent included fn a which fncludes every other complete safe

deadlock-free agent included in a.

Proposition 27 Given an environment, every complete agent has a mazimal safe deadlock-
free agent that 1s unique up to tsomorphism, or it includes no complete safe deadlock-free

agent.

[n a similar way to that in which ¢ transitions are used in automata theory, an agent is
permitted to be defined with arcs labeled with ¢. This is a convenience. An agent with ¢
transitions is regarded as exactly the same as the agent without such transitions given by

the foliowing algorithm:

25

1. For any nodes ny, no, ng such that there is a finite sequence of ¢ transitions leading
from n; to n- and a single arc labeled p from no to ns, where p is not ¢, add an are

labeled p from n; to ns.

2. For any node such that there is a finite sequence of ¢ transitions leading to a final

node, add that node to the set of final nodes.

3. Delete all ¢ transitions, and delete all nodes that are not reachable from the initial

node.

An agent with ¢ transitions may be considered to operate in the following manner.

If there is a path from the current node consisting of some initial (possibly empty)
sequence of ¢ arcs followed by a fbegin a/ arc, then the agent may send a as output and
the end of the path becomes the current node. If the agent receives a as input, and there is
a path from the current node consisting of some initial (possibly empty) sequence of ¢ arcs
followed by an {end] arc, then the end of one of those paths becomes the current node.
Otherwise if an input of o is received, the agent blocks.

[f the agent is ever in a state where there is some (possibly empty) sequence of ¢ arcs

to a final node, then it may terminate.

2.4 Plan syntax

A plan is some description of an agent. The planning problem becomes that of finding a
plan that denotes an agent that will induce some suitable sequence of changes in the world
model, given information about the environment.

Given three symbol sets A, M and 5 being oberators, memory states, and signals,

respectively; plans can be defined recursively.

¢ For any a € A, a i1s a plan.

e Forany m € M, s € S, (set m), (send s), and (guard m s) are plans.

Ais a plan. A is a unique symbol not in A.

* [f py and p» are two plans, then p;;p2 is a plan.

If p1 and p» are two plans, then p; || p2 is a plan.

26

e If p; and po are two plans, then p; | p2 is a plan.
e If p; is a plan, then py is a plan.

It is assumed that devices exist for defining a unique parse of a plan, such as brackets
or operator precedence rules. The actual technique is not important.

The intended meanings of the various plan components are:

¢ ; is the sequence construct.

e || is the parallel construct.

e | is for nondeterministic selection.
e 1 is for loops.

{send s), (set m), and {guard m s) are synchronizing primitives.

e o where a € A is the command to execute an action.

A is the null plan.

2.5 Plan Semantics

The semantics for plans is given as a mapping {rom plans to agents. The agent is said to
be an interpretation for the plan. A plan may have several interpretations, all of which are
isomorphic to ecach other. Thus the mapping is actually 2 mapping from a plan to a class
of isomorphic agents.

We present two alternative definitions of this mapping, and then show that they are
equivalent.

The ﬁ_rst definition of the mapping proceeds in two stages. First, a mapping to a graph
is clefined that includes arcs labeled with memory states and signals as well as identifiers.
Then a mapping is given from this graph to a graph that conforms to the definition of an
agent.

Let the sets A, M, and § be given. Let ¢ be an arbitrary set of tags. Then p is a
function from the set of plans to the set of graphs defined by a 4-tuple < N, [, F,t>, where
N is a finite set of nodes, [is an initial node, F is a nonempty set of final nodes, and ¢ is a
set of labeled ares between nodes.

The lzbels may be

27

e (begin o) or (end a) where a € A,.
¢ (send s), (set m), or (guard m s) where m € M,s € S.
e the symbol ¢,

p is defined recursively.
We now list formal definitions and intuitive pictorial representations of p for the syntactic
elements. In the pictorial representation for combinations of subplans, the agent for a

subplan is drawn as

®

* The node on the left is the initial node, the nodes on the right are the final nodes. The

initial and Rnal nodes of the total plan are labeled | and F, respectively.

e For the plan o« where a € A, choose an arbitrary z € s. p(a) is the graph

<{I,n, F},I,{F},{(I,n,(begin a z)),
(n, F,(end a z))} >

begi end o
O Ol

o Far the plan p, where p is (send s), (set m), or (guard m 3) form € M,s € S, p(p) is

the gl:aph
<(L,F}, L{F}Y{(L, F\p)} >
e For the plan A, p(A) is the graph
<{n},n,{n},¢>

28

(i®)

e Suppose graphs for two plans are given as

plp1) =< Ny, L, P >
plpz) =< Na, L, Fa, t2>

Assume that the sets Ny, N, are disjoint. Then the interpretation for py;p2 is

p(p1ip2) =<N1 U N,
Iy,
£,
UtV {(f I2,¢): fe R}>

CD pim))P(Pz)

¢ Suppose interpreiations for two plans are given as

p(pl) =< N[,I],F],t]_)’
ploz) =< N, I, P, t2>

Assume that the sets ¥y, N2 are disjoint. Then the interpretation for p; | p2 is

plp1 | p2) =<N1 U N, Un,

n,
Fl Y F'.h
tUtaU{(n, I, ¢),(n, I2,e)} >

where n is a new node not in N, or N,.

29

))p(m)
(1

e Suppose an interpretation for a plan is given as

plp) =< Ny, I, Fy, 4>

Then the interpretation for p™ is
p(pX} =<N1!
Ih

{Il}l
tu{(f. I1,e): f€ F1}>

« Suppose interpretations for two plans are given as
plot) =<Ny I, Fi,tt >
plp2) =< Np, Ip, P2, t2>
with no identifier common to ¢; and ¢;. Then the interpretation for py || po is
plot || p2) =<lNy x N2,
(Il,-[‘.!)1
Fyx Fs
{{{(ny1,n2), (ny2,n2), p) 112 € N2, (nyq,n42,p) € 81}
U{((nr1, n21), (ny, na2), p) = ny € Ny, (n2g,na2z, p) € L2} >

30

This is a standard interleaving model of concurrency, and cannot be represented pic-

torially in the same way as the previous constructs.

Now let g be a mapping {rom the range of p to the set of agents for the operators A.
g will be defined by an algorithm for removing arcs labeled with anything that is not ¢, or
f{begin ajor {end a} fora € A,.

A new memory state is introduced, A € M. The set of memory states augmented with
A is referred to as M’ = M W-(A}. Let memarc be a predicate on the labels of ares which
is true iff the label is of the form {set m} or {guard m s}.

First, given a graph < N, I, F,t>, expand it into the graph

<N x M,
(1,2),
((fim): fe FmeM'},
{{{n1,m), (n2,m),p) : (n1,n2,p) € t,m € M’, ~memarc(p)}

U{({{n,,m), (nz, m), (guard m 3)) : (ny,n2, (guard m s) € ¢}

U{((n1,my),(nz,mz),€) : (By,na,(set mz)) Et,m € M \mpe M} >
Any subgraph of the whole that is not connected to the initial node by some sequence of
arcs may be deleted.

This first step models the memory as part of the agent state. The memory remains
unaltered by transitions that do not set the state. A guard arc may be taken only if
the memory is in the appropriate state. The information contained in the sef arc is now
contained in the new memory state, and so the distinguishing label is thrown away.

The guard arcs are also allowed to be taken only in conjunction with an appropriate
send arc, thus providing a means for synchronization. This is ensured in the second stage
of the algorithm.

Let the new graph produced by this first stage of the algorithm be given. For any

quadruple of arcs of the form

{(n1,m), (nz, m),(send s))
((re,m), (n4, m), (guard m 3))
{(n1,m), (ns,m), (guard m s))

((ns,m), (n4, m), (send 3))

where s € .5 and m € M is common to all four, add an arc of the form

31

Lo

((r1,m), (n4,m),€)

Then delete all ares labeled with a guard or send.

This operation ensures that a send is immediately followed by an appropriate guard.
Again, sections of the graph not connected to the initial node by some sequence of arcs may
be deleted. Let the resulting graph be < N, I, F,t>.

Now choose an arbitrary ¢ that contains all the tags used in ¢, and < A, N, [F,t >
corresponds to the definition of an agent. This is the result of the mapping ¢q. The com-
plete function mapping plans to agents, and thus defining the semantics of a plan, is the

composition of p and q.
Proposition 28 Any agent thal 15 given as the semantics of a plan s regular.

