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I Introduction

Structures called triangle tables were used in connection with the SRI robot Shakey
[1] [2] for storing sequences of robot actions. Because the rationale for triangle
tables still seems relevant, I have recently elaborated the original concept and have
begun to consider how the expanded formalism could be used as a general robot-
programming language. The present article describes this new view of triangle
tables and how they might be used in a language that supports asynchronous and
concurrent action computations.

Triangle tables can be thought of as a specialized way of writing production
rules, A robot system based on production rules might have components as shown
in Figure 1.
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Figure 1 Components of a Simple Robot System

In our conception of a robot system, the production rules operate by testing a
condition on the robot’s memory. If the condition is satisfied, the action part of
the rule is executed. The action may have an effect on the external world through
robot effectors and/or it may alter the memory or the perception system. (It is even
possible that the action may change the production rules themselves, although we
do not consider such a possibility in this note.} We imagine that the memory is a
collection of first-order formulas, typically ground literals. The condition part of the
production rule is a logical formula, and the memory test consists of determining
whether or not this formula follows from the literals in memory.

We imagine that sensory information affects robot actions by virtue of being
recorded as formulas in memory. The perception system converts sensory signals
into these formulas. Thus, the production rules do not test the world “directly,”
but rather are sensitive only to a representation or “model” of the world in memory.

In a special case of such a system, the production rule conditions are all mutually



exclusive and exhaustive. That is, the memory and rules are organized so that the
memory always satisfies precisely one of the production rules. The system then
is readily seen to be a finite-state machine whose states correspond to memory
equivalence classes defined by each of the production rule conditions. We shall not
limit ourselves to this special case, however.

Production rule formalisms have several advantages for robot systems. First,
they are simple and modular. Changes can be made by adding, deleting or modi-
fying rules without having to change the production rule interpreter. Second, they
can have short “sense-act” cycles and are therefore not as blind to changes in the
world as are systems committed to lengthy actions that cannot be modified by
sensory data. Thus, production rule systems are robust in that undesired effects
of an inappropriate or abortive action can be noticed quickly so that corrective
action can be initiated. Third, they invite parallel implementations. In principle,
each rule could be implemented by dedicated hardware and the entire ensemble of
rules could be performing memory tests and executing actions asynchronously and
simultaneously. _

There are two problems with production systems, however, that have limited
their application. First, their sensory-driven nature seems to militate against “goal-
directed” behavior. Second, there have been difficulties in developing hierarchical
organizations of production systems. Hierarchical design is especially important
for complex systems; most production systems seem to be too “flat.” In designing
hierarchical production systems, one has to be careful not to sacrifice the short
sense-act cycle. (If the “action” of a production rule is to “call” another production
system, the calling system surrenders control until it i8 explicitly returned by the
called system.) Triangle tables maintain all the advantages of production systems
while allowing goal-directed behavior and hierarchical organization.

II Syntax

Programs consisting of robot actions are designed to achieve certain sequences of
effects—some of which are related to the purposes of the programs, while some
merely enable subsequent actions to be executed. Information about the precondi-
tions and effects of each robot action within a larger program and how these actions
are interrelated can be conveniently represented in a triangular table. Interestingly,
this very table can be used as a representation of the program itself. The syntax
and semantics of these tables will make clear what they are and how they are used.

A triangle table, of rank NV, is an N x N triangular array of cells; each cell may
contain a collection of formulas, which latter might contain schema variables. The
rows of the array are numbered from the top, starting with row 1; the columns of
the array are numbered from the left starting with column 0. Each column except
the Oth is headed by an action schema. The schema variables in any action schema
are a subset of those formula schema variables present in the cells in the row to



the left of that action schema. The schema variables in any formula are a subset of
those action schema variables present in the action (if any) heading the column in
which that formula appears.

We say that the conjunction of the formulas in the last row of the table is the
effect of the table.and that the conjunction of formuias in the 0¢h column of the
table is its precondition.

We illustrate a typical triangle table in Figure 2.
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Figure 2 A Typical Triangle Table

The expressions A A B(z), D(y}, ~Clz), E A F,Gl(y), H, I are formula schemas;
the expressions a,{z), az(y), as{y) are action schemas. '

III Semantics

Before discussing how a triangle table is used as a program of robot actions, we
first explain what the formulas in a table are intended to mean and why they are
placed as they are. The conjunction of all the formulas in the row to the left of an
action is a precondition for executing that action. More precisely, if an instance of
this conjunction follows from the formulas in memory, the corresponding instance
of the action can be executed. The conjunction of the formulas in the column
immediately beneath an action is the presumed effect {on memory) of that action.
More precisely, after an instance of that action is executed, then the corresponding
instance of the formulas in that column can be presumed to follow from memory.
The only formulas underneath an action in a triangle table are those effects that
are also either preconditions of actions heading higher-numbered columns or effects
in the last row of the table. The formulas representing the effects of actions are
distributed among the column cells in such a way that those that are preconditions
of other actions are in a cell to the left of that action. It is possible that a formula



may be repeated in a column if it is part of the precondition of more than one
action.