This definition of a plan semantics is suitable for showing how plans are combined into
larger plans, but is a little unintuitive. An equivalent definition is given which corresponds
more closely to the idea that the semantics of a plan is defined by some agent that ezecules
the plan like a program, and that the states of the agent correspond to some kind of program
location.

Let A, M, and S he given as before, and let p be some plan. Again, we augment A
with an initial memory state A.

The set of states of the agent incorpotate a program location and a memory state. The
program location is an assignment of one of todo, doing, done, and guret to every subplan
of the plan p. More formally, il P is the set of all subplans of p, then the set of nodes used

in the agent is a subset of
({todo, doing, done, quiet}”) x M’

The intended meaning of the assignment to subplans is that a subplan may either be
‘about to be executed’, ‘in the process of execution’, ‘just compieted’, or ‘not considered
for the moment’. The initial state is that in which todo is assigned to the plan as a whole,
quset is assigned to every proper subplan, and the memory state is A. The final states are
those in which done is assigned to the plan as a whole, and quiet is assigned to every proper
subplan. The memory state is arbitrary.

The nodes in the agent are described using a simple syntax for the program location.

32

Definition 45 Let Z be the set {todo, doing, done, quiet}. A program location i3 defined

recurstvely by the following rules:

e(p) 13 a program location for any e € Z, and for any synchronization operation p.

e(a, 7} 1s a program location for any operator a and any tag z selected from gn arbitrary

sel t.

e(A) 1s a program location for anye € Z.

e(e1;02). e{oy | 22), and e(g]) are program locations if e € Z and gy, 02 are program
locations.

e(p1 || #2) ¥s a program location if e € Z and gy, p2 are program locations, and there

are no tdentifiers common lo g; and pgs.

The interpretation for a sentence in this language is a mapping from Z to all the subplans

of some plan, and should be intuitive. Nodes may be considered to be marked with such a

syntactic program location and a memory state from M’.

Let a plan p be given. Then find a corresponding program location ¢ that defines a

mapping from Z to all the subplans of p. Let ¢ be some set of tags containing all the tags

used in g. By implication, g also replaces all operators in the plan with identifiers in such

a way that no identifier is common to distinet branches of a parallel subplan.

For the following table, the first column gives a possible subprogram location that may

appear anywhere within the program location at a node. g; and pp are arbitrary program

locations. Where such a subprogram location exists, add an arc labeled ¢ to the node with

the subprogram location replaced by the program location in the second column, and with

the memory state unchanged.

33

todo(quiet(gy); quiet{gz))
doing(done(g;); quiet(g2))
doing(quiet(g;); done(gz))
todo(quiet(g;) | quiet(gz))
todo(quiet({g;) | quiet(g=))
doing(done(g;) | quiet(gz2))
doing(quiet(g;) | done(gz))
todo(quiet{g;)*)
todo{quiet{g;)*)
doing(done(g;)*)
todo(quiet(g;) || quiet(gz))
doing(done(g;) || done(gz))
todo(A)

doing(todo(gr); quiet(gz))
doing{quiet(g); todo(gz))
done(quiet(g); quiet(g2))
doing(todo(g;) | quiet(gz))
doing(quiet(g;) | todo(gz))
done(quiet(g;) | quiet(gz))
done(quiet(g;) | quiet(2z))
done{quiet(g;)*)
doing(todo(g;)*)
todo(quiet (g1)>)
doing(todo(s1) || todo(gz2))

done(quiet(g;) || quiet(gz))
done(A)

The intuitive meaning of these arcs is as follows:

e To commence two subplans in sequence, begin the first subplan.

When the ﬁfst has finished, it becomes quiet and the second begins.

¢ When the second has finished, the whole is completed.

To commence the nondeterministic selection of two subplans, either begin the first

or begin the second.

In either case, when one has finished, the whole is completed.

To commence a loop, either do nothing and consider the loop complete

or commence the subplan encompassed by the loop.

When the subplan encompassed by a loop is complete, recommence the loop.

To commence two subplans in parallel, commence them both at once.

When both are complete, the whole is finished.

e The null plan can be considered done with no effort.

34

To handle operators from A:

If a node has a subprogram location of the form todofa) for some a € A,, add an arc
labeled {begin o} to the node with that subprogram location replaced by doing(a /) and with
the memory state unchanged.

If a node has a subprogram location of the form doing{a) for some a € A,, add an arc
labeled fend a) to the node with that subprogram location replaced by donefc) and with
the memory state unchanged.

To handle the synchronization operations:

If a node has a subprogram location of the form todof{set m}} where m € M, and
an arbitrary memory state, then add an arc labeled ¢ to the node where the subprogram
location is donef{set m}), and the memory state is m.

If a2 node with memory state m € M has a program location with, in one place, a
subprogram location of the form todo{{send s)) and, in another place, one of the form
todof(guard m s}) where s € S, then add an arc labeled ¢ to the node where the memory
state is unchanged, the first subprogram location is replaced by doneffsend s)), and the
second is replaced by doneffguard m s)).

This shows more clearly the intended purpose of the synchronizing primitives. A guard
or send can be executed only simultaneously with a send or guard, respectively, and then
only when the program is in the correct state.

This particular form of primitive is derived from the parallel programming language
CSP[8], which uses a form of guarded selection, where a guard may be a combination of an
input /output operation and a normal conditional. Input/output operations are constrained

to occur simultaneously.

Proposition 29 Given any plan, any two agents formed by either of these two different

ways are tsomorphic.

Proposition 30 For any arbitrary reqular agent, there 1s a plan that has an fnterpretation

ssomorphic to that agent.

This last theorem, together with some results from the previous section, asserts that
there is a one to one correspondence between the equivalence classes (under isomorphism)
of regular agents and the equivalence classes of agents that are interpretations for plans.

Also, there is a one to one correspondence between the equivalence classes (under total

35

equivalence) of bounded complete agents and the equivalence classes of agents that are
interpretations for plans.

Note that this semantics for a plan ultimately replaces synchronization operations with
¢ arcs. [ntuitively, this allows a plan to backtrack over synchronization operations but not
action operators. Although there is an alternative definition that prevents this backtrack,

there are three reasons why we don’t use it:
¢ It is more complex.
e Both interpretations cover the same classes of agents.

e The effect of the second interpretation is to allow the agent to deadlock on more
strings - other sets are unchanged. But if the first interpretation is deadlock-free, so

is the second.

2.6 Extensions to the Syntax

Certain useful syntactic constructs may be added, which have an intended meaning that
does not extend the class of agents representing plans. Thermeaning may be defined either
by extending the definition of an interpretation, or by giving a transformation on plans
that reduces an extended plan to the original syntax. This section is peripheral to the main
thrust of the paper.

One particular extension that we will find useful is the concept of a plan variable. We
have represented memory as a single state. It would be more usual to have memory as a
set of variables,

The definition of plan syntax is extended as follows: replace the set of memory states
M by a set of variables V and a set of variable states . The definition of the primitives
guard and set is extended to be fguard v d 3) and {setv d}forveV,d€e D,s€ S.

The intuitive meaning of these plans should be clear. Sef sets a single variabie to a
single state, and guard receives a signal only il a particular variable is in a particular state.
The meaning is defined formaily by conversion of syntax to the original form.

Let p be a plan in the extended form, with operators A, signals &, variables V', and
variable states D. V and D, of course, are finite. The semantics for p is given by a plan p'

in the original form. The set M used in g’ is the set of mappings from variables to variable

36

states, DY. The set S’ used in p' is S U {z,z'}, where z and z' are unique signals not in S.
The set of operators is unchanged.
In a similar way that a special initial memory state is assumed for plans, we will assume
a special initial variable state. Thus let A be some variable state not in D. Let D' = DU{A}.
We note that the “J” nondeterministic selection operator is reflexive and associative;
therefore, we will allow it to be applied to a set of subplans, with‘the obvious interpretation.
Every fguard v d s} in p is replaced by the nondeterministic selection of all primitives

{guard m s}, where s is unchanged, and m is taken from the set
{me DY :m(v) = d}

Every {set v d)in p is replaced by the nondeterministic selection of all subplans of the

form
(guard m z); (set m'); (gnard m' :.-:').
where z and z' are the special signals, and (m,m') is taken from the set
{(m,m") € D' x D" :m'(v) =d, V' € V\{v} . m'(+') = m(v')}
Finally, the whole plan is run in parallel with the subplan

((send z); (send z'))™

and the subplan {set m}is put before the entire plan with the sequence operator, where m
is the mapping Yv € V . m(v) = A. The two special signails ensure that variables do not
interfere with each other.

The semantics for this plan captures the intuitive meaning of variables.

An alternative definition of semantics would be to give a mapping from extended plans
directly to agents. The mappings given for plans in the previous section are easily extended.

Let A be a set of operators. Let a plan p be given in the extended syntax, with 5, V',
and D being the signals, variables and variable states respectively. Let D' be D augmented
with A.

Consider the first definition of semantics for plans in the original syntax. This is given
as the composition of two mappings p o g. The mapping p is essentially unchanged, if M is

regarded as DV, Suppose that p{p) is the graph < N, {, F,t>.

37

The second mapping ¢ is modified slightly. No new memory state is needed; therefore,
M', the set of memory states in g{p(p)), is the same as in p(p). Thus the set of nodes used
is N x D'Y. The initial node is (I, \'), where I is the initial node from the mapping p,
and X is the mapping that maps all variables onto the special state A. Thus ¢ begins by

transforming p(p) into the graph

<N x D'V,

(I,\),
{(fim): fe Fme DV},

{({ns,m), (nz,m), p) : (n1,m2,5) € t,m € D', ~memarc(p)}
U{({ny, m), (nz,m), (guard v d 3)) : m({v) =d and

(n1,n2,(guard v d s) € ¢}
J{((n1,m),(n2,m2),€) : (n,n2,(set vd)) €¢,
my, ms € D'V,mg(v) =d

Vz € V\{v} . ma(z) = mi(z)} >

The remainder of the mapping ¢ remains essentially the same.

The second definition of plan semantics may be modified in the same way.

Proposition 31 The fnterpretations of an extended plan obtarned by taking the extended
definition of semantics, and by taking the interprelation of the plan obtained by transforming

the extended plan, are 1somorphic.

3 The Interaction Problem

Given the theory of plans and action, the problem addressed here is that of ensuring that
a plan does not induce deadlock or allow any event to fail. We will identify a plan with
its associated agent, and thus use terms previously associated with agents. Thus a plan is
safe if its associated agent is fafe, and so on. Given a plan and an environment, we are
interested in finding the mazimal safe deadlock-free plan, if it exists. This is a plan that
allows all and only the execution sequences of the original plan for which no event can ever
fail. A program has heen written which does exactly that for a restricted class of plans
in a restricted class of environments, and a second version is under development which

will handle any plan and a larger class of environments. This section provides some more

38

background to the plans and environments used in the second version of the program. The

program is called a plan synchronizer, for reasons that will become apparent.

3.1 Events and Event Failure

So far, the world has been considered to be some set of world states. We have said that
world states could be described by having a world state be an interpretation for some logical
language. As we come to provide descriptions of an environment to the plan synchronizer, we
will need to specify the language used to describe world states. We use a simple propositional
language. There will be some finite set of proposstions, and a world state corresponds to the
set ol propositions true in that state. Sets of world states will be represented as formulas
made up of propositions and boolean connectives. The connectives will be A,V,=,D, &,

with the usual interpretations. We will make common use of atomic formulas.
Definition 46 Given a set of propositions P, P is the set of atomic formulas for P.
Pt={p,-p:peP)

For this program we use a very simple form of event, corresponding to the operators
of the STRIPS planner[4]. Events are constrained to add or delete propositions from the
world model without reference to the current world state. Also, the correctness condition
is a conjunction of propositions or negated propositions. Thus an event is four sets of
propositions: an add set, a delete set, a requsre true set, and a require false set.

We will refer to an environment with this type of event as a restricted propositional

environment,

3.1.1 Restricted Propositional Environments

In this section we formally define restricted propositional environments and claim that all
previous results still hold il these are the only environments considered. We show that
actions may be characterized by five sets of atomic formulas, which are the formulas that
the action asserts, retracts, conflicts, requires, or maintains, respectively, in order to find
safe agents. We find simple rules that are necessary and sufficient for an agent to be safe.

This section may be skipped by those not interested in that level of detail.

39

Definition 47 Given a finite set P of propositions, a restricted propositional event is an

event for the set of worlds 2F which can be represented as a 4-tuple of sets of propositions
rpevents(P) = (2°)*

For such a 4-tuple (my, mg, w3, my), the corresponding {mapping, correctness condition} pair
(8,+) s defined to be
5(1‘!’) = (TI' U J'I'l)\ﬂ'z

y={r:73Cmand TNmy =@}

Definition 48 An environment < W, A,t > is a restricted propositional environment if
there is a finite set of propositions P such that W = 2° and every event used sn the range

of { 13 a restricted propositional event for that set of propositions.

We may assume that for an event (m, 75,75, 74), the set pairs (my, 72) and (s, my) are
disjoint, since if there is a proposition in 73 and m, the event will always fail, and any
proposition in 7z is redundant in ;. An event will also be represented as a pair of sets of

atomic formufas (¥, v2), where

m={p:pe€m}U{-p:p€m)
vp={p:p€m}U{-p:p€ny}
Where there is no confusion, we will refer to restricted propositional environments simply
as environmeénts, and present them as a 3-tuple < P, A,i >, where P is a finite set of
propositions, .4 is a finite set of operators, and 1 maps each operator onto a set of finite

sequences of pairs of sets of atomic formulas.
1AM 2(((2!“*)2).)

There is one very useful attribute of this class of environments. None of the proofs of the
theorems so far presented in this paper rely on the fact that environments are not restricted

to this class.

Proposition 32 If the original definition of environment were changed to be restricted

propositional environments, all the results so far presented still would hold true.

40

There is a class of actions that will invariably allow an agent to fail: those actions that
require conflicting conditions to be true without asserting the second condition after the
first is required, and those that deny some condition and then subsequently require it to be

true. Formally:

Definition 49 Given a restricted propositional environment, an action ts unsafe iff every

agent which accepls a reasonable string incorporating that action is not safe.

Proposition 33 An aclion (set of finite event sequences) i3 unsafe if one of the following

conditions holds for any sequence ¢ in the set. Let ¢ = (¢n1, taz).

e Inm>n.IvePE. veEg and

Vi.n<i<m, &g

o Inm2n.3vePE, vEgand
-V E {m2 and
Vi.n<i<m,-~ve&cdg
It turns out that for restricted propositional envifonments, it is not necessary to give
a complete description of the environment in which a plan will operate to determine safe
agents. To prevent event failure, we need to know whether actions are safe, and to do so

we only need five sets of atomic formulas:

* Formulas that will inevitably become true at termination of the action executed with

nothing in parallel. In this case, the formula is asserted by the action.

e Formulas that could possibly become false at termination of the action executed with

nothing in parallel. In this case, the formula is retracted by the action.

e Formulas that could become false at some stage during execution of the action. In

the case, the formula is conflicted by the action.

e Formulas that must be true immediately before the action begins to ensure that
nothing will fail if the action is executed with nothing in parallel. In this case, the

formula is a precondition of the action (is required by the action).

» Formulas that must be true for some event in the action. In this case, the formula is

a during condition of the action (is maintasned by the action).

41

More formally:

Definition 50 Assume for a sequence of evenls ¢, ¢n = (¢n1,$n2). Given an environment

< P, A,i>, an atomsc formula v € PE, and an operator a € A:
e a asserts v if for all sequences ¢ € i(a)
In.vEG,and¥m > n. v &om
e a retracts v if for some sequence ¢ € 1{a)

In.wEm,andVm >n . v &g

a conflicts v if for some sequence ¢ € i{a}
In . v € g
e o requires v if for some sequence ¢ € i{a)
In.VEmz,andV¥m <n.v & ¢m
¢ « maintains v if for some sequence ¢ € i{ax) |
dn . v E (2

Beware of slightly misleading terminology: a masntained formula is not actively main-
tained true, but the action could fail il it becomes [alse.

Note that every required formula is maintained; that if an atomic formula is asserted,
then its negation is retracted; that an asserted formula may be conflicted as well but not

retracted; and that anything retracted is also conflicted.

Proposition 34 For any action and proposition p, there are len distinct possible cases:

P,

. p 15 asserted bul not conflicted, and —p 1s retracted.