In Figure 2, for example, E A F A G(y) is a precondition for as(y) in the sense
that, if an instance of the precondition is true, then the corresponding instance of
as can be executed. Instances of the formula —C(z) are effects of corresponding
instances of the action a,(z); E A F is an additional effect of all instances of a,(z).
H and I are effects of a; and ay, respectively, which are not preconditions of any
actions named in the table.

It is intended that a triangle table program will be typically executed by exe-
cuting actions in the sequence {@,, as,...,}, where g; is the action heading the ith
column. {We say typically because, as we shall see, one of the features of triangle
tables is that we can deviate from this sequence when appropriate.) The intention
is that preconditions of subsequent actions might be among the effects achieved
by a;. Those effects that are not accomplished solely to achieve preconditions of
subsequent actions are represented by formulas in the last row of the table. These
are the final effects of the table. Preconditions of actions that are not realized by
any actions in the table must hold before the table is executed; these preconditions
are represented by formulas in-the Oth column of the table. These are the initial
preconditions of the table. To be listed in the table, any effect ¥ needed by action g;
and provided by a previous action a; must survive the intervening actions. An effect

“represented by a formula in the last row of the table survives all actions subsequent
to the one that achieved it.

The conjunction of the formula schemas in the rectangular subarray consisting of
the bottom N — (n — 1) rows of- the leftmost n columns is called the nth kernel of the
table. The second kernel of the table in Figure 2 is D(y) A—C(z) A EAF. The third
kernel is EAF AG(y) A H. Each kernel can be thought of as the precondition that
must hold for a certain sequence of actions to be executable and for the effects of the
table to be achieved. Instances of the f¢h kernel are preconditions for corresponding
instances of the action schema sequence {a;, ..., an} to be executable and to achieve
the effects that appear in the last row of the table. I an instance of the Nth
kernel follows from memory, then without executing any actions, a corresponding
instance of the table’s effects from memory also follows. The first kernel, which is
the precondition of the entire table, must have a true instance for the corresponding
instance of the entire sequence of actions to be executable and to achieve the table’s
effects.

IV Executing Triangle Tables

For the moment, we will think of triangle tables as programs in the form of data
structures that are to be executed by an interpreter. {Later we shall discuss the pos-
sibility of embedding these programs and their interpreter(s) in parallel-operating
hardware.)



The operation of the interpreter involves checking the various kernels of a trian-
gle table. Instances of kernels may or may not follow from the formulas in memory.
The highest-numbered kernel in the table having an instance that does follow from
memory (if there is such a kernel) is called the active kernel. Action sequences
associated with active kernel instances are called active sequences. The first action
in an active sequence is called an gcetive action. Whenever there is an active kernel,
executing a corresponding active sequence will achieve the corresponding instance
of the effects of the table.

Since actions do not always achieve their intended effects, and since the world
may change independently of what the robot does (albeit with perceived changes
recorded automatically in memory), we would like to make sure that robot actions
are chosen with a close eye on memory. Thus, when we desire to achieve the
effects of a triangle table, we would rather not commit ourselves to executing an
entire active sequence of that table. For if we did, unanticipated, sensory-induced
memory changes partway through the sequence might render the remaining actions
inappropriate (perhaps unnecessary or even harmful). We would rather just execute
an active action, wait to allow the perceived world to have its effects on memory,
and then recompute an active action to be executed and so on. This subsequent
active action will often be the same as the second action in the active sequence
computed earlier. In these cases, recomputing an active action might be thought
of as unnecessary computational effort, but the need to react appropriately to the
uncertainties of many robot environments justifies the extra computation. In any
case, if the tables are kept relatively small, the extra computational effort can be
controlled. .

Thus, in summary, to execute a triangle table means to compute and then
execute an active action. If the active kernel is the last kernel, execution of the
table ceases.

A somewhat inefficient way to compute the active kernel is first to determine
whether the Nth kernel has an instance that is true. If it does not, then verify
whether or not the (N — 1)-st kernel has an instance that is true, and so on. The
reason this procedure is inefficient is that the kernels have several cells of the table in
common, and the formulas in these common cells might have to be checked several
times. There is a more efficient procedure that checks each cell only once. We
explain how it works for the special case in which the triangle table formulas have
no schema variables. We begin with cell {/V,0) and scan along the bottom row until
we find a cell whose formula is not true. Placing 2 boundary just to the left of this
cell, we scan the next-to-the-bottom row, starting with cell {V — 1,0). If we reach
the boundary before finding a cell whose formula is not true, we begin scanning
the next-higher row; if we find a cell with a formula that is not true, we move the
boundary to its left and then proceed to scan the next-higher row, and so on. As
soon as the set of scanned cells comprises all the cells of a kernel, we have found
the active kernel.