-]

—p 13 asserted butl not conflicted, and p 1s retracted.

e

. p 13 asserted and conflicted, and —p s retracted.

L

. —p 13 asserted and conflicted, and p is retracted.

i

. p and —p are both retracted.

42

6. p 13 relracted, and —p 13 conflicted only.

7. —p 15 retracted, and p 13 conflicted only.

o

. p 13 retracted, and —p 1s not asserted, retracted, or conflicted.
9. —p 1s retracted, and p 13 not asserted, retracted, or conflicted.

10. Nesther p nor —p s asserted, retracted, or conflicted.

Given any sequence of communications, the interpretations of actions may be changed
arbitrarily without changing the possibility of an event failing, as long as the five sets remain

the same.

Definition 51 Two actions are equivalent if the sels of atomic formula they

assert/retract/conflict frequire/masntain are the same.

Proposition 35 Grven two environments with the same set of operators, and for which all
actions are safe, and for which the interpretations for a given operator are equivalent, an

agent 1s safe in one iff it i3 safe in the other.

The rules for ensuring no event failure are:

* An action that has a during condition may not run in parallel with an action that

conflicts that during condition.

¢ An action a; that has a precondition may not be begun until some action a3, which
asserts the precondition, has completed execution, and also no action oy that retracts
that condition may be running at any time from the time o2 begins until the time o

ends.

These rules are necessary and sufficient for ensuring that event failure cannot occur.
They may also be expressed formally as conditions corresponding to safe strings, which

must consequently be satisfied by every reasonable string accepted by a safe agent.

Proposition 36 Given an environment < P, A, ¢ > with only safe actions, a reasonable

string o 13 safe iff the following two conditions hold:

1. & Given an arbitrary v € P*

o and an arbitrary n such that o, = (begin a) and i(c) maintans v

43

o and an arbitrary m > n such that there are more (begin a) than (end a) in any
prefiz of the string (0, Ont1,-- ., 0m)
o there is no t < m,i # n, such that o; = (begin 8) and {(8) conflicts v
o and for which every prefiz of the string (0i,0:41,...,0m) has more (begin)
than (end 3).
2, e G:'uep an arbl't}aryu € p*
e and an arbitrary n such that o, = (begin a) and i(a) requires v

e and an arbilrary m > n such that there are more (begin @) than (end a) in any
prefiz of the string (0n,Ont1,---,0m)

o let i be the smallest number (pos;sa'bly 0) such that for all B € A that retract v,
there are equal numbers of (begin 8) and (end 8) in the string (o1, 02,...,0;)
and no (begin 8) in the string (0;,0i44,...,0n=1)

o there must be some j :1 < j < n such that o; = (begin 8') and §' asseris v and
some prefiz of the string (07,0541,...,0,) has ezactly enough (end B’) to make
up the difference between the numbers of (begin §') and (end 8') in the siring

{o1,02,...,07).

Proposition 37 Assume that every action 13 safe. Then an agent is safe iff all the reason-
able strings 1t accepls satisfy the two conditions of the previous theorem, which i3 the case
iff for any atomic formula v and for any associated sequence £ of agent execulion states the

Jollowing two conditions hold (Let £, = (<wy, En, 7 >,1)):
1. There is no E, such that (a,¢) € E, and (o',¢') € E, and a maintains v and o
conflicts v.

2. For any E, such that (a,¢) € Fy and @ requires v, there s some E,; with m < n,
where By = Em-1 U {(a',¢')}, and o' asserts v, and for every i for which pop’(¢') is
defined, thereisaj:m < 3 < n and (o, pop(s')) € Ej, and for everyi:m <i < n, E;

has no element of the form (a",¢") where a" retracts v.

3.2 Synchronizing Plans

The synchronization skeleton of a plan is an abstraction of the plan in which detail irrelevant

to synchronization is suppressed[3]. Given an arbitrary complete bounded agent, there is

44

always a way of constructing a plan that has an interpretation totally equivalent to that
agent. and that has a clearly separated parallel component corresponding to the synchro-
nization skeleton containing only fset m) and {guard m s} operations. The rest of the plan
contains only operators and send operations.

We will use the extended plan syntax. Note that any plan in the original syntax may
be put into the extended syntax by defining a single variable for use in all guard and set
commands and having the set of variable states be the same as the original memory states.

A synchronization skeleton may be added to any plan by inserting send operations in
the plan and running the synchronization skeleton in parallel. The set of possible sequences
of communication acts for the resulting agent is a subset of those for the original agent.

The power of a synchronization skeleton is demonstrated by the following result.

Proposition 38 Leta and a’ be arbitrary regular agents, and let p be a plan in the extended
syntaz that has an interpretation isomorphic to a. Then a tncludes a' iff there is a plan p'

in the eztended variable syntaz
e that has an tnterpretation isomorphic to a',

o and is of the form p| || g5, with a set of variable states that is a superset of the set of

variable states used in p,

o and the only primitive plans in p) are guard and set operations using variables and

messages nol used in p,

o and g} is obtained from p by optionally replacing any primitive operator with sequence
patrs incorporating the primitive operator and a send operation for a message used in

p5 but not in p.

Manna and Wolper([11] describe an algorithm for generating such a skeleton from propo-
sitional temporal logic (PTL) formulas used to express constraints on execution sequences
of a plan. PTL has the finite model property, and is thus particularly suited to reasoning
about the sequences of input output operations an agent may perform. PTL is described
in an appendix.

Given a plan, and for each primitive action the five sets of formulas mentioned above, it
is possible to generate PTL formulas that are true for all and only those sequences of com-
munication operations for which the environment cannot fail. These formulas correspond

to the two correctness rules given above.

45

The propositions used in the PTL formula are not those manipulated by the agent, but

instead correspond to the communication acts of the agent.

4 The Plan Synchronizer

A program has been written in LISP that takes as ir_lput a plan and operator descriptions and
produces as output a synchronized plan that is the corresponding maximal safe deadlock-free
plan, or fails if none exists. The current version of the program handles only deterministie
actions, which have only one possible sequence of events, and input plans that have no
loops or nondeterministic selection and have no synchronization (all primitive subpians are
operators). A second version under development will handle arbitrary input plans and
arbitrary restricted propositional environments. This section describes the operation of the
second version.

The program proceeds in several stages, each of which will be described in turn. The

approach is based on that proposed by Georgeff [5], but is more general.

4.1 Interaction Analysis

The first stage simply lists the operators that assert/retract/conflict/require/main tain each
atomic formula. The input to the program is a plan represented as a list of subplans to be

executed in sequence, where a subplan is a list expression of one of the following formats:

o A list, where the first element is not a reserved word. This corresponds to an operator.

e A list, where the the first element is SEND, SET, or GUARD, followed by one or two
arbitrary list expressions. GUARD is followed by two expressions, the others by one.

These" correspond to synchronization primitives.

o A list, where the first element is LOOP and remaining elements are subplans. This

corresponds to a sequence of subplans in a loop.

A list, where the first element is PARALLEL and remaining elements are nonempty

lists of subplans. This corresponds to sequences of plans executed in parallel.

A list, where the first element is SELECT and remaining elements are (possibly empty)

lists of subplans. This corresponds to the nondeterministic selection of lists of sub-

plans.

46

In the first version, SET, GUARD, SEND, LOOP, and SELECT were not allowed in
the input plan.

The list expressions corresponding to operators are EXECuted to return a list of ef-
fects. An effect is one of the words {ASSERT, RETRACT, CONFLICT, REQUIRE,
MAINTAIN]}, followed by a list of atomic formulas. In the first version, RETRACT was
not allowed for an effect. An atomic formula is either a proposition or a [ist of NOT and a
proposition. A proposition is an arbitrary list expression not beginning with NOT.

A subplan is identified in the program as a sequence of numbers. The null sequence
identifies the whole plan. Otherwise, each number in turn identifies a subplan within the

subplan identified by a prefix of the sequence, according to the following algorithm:
1. Set the current subplan to the whole plan.
2. If the identifying sequence is empty, return the current subplan.
3. Pop the next number n from the identifying sequence.
4. Pop any reserved word from the current subplan if it exists.
5. Set the currel.ﬂ: subplan to the n'® element of the current subplan.
6. Go to step 2.

These sequences will be used as tags.

The output of the first stage is a list associating five lists of tags with each atomic for-
muta, and is obtained by simply scanning the plan. For each operator with a formula in the
X list (where X is one of RETRACT, ASSERT, CONFLICT, REQUIRE, or MAINTAIN),
add the corresponding tag to the X list for that formula. If a tag is added to the ASSERT
list for a formula, it is also added to the RETRACT list for the formula’s negation; if a tag
is added to the RETRACT list for a formula, it is also added to the CONFLICT list: and if
a tag is added to the REQUIRE list for a formula, it is also added to the MAINTAIN list.

An error is returned if one operator ASSERTS a formula and its negation, or if one
operator CONFLICTS a formula and its negation but RETRACTS neither. Thus the
program ensures that the transition associated with an operator corresponds to one of the
ten possible cases for a restricted propositional action and a proposition.

All operators are assumed to be safe, so an error is returned if one operator REQUIRES

a formula and its negation simultaneously.

47

4.2 PTL Constraint Generation

An agent is characterized by the strings of messages it may exchange with an environment.
If we regard messages as propositions, then strings are interpretations for PTL formulas,
where only one proposition is true at a given moment.

Interpretations for PTL formulas are infinite strings, so finite strings are made into
interpretations by appending an infinite number of states in which no proposition is true.

Given a restricted propositional environment, it is possible to find a PTL formula that
is true for all safe reasonable strings and false for all unsafe reasomable strings. This PTL
formula corresponds to the two rules for safe strings given in an earlier section. It is called

the safety constraint.

Proposition 39 Assume a restricted propositional environment for which every action 1s
safe. Then there 1s a PTL formula that 1s true for all safe reasonable strings and false for
all unsafe reasonable strings. This formula 1s the conjunction of all formulas that can be

Jormed by the following rules:

o Ifv i3 an atomic formula, and c 13 an identifier that conflicts it, and m s an sdentifier

that maintains i, then add the formula
0 ((begin ¢) O {~(begin m) U (end ¢)))
A O((begin m) D (—(begin c) U (end m)))

o Ifv is an atomic formula, and d ts an tdentifier that retracts 3t, and r 15 an identifier
that requires it, and {lﬁ,-}:-‘___l 13 the set of all identifiers that assert it, then add the
Jormula

O((begind) 2
. - =(begin r) U { (end d) A
~(begin r) UVEL,((begin a;) A
(—(begin r) U (end a;))))
o I[v ts an atomic formula, and {a;}7, is the set of all identifiers that assert it, then

add the formula
~(begin r) U VL, ((begin a;}) A (—(begin r) U (end a;}))

Given a specific agent, we can simplify this formula in several ways while maintaining

the required property. First, we need some relations between identifiers in a plan or agent.

48

Definition 52 Let an agent be given.

e An identifier & 15 in parallel with an identifier a' if there vs an associated sequence of

agent execulion stales with some environment stale that contains both a and o'.

o An identifier a may precede an sdentifier a' if there is an associated sequence of agent

ezeculion stales ¢ flet ¢ = (<w;, E;,7;>,v.)) such that
31,5 . ¢+ < 4, E; contains a, £; contains a'

e For a set of identifiers I, an agent may be I-free if there 15 an assoctated sequence of

agent ezecution states ¢ {let ¢y = (<w,, E.,1.>,v;)} such that
Vi, Va € I . =(E; contains a)

o Let @ be an identifier and I' be a set of identifiers. Then a may precede all I' if there
is an associaled sequence of agent execution states ¢ flet ¢n = (<w,, E., 1. >,v;)) such
that ‘

3t . (E; contains e AVa' € I' . Vj < i . =(E; contains a'})

e [or identifiers a and o', and a set of identifiers I", “a may precede o without any 1"'”

if there is an assoctated sequence of agent execution states ¢ (let ¢y = (<w;, E., 1. >

v:)) such that

di.7.i<y, FE;contains q,
E; contains o',

Yk, i<k <j.Va" € [". Ei does not contain a”

o For identifiers a, a', and o, “a may separate a' and o’"” if there fs an assocsated

sequence of agenl execulion states ¢ (let ¢ = (<w;, E;, 1, >,v;)) such that

i, 7, k.1 <7<k, FE;containsa,
E; contains a,
E} contains a”,

E} does not contain a or a”

The above relations are also defined for a plan if we take the plan to be equivalent to an
agent that is its interpretation. We can relate the above relations to the syntax of a plan

without synchronization.

49

Proposition 40 Given a plan p conlaining no synchronization primitives, where every

operator is replaced by @& unique identifier:
e An identifier a is in parallel with an identifier o' iff there is a subplan p' = (p, | p2)
or p'-= (p= || p1) such that o is a subplan of p; and o' s a subplan of po.

e An tdentifier ¢ may precede an identifier o, iff
— «a 13 in parallel with o; or
— there is a subplan p' = (p1;p2) such that a 1s @ subplan of p1 and o' 1s g subplan

of p2; or

— there 1s a subplan p' = (p1)* such that o and o' are both subplans of py.

o For g set of identifiers I, the plan may be I-free iff one of the following cases holds:

— The plan 1s A.

The plan is « for some identsfier @ not in I.
— The plan s of the form (p'}*.

— The plan 1s of the form py; p2 or py || p2, and both py and pz are I-free.

The plan 13 of the form py | p2, and one of py and pa 1s I-free.
e For identifiers a and o, and the set of identifiers I", “a may precede o' without any
I"” 'ﬁ
— alpha 1s in parallel with o'; or
— there is a subplan p' = (py; p2) such that
+ a 18 a subplan of py and o' is a subplan of p2; and
« for every subplan of py of the form (p!; p}), either a is not a subplan of g}
or g} s I"-free; and
+ for every subplan of pz of the form (ph; p3) esther, o' is not a subplan of pf
or pu 18 I"-free; or
— there 13 a subplan p' = (py)* such that
+ a and &' are both subplans of p1; and

+ for every subplan of p, of the form (p}; oY), esther a s not a subplan of p}

or pY is I"-free; and

50

+ for every subplan of py of the form (p|; p]), esther a' is not a subplan of p}

or py 18 ["-[ree.
o For an identifier a and a set of identifiers ['| a may precede all [' iff for every subplan
p1; pa esther py ts ['-free or a is not a subplan of pa.
o For identifiers a, o', and a",- “a may separate a' and a"” iff
— o' may precede o ; and
— a may precede a”; and

— o' may precede a.

The above result translates relations between identifiers to restrictions on the syntax of
a plan without synchronization. For a plan with synchronization, we cannot get the full

correspondence, but we can get the following result.

Proposition 41 For a general plan, the previous theorem unll hold true if all “iff” are

replaced by “only if”.
Now we go on to find a set of PTL formulas.

Proposition 42 Assume a restricted propositional environment for which every aclion rs
safe. Let some plan be gtven. Then there is a PTL formula that is true for all safe reason-
able strings accepted by the plan and false for all unsafe reasonable strings accepted by the
plan. This formula fs the conjunction of all formulas that can be formed by the follow:’ng
rules, where relations between identifiers are defined using the plan formed by replacing all
synchromszalion operations in the original with the null plan. (This allows us to use plan

ayntaz to find identifiers satisfying particular relations.)

o [f v is an atomie formula, and ¢ 1s an identifier tha! conflicts 1t but does not retract
i, and {m;}7_, 13 the nonemply set of identifiers m that maintain v and that are in

parallel with ¢, then add the formula
0((begin) D (Vi (begin 7)) U (end c)))

e Ifv 1s an atomic formula, and m is an identifier that mantains it, and {c;}2, ts the
non-empty set of sdentifiers c that conflict v and that are in parallel with ¢, then add

the formula

51

a({begin m) > (~(V=,(begin ¢;)) U {end m}})

o Find an atomic formula v and an identifier d that retracis it. Let U be the set of alil

identifiers that require, retract, or assert v. Lel R be the sel of identifiers:

{r : r requires v, d may precede r without any U'}

Let B be the formula
V.er(begin r)
Let A be the set of identifiers:
{a: a asserts v, Ir € R . a may separate d and r without any U}
For each a € A, F,; 15 one of the followng formulas:
— [fa is in parallel with d, and 3r € R . a i3 n parallel with r, take the formula
(begin a) A (B U (end a))

— Otherwtse, if Ir € R . a is in parallel with r, take the formula

(end a)
— Otherwise take the formula
{begin a)
Let F be the formula
Bu\ F,
acA

Now generate one of the following four formulas:

- .[f dr € R .d is in parallel with v, and 3g € A . d 15 in parallel with a
O{{begin d) > {B U {{end d) A F)))
— Otherwise, if 3r € R . d is in parallel with r
O{(begin d) D F)
— Otherwise, ff 3r € R . r may precede d, or s'f-Ha € A.a may precede d

O{{end d) D F)

52

— QOtherwsse,

F

e Find an atomic formula v. Let U be the set of all sdentifiers that regquire, retract, or

assert v. Let R be the set of identifiers:
{r : r requires v, r may precede all U}
Let A be the set of identifiers:
{a : a asserts v,3r € R . a may precede r without any U}

Then take the formula

- \/ (begin r) U \/ (end a)

r€R acA

There are many other ways to get appropriate sets of formulas; this is the particular
set found by the program. There is a trade-off between the difficulty of generating the
formulas, the time taken to process the resulting formulas in the next section, and the
number of distinct propositions used (fewer propositions implies faster processing in the
final section as well as faster theorem proving).

We have a PTL [ormula true for safe strings, but the theorem prover must generate
a model corresponding to safe accepted strings. Thus, another constraint is needed: the
ordering constrain!, which is true for all accepted strings.

In general, it is possible to add new propositions, so that in a state one or none of
the message propositions are true and some arbitrary subset of the added propositions are
true. We can then find a PTL formula that has a model being a set of sequénces of sets of
propositions, such that if all added propositions are deleted the sequences correspond exactly
to the strings accepted by an agent. Rather than develop this method, we augment PTL
with program formulas, which can be used to represent ordering constraints very efﬁciehtly.

The PTL formula that is the conjunction of the ordering constraint and the safety

constraint is called the folal consiraint. It characterizes the agent we want as cutput.

Proposition 43 Given a plan and environment descriplion, the interprelations of the total
constrainl generated as above correspond ezaclly to the reasonable sirings accepled by the

corresponding mazimal safe deadlock-free agent.

53

So now we can use temporal logic theorem-proving techniques to solve the interaction
problem.

First, we define and give an interpretation for the extended PTL syntax. We define
the syntax for an ordering coustraint to be a (plan, memory state) pair, where the set of
primitive operators used in the plan correspond to messages. Considered as a PTL formula,
it is true for all and only the sequences corresponding to possible plan executions if the

initial memory state is as given in the constraint. We define this more formally.

Definition 53 Given a set of memory states M and a set of propositions P, a program
formula fs a pair (m, p), where m € M and p 13 a sentence given by the syntaz for plans
in which the set of operators is P, the set of memory states 13 M, and the set of signals is

arbitrary.

The semantics of PTL is given by finding the sequences of states for which a PTL
formula is true, To define the semanties of a program formula, we start by defining the arc

set of a program formula.

Definition 54 Given a plan p, a subplan py is current if there i3 no subplan of the form

(645 04), 1 or (o} | o), where py is a subplan of 7 or .

Definition 55 The arc set of a program formula (m, p) 1s the set of triples (a, m’, p'), such
that o ¢s a proposition and (m', g') fs a program formula that can be formed by the following

rules:
1. Make the following transformations on p, treating st ltke a plan, until no more are
possible: |
o For any current subplan of the form g™, replace with either (p'; p'™) or A.
¢ For any current subplan of the form (py | p2), repiace with either py or pa.
e Replace (p';A), (A7), (0" || A), or (A]| ') with §'.

o For a pair of matching synchronization operations (send s) and (guard m s),
where both are current and m 13 the memory state for the program formula given,

replace both operations with A.

e For any (set m') which is current, replace with A and change the memory state

assocrated with the program formula from m to m'.

54

2. Choose any current subplan a, where o 13 a proposition. Replace a with A. Then if
(m',p') is the program formula obtained from all the transformations made, the triple

(a,m’, p') is in the arc sel.

Definition 56 Given a program formula, construct a graph where the nodes are program
formulas and the arcs are labeled with propositions from the set of propositions in the plan
formula. Start with a single node labeled with the initial program formula. For any node,
take the arc set as defined above. For each (a,m,p) in the set, add an arc labeled a from
that node to a node labeled (m, p).

By definition, a program formula is true for all and only those infinite sequences of
proposition sets formed by appending states where no proposition is lrue to finste sequences
of singleton sets corresponding to paths from a node labeled with the program formula to a

node labeled with (m,A) for some arbstrary memory state m.

A program formula is true for possible terminating execution sequences of the plan given
some initial memory state.

It turns out that we only need order the propositions used in the safety constraint. Thus,
the ordering constraint returned by this stage of the program is found by taking the plan,
replacing every identifier & with ({begin &); (end «)}, and then replacing every proposition
that is not used in the safety constraint with A.

The memory state used in the program formula is A, the extra memory state that is not
used in the plan. The output of this section is the conjunction of the safety constraint and
the modified version of the ordering constraint using only propositions used in the safety

constraint.

4.3 PTL Theorem Prover

An interpretation for a PTL formula is a sequence of sets of propositions for which the
formula is true. A model for a formula is the set of all interpretations.

It would be useful if we could represent a model as a finite automaton (over the alphabet
of sets of propositions) that accepts all and only the interpretations for a given formula.

We cannot quite do that, but we can find a close approximation.

Proposition 44 For any PTL formula, we can find a labeled graph < W, N, I, t >, where
W is the set of sets of propositions and i3 the alphabet of the automaton, N s a finite

55

set of nodes, I is an initial node, and t 1s a set of arcs between nodes labeled with sets of

propostlions:
w = 2P
N is arbitrary and finite
I € N
t C NxNxW

with the properties:

-« Every interpretation corresponds to an infinite path through the graph.

e Every finite path through the graph 13 the prefiz of some snterpretation.

An algorithm for finding a suitable graph is given by Manna and Wolper[I1]. We use a
similar algorithm, with some simplifications that apply particularly to the problem we are

dealing with.

Definition 57 A PTL formula 1s eventuality free iff every infinite sequence of sets of
propositions for which every prefiz is also the prefizx of some interpretation 1s tlself an

interpretation.

Proposition 45 The safety constraint generated by the previous stage of the program i1s

eventuality free.

Proposition 46 4 PTL formula i3 eventuality free iff there 1s some graph as given above
such that the set of infinite paths through the graph corresponds ezactly to the set of inter-

pretations for the formula.

The algorithm we use relies on the fact that the PTL formulas of the safety constraint
are eventuality free, and that the only eventuality required by the ordering constraint is
that the plan will always terminate, Manna and Wolper’s algorithm puts a great deal of
effort into satisfying eventualities. We will find a graph such that every finite path through
the graph is the prefix of an interpretation and every interpretation is a path through the
graph.

Thus, it is possible for an infinite path through this graph not to satisfy the ordering
constraint. However, such a path must correspond to an execution sequence for which it

can never be asserted during the execution that the plan cannot terminate.

56

We now describe the algorithm for constructing the graph.

First, take the formula produced by the previous stage of the program and put it in a
standard form. The ordering constraint is left unchanged. The safety constraint is made
into a disjunctive normal form — a disjunction of conjunctions of formulas which are either
atomic or have a temporal operator as the major connective. Also, no operator occurs in

the scope of a negation operator.
The conversion is by repeated application of the following rules to subformulas within

the constraint.
e Replace f; D fowith=fiV f2.
s Replace -~ f; with fi.
 Replace =(fi A fz) with (=fi V- Jf2).
s Replace =(f1 v f2) with (=fi A-f2).
¢ Replace =0 f; with O-f;.
o Replace = fi with O fi.
e Replace =(fi U fz) with - ¥ f;.
¢ Replace —(fi W f2) with - U~ f,.

o Replace fi A(f2V fs) with (fi A f2) V (fi A fs) if the original is not in the scope of a

temporal operator.

e For formulas of the form fyo(fae f3) or (fi ¢ f2) o fs, where o is A or V, replace with
fiofao fa

The nodes of the graph contain a PTL formula corresponding to the safety constraint,
and a program formula corresponding to the ordering constraint. Start the graph with a
single node containing the given ordering constraint and the standardized safety constraint.

For each node, proceed as follows:

1. Transform the safety constraint by applying one of the following rules to any subfor-
mula that has as its main connective a temporal operator other than (O, and that
is not within the scope of any other temporal operator, until no such subformula

remains.

87

Replace O f; with fi A QL f1.
Replace f; U f2 with f2 v (1 AQO(f1 U f2))-
Replace O fi with HvQOoh.
Replace f1¥ f2 with f1 A (f2v O(f1 ¥ f2)).

In fact, the second two rules are never used. This step divides a safety constraint into

requirements on the current state, and on the rest of the execution sequence.

. Get the arc set for the program formula, as described above. This corresponds to

finding all the possible messages to occur next in the sequence.

. For each (a,m, p) in the arc set, get a new safety constraint by the following modifi-

cations to the safety constraint of the node under consideration.

(a) For any « not in the scope of a temporal operator, replace it with true.
(b) For any other proposition not. in the scope of a temporal operator, replace it with
false.
(c) For any proposition at any point in the safety constraint which is not in the new
ordering constraint (m, p), replace that proposition with false.
(d) Apply the following rules as long as they are applicable. (f ia an arbitrary
subformula.)
e Replace true A f, f Atrue, false Vv f and f Vv false with f.
* Replace false A f, f A false, Ofalse, C1false and (Ofalse with false.
e Replace true v f, f V true, $true, Otrue and Otrue with true,
» Replace false U f with f and false w f with false.
e Replace true U f with true.
e Replace true w f with O f.
e Replace f U true with true and f @ true with f.
e Replace f U falsewith O f.
® Replace f W false with false.

This asserts that only « is true in the current state, and that propositions which

are not in the ordering constrinat will never be true at any future state. The

58

resulting formula will be a disjunctive normal form of O operators, and represents
the requirement on the next state in the execution sequence.
{e) If there is any formula outside the scope of temporal operators of the form O -a
for some proposition «, then modify the ordering constraint (m, p) as follows:
i. Let p' be the lowest-level subplan of p that contains « and that has * or | -as
its main connective.
ii. If p' is of the form p'*, replace it with A; if it is of the form (p} | p%), then
replace it with whichever of p} and p}, does not contain .
If no such subplan p' can be found, replace the safety constraint with false.
Otherwise, restart step 3 since more propositions may be replaced with false in
the safety constraint as a result of deletion from the ordering constraint.
This is a heuristic we have found useful since it is applicable fairly often in
problems we have solved. The resulting formula is equivalent, and it may avoid
generating extra nodes in the graph.
(f} Delete all O operators not in the scope of another O operator from the modified

salety constraint. This formula is true in the next state.

4. If the safety constraint is not false, add an arc labeled & to a node where the safety

constraint is as found in the previous step and the ordering constraint is (m, p).

It turns out that this procedure will always terminate, since only a finite number of
nodes can be generated. Nodes where the ordering constraint is (m, A} for some m are
called final nodes. The last step in producing the graph is to delete all nodes that have
no path leading to a final node. If this deletes all nodes, then there is no appropriate safe
deadlock-free plan, and the program returns an appropriate error.

An e:éecution sequence is safe if, after deleting propositions not used in the initial {or-
mula, it corresponds to a path through this graph that is either infinite or terminates at
a final node. The core of the proof is showing that the initial formula is true for all and
only the safe execution sequences, and showing that the algorithm generates an appropriate
graph in the manner of the proof of correctness for the PTL theorem prover by Wolper[17].

We state the result.

Proposition 4T An ezecution sequence of the given plan 13 safe iff after deleting proposi-

tions not in the generated constratnts, it corresponds to a path through the generated graph

59

that either is infinite or ends at a final node.
Any such path through the graph can be made into a possible safe ezecution sequence of
the given plan by the addition of propositions not in the generated constraints.

4.4 Synchronized Plan Generation

The algorithm for generating the output plan is very similar to that of Manna and Wolper[11].
First, synchronization primitives are inserted into the original plan. For every propo-

sition of the form fend a), replace o in the plan with (o; (send {end a})). For every

proposition of the form fbegin a), replace o in the plan with ({send {begin a)) ; a).

Second, a synchronization skeleton is generated.

1. Each node in the graph produced in the previous stage is given some unique identifier.

For every arc in the graph from node n, to node n, labeled a, take the subplan:
(guard v n; a); (set v n2)
where v is a special unique variable not used in the original plan.
2. Combine all these subplans with the selection operator.
3. Put the whole skeleton as produced up to this point in a loop.

4. Use the “” operator to put (set v 1) before the loop, where 1 is the initial node.

[Myg]

. For every arc leading from an arbitraty node n to a final node f, take a subplan
(guard v n a), where a is the label of the arc. Combine all these subplans using the

n

selection operator, and place them after the [oop with the “ operator.

The resulting synchronization skeleton is exactly the graph represented as a plan.

The synchronization skeleton is combined with the synchronized plan using the parallel
operator to give the final output of the program.

Actually, the current version of the program puts the skeleton in CSP. Arcs are repre-
sented as guarded commands, and the loop is given a termination condition corresponding
to the guards placed after the loop in the description above. The two plans are exactly

equivalent.

Proposition 48 The final plan output by the whole program 1s a mazimal safe deadlock-free

plan corresponding to the original input plan.

60

5 An Example

Consider the problem of three robats, all trying to pick up a block and move it clockwise

to a location that another robot will clear as it moves. The diagram shows the robots and

blocks, and the inittal and final positions.

R Ry

.

B C
X Z
C A B
X Y

The unsynchronized plan to achieve this is as follows:

((START (R1 R2 R3) ((A X) (B Y) (C 2)))
(PARALLEL ((PICKUP R1 A X) (PUTDOWN R1 A Y))
((PICKUP R2 B Y) (PUTDOWN R2 B Z))
((PICKUP R3 C Z) (PUTDOWN R3 C X))))

The start action sets up the initial conditions, and then each robot in parallel executes
a pickup and putdown. Clearly, collisions might result.

The synchronized plan produced by the program is
((PARALLEL ((SEND (BEGIN 1))

(START (R1 R2 R3) ((A X) (BY) (C Z)))

(PARALLEL ((PICKUP R1 A X)
(SEND (END 2 1 1))
(SEND (BEGIN 2 1 2))
(PUTDOWN R1 A Y))

((PICKUP R2 B Y)

61

(SEND (END 2 2 1))
(SEND (BEGIN 2 2 2))
{(PUTDOWN R2 B Z))

((PICKUP R3 C Z)
(SEND (END 2 3 1))
(SEND (BEGIN 2 3 2))
(PUTDGWH R3 C X))))

((RECV (BEGIN 1)}
(SETQ N 2)
(WHILE (NOT (EQ N 13))
(SEL (IF (AND (EQ N 2)
(RECV (END 2 3 1)))
THEN (SETQ N 5))
(IF (AND (EQ N 2}
(RECV (END 2 2 1)))
THEN (SEIQ N 4))
(IF (AND (EQ N 5)
(RECV (END 2 1 1)))
THEN (SETQ N 6)))))))

The syntax may appear a little different. For example, the guard operation is replaced
by an IF, which tests the memory and looks for a signal. Similarly, a condition is introduced
on the loop. These are syntactic hangovers from generating pure CSP and can be translated
directly into plans as they have been defined here. A large section of the synchronization
skeleton has been removed in the example, since it contains 42 guarded commands - one

for each arc in the model for the PTL formulas.

62

6 Conclusion and Future Work

In conclusion, there exists a program that synchronizes plans in such a way to allow any
and all execution sequences which do not allow actions to fail and which do not deadlock.
A second version is being developed that handles more genel;al plans.

There is still plenty of scope for additional investigation, and such investigation is be-
ing conducted as part of the thesis work for the author’s degree at Monash University in
Melbourne, Australia. It is worthy of investigation to consider hiow to synchronize a plan
by inserting all synchronization primitives in the main plan rather than provide a massive
parallel synchronization skeleton, or how the synchronization skeleton could be made more
modular. It could be possible to generate separate skeletons for each proposition used and
changed by actions, and run these in parallel. .

The definition of actions and environments given here enables very strong properties to
be given to the synchronized plans: in particular, that all and only the correct executions
of the initial plan are permitted. This is in contrast to previous means of synchronizing
plans, such as in NOAH([13], which prohibit some execution sequences that might succeed.

By extending the definition of actions to include more general state transformations
in events, a similar algorithm would generate a plan that is still less restrictive than that
produced by previous plan-modifying techniques, but would disallow certain correct exe-
cutions. The action descriptions would be much more complex and not capture all the
essential properties in the same way as can be done in the simple case with ten sets of
propositions. The current version of the theorem prover makes the same assumption as
Manna and Wolper: that only one proposition of the PTL formula is true at any moment.
For extended actions, new propositions might need to be included that do not have this
property..

There is also the problem of types of nondeterminism. The current selection operator
corresponds to the case where a plan may proceed in one of two directions, and tbe synchro-
nizer is permitted to choose one over the other. This is angelic nondeterminism. However,
it may be the case for some plans that the choice is critical but is made at execution time, in
which case the synchronizer must allow both cases or none at all. This is demonsc nondeter-
minism, and implies some additional structure to a plan that cannot be captured by agents
as they are now defined. For added complexity, the decision may be based on the state of

the world model, so that the synchronizer can determine the possible choices it must leave

63

open. depending on the possible world models it derives [or the moment of choice.

Loops typically display demonic nondeterminism for choosing when to terminate. The
synchronizer is not given total control over the number of times the loop will execute, but
should always allow the loop to execute as often as necessary. Again, an explicit termination
condition in terms of the world model adds further to the compilexity.

The approach to this problem is to consider demonic nondeterminism a restriction on
the way a plan may be synchronized, and possibly an extended definition of deadlock. We
could allow a new type of ¢ arc in agents that is handled slightly differently: an agent may
not backtrack over such an arc. This does not add to the expressive power of agents, but
will allow demonic nondeterminism to be represented more intuitively.

Loops often have a termination condition that is a function of all the activity in the
loop and yet may not be derived from the given information. Such a termination condition
could be specified if a plan segment were treated as a single hierarchical action, and could
be given properties similar to those for individual actions. For example, one could specify
that a loop would always assert some condition. Consider a loop of an action that removes a
single item from a box until none are left. To represent this in the formalism given here, the
entire loop would be given an assert condition that the box become empty. To guarantee
termination, the entire loop could be given a during condition that no one places anything
in the box. Tn this case, the plan synchronizer certainly does not have full control of the
choice of when to terminate the loop.

The theory for hierarchical actions and demonic nondeterminism is being explored, and
these constructs may be included in the next version of the synchronizer.

There is also room for improvement to the theorem prover. It turns out that the graph
produced for many problems is highly commutative. That is, distinct sequences from a given
node that differ only in the ordering of propositions may often correspond to alternative
paths to the same node. It would be interesting to relate this property to the syntax of PTL
formulas, and exploit it to give more efficient theorem proving. The concept of a program
formula may be related to the grammar operators of Wolper{17}]. The development here is

very domain specific. The possibilities should be further explored.

64

Acknowledgments

[would like to thank Michael Georgeff in particular for guidance and stimulating discussion,
and for assistance in bringing this paper to its final form. Thanks are due also to SRI
International for financial support, facilities, and an excellent environment for pursuit of

this study.

65

A Notation Conventions

Symbol | Representing class

a, B Operators and identifiers

o} Correctness conditions

] Mappings on world states

€ Null transitions for an agent

¢ Sequences of events

n Nodes for an agent

8 A distinguished operator

A A distinguished memory state

v A propositional formula or set of same
3 A sequence of string or agent execution states
n A set of propositions

P A plan, or arbitrary label on an agent
o A string, or general sequence

T A world status

w a world state

66

B Propositional Temporal Logic

B.1 Syntax

PTL formulas are built from:
1. A set P of atomic propositions.
2. Boolean connectives: A and -,

3. Temporal operators: () (next), O (always), and U (until).
The formation rules are:

1. An atomic proposition p € P is a formuia.

2. If f1, fo are formulas, then so are
hHA 2,1, 0f,00, U f

As.usual, braces “()” will be used to make grouping clear, and the connectives D and Vv

are defined as:

e iV faiso(-fia-fz).
s idfaismfiV fa

Two additional temporal operators, ¢ and W, are also defined:

e Ofis ~Of;.
L4 fl Ufz iS '1(—1f2U-1f|).

B.2 Semantics

An interpretation {or a PTL {ormula, with a set of propositions P, is a non-empty sequence
of subsets of P. A finite sequence is extended to an infinite sequence by repetition of the
last element. A PTL formula is true or false for a given interpretation according to the
following rules:

Let an infinite sequence o € (2°)* be given.

67

o Il f€ P, then fis true iff f € o;.

e —f; is true iff f) is [alse.

o fiAfaistrueiff fis true AND f5 is true.

o Of is true iff f, is true for pop(o).

e Of is true iE‘ Vi > 0. f; is true for pop'(o).

e fLU f2is true iff Vi > 0. f; is true for pop{c) OR
3i > 0. f; is true for pop’{c) AND
V0 < 5 <4 . f; is true for pop’ (o)

[t can easily be shown that
o Of istrue iff 31 > 0: f is true for pop"(a').

e fi W fzis true iff 3 > 0: f> is true for pop’(c) AND
Y0 < 7 <1, f; is true for pop’(o)

Note that the operators U and & are similar, except that ¥ has an eventualitycomponent;
hH @ fo implies O(fi A f2). Also note that a state is included in its own successors, so that
O f; implies f).

A formula is valid if it is true for all interpretations, and it is satrsfiable if it is true for
some interpretation.

A model for a formula is the set of all interpretations for which it is true.

68

References

(1]

[2]

[3]

[4]

(8]

(6]

[9]

[10]

Allen, J. F., A General Model of Action and Time, Technical Report
97, University of Rochester, Rochester, New York, 1981.

Cheeseman, P., A Representation of Time for Planning. Technical
Note 278, Artificial Intelligence Center, SRI International, Menlo Park,
California, 1983.

Emerson, E. A. and E. M. Clarke, Using Branching Time Logic to Syn-
thessze Synchronization Skeletona. Science of Computer Programming

2, pages 241-266, 1982,

Fikes, R.E. and N. J. Nilsson, STRIPS: A new approach to the applica-
tion of theorem proving in problem solving. Artificial Intelligence,(2):

189-208, 1971.

Georgeff, M.P., Communication and interaction in multi-agent plan-
ning. Proceedings of the Third National Conference on Artificial In-
telligence, pages 125-129, Washington, D. C., 1983.

Georgeff, M.P., A theory of action for multi agent planning. In Pro-
ceedings of the Fourth National Conference on Artificial Intelligence,
Austin, Texas, 1984,

Hendrix, G., Modeling simultaneous actions and continuous processes.

Artificial Intelligence, 4, pages 121-125, 1973.

Hoare, C.A.R., Communicating sequential processes. Communications

of the ACM, {21):8, pages 666-677, 1978.

Hopcroft, J.E. and 1.D. Uliman, fntroduction to automata theory, lan-
guages, and compulation. Addison-Wesley, 1979.

Lansky, A. L., Behavioral Specification and Planning for Multiagent
Domains. Technical Report TN 360, Artificial Intelligence Center,
SRI International, Menlo Park, California, 1985.

69

[11}] Manna, Z. and P. Wolper, Synthests of Communicating Processes from
Temporal Logic Specifications. Report STAN-CS-81-872, Stanford Uni-
versity Computer Science Department, Stanford, California, Septem-

ber 1981.

[12] McDermott, D., 4 Temporal Logic for Reasoning about Plans and Pro-
cesses, Computer Science Research Report 196, Yale University, New

Haven, Connecticut, 1981.

(13] Sacerdoti, E.D., A structure for plans and behaviour. Technical Note
109, Artificial Intelligence Center, SRI International, Menlo Park, Cal-
ifornia, 1975.

[14] Stuart, C.J., Modeling the operation of agents in a continuously chang-
ing world. Unpublished.

[15] Stuart, C.J., An implementation of a multi-agent plan synchronizer
using a temporal logic theorem prover. In Proceedings of the Ninth
International Conference on Arl:ﬁcia! Intelligence, pages 1031-1034,
Los Angeles, California, 1985.

[16] Wilkins, D., Domain-Independent Planning: Representation and Plan
Generation. Technical Note 266R, Artificial Intelligence Center, SRI

International, Menlo Park, California, 1983.

[17] Wolper, P., Temporal logic ¢can be more expressive. In Proceedings of
the Twenty-Second Sympossum on Foundations of Computer Science.

Nashville, Tennessee, October 1981.

70