To illustrate how a triangle table program works, we consider a simple, if fanciful,



example. Consider a robot with the following primitive actions:

goto(z)—the robot goes to place z

pickup(z)—the robot picks up object =

wait—the robot waits and does nothing

hand(y, z)—the robot hands object z to person y

With these actions, the intended effect of the triangle table in Flgure 3is

HAV E(y, z)—person y has object z. In other words, this is a triangle table for

delivering objects to people, so let’s call it deliver(y,x).

i
goto (p(z))
2 AT(R.p()) | ignin)
3
goto (o(y))
4 | Hiy) AT(R, o(y)) wait
5 HAVE(R. z) AT(R,p(y)) hand(y, z)
6. HAVE (y, z)
0 ] 2 3 4 5

Figure 3 The Triangle Table deliver(y,x)

The predicates and functions of Figure 3 have the following intended meanings:

AT(R,z)—The robot R is at place z

H (y)—Person y is at work today

HAV E(y, z)—Agent y has object z

p(z)—The present location of object or person z

o{y)—The usual location (say, the office) of person ¥

R—The robot

We assume that the memory has information in it that allows the robot to
determine where it, objects, and people are located. (Or at least it has information
that allows it to establish the truth of the predicates in the table when they are in
fact true.) The intended sequence of actions prescribed by this table is for the robot
to go to the object’s location, pick the object up, go to the office where the recipient
usually is, wait for the recipient (if necessary), and then hand over the object. The
only precondition for this table is that the intended recipient be at work today.



A triangle table is called when it is desired to achieve an instance of its effect.
Suppose we want a robot to achieve the condition HAV E(JOHN, PAYCHECK).
We can do this by calling the instance deliver(JOHN, PAYCHECK).

Even this rather simple example illustrates two important features of this style
of programming. One is opportunism. If, for example, the memory ever indicates
that HAVE(JOHN, PAYCHECK) is true (for whatever reason), the last kernel
will be the active one. Thus, if, when the robot goes to pick up John’s paycheck,
it is informed that John already has it, the table will come to an appropriate halt.
Similarly, if conditions in the table are satisfied independently of the robot’s own
actions, the robot will take advantage of such good fortune and not execute any
superfluous actions. -

Another feature is the robustness of triangle tables. If an action does not achieve
its intended effect, but instead results in some other effect, the robot will not blindly
carry out the next action in the table. Instead the interpreter may call for re-
execution of the unsuccessful action or, perhaps, the execution of some instance of
another action. Additional features will become apparent in the next section.

V  Hierarchical Systems of Triangle Tables

So far we have treated the actions that head the columns in triangle tables as primi-
tive. But these actions themselves could have internal structure; indeed, they could
be programmed by using triangle tables. When nonprimitive actions are executed,
we have control options that are more complex than the one associated with merely
executing a primitive action. As would be the case with primitive actions, we could
transfer control completely to the program that executes the action—and not regain
control until it is explicitly returned. If the action is programmed as a triangle ta-
ble, there are interesting ways to transfer control in a much more tentative fashion.
For example, we could transfer control to the called triangle table to allow just
the active action in the subordinate table to be executed. Doing this might cause
changes in memory that result in a new active action in the calling table. We could
follow this scheme all the way down through a hierarchy of tables until primitive
actions are reached. In such a hierarchy, the “top” table always has control; action
selection passes down through the hierarchy until a primitive action is selected and
executed, whereupon the top table starts the process over again.

The advantage of this sort of control regime is that active actions are computed
for all of the calling tables in the hierarchy after each primitive action is executed.
Thus, the actions are always relevant to the current state of the memory—the
feedback loops are all short. If conditions in the world change in uranticipated
ways (provided that these changes are perceived and recorded in memory), the
system can react to them appropriately; it never commits itself to “open-loop”
execution of action sequences.

One interesting way to achieve such a control regime is to have all triangle tables



run asynchronously and concurrently. Let us suppose that we have parallel hardware
to implement each table and its interpreter. The interpreter for a table is always
computing the active kernel and an instance of an active action. The interpreter is
essentially declaring something like a(o) fs now an active gction instance, where a
is the name of the action and ¢ is a collection of schema variable instances. That
fact, like everything else, can be perceived and recorded in memory. Once there,
it is a declarative statement in logic represented by the formula, AA(a,s). (Just
like other statements inserted into memory by the perception apparatus, we assume
that these statements are kept “current.” That is, when a(¢) ceases to be an active
action instance, AA(a, o) is automatically erased from memory.)

To complete our adaptation of triangle tables to hierarchical and parallel oper-
ation, we next insert into the bottom left-hand cell of each table a condition of the
form AA(u,v), where u is the name of the action programmed by the table and
v represents the schema variables associated with that action. (For simplicity, the
notation of this explanation is the one that is appropriate when there is just a single
schema variable, When there is more than one schema variable, we give AA more
arguments. That is, if v; and v, are schema variables, we write AA(u, v), v2).) With
the condition AA(a,v) in the bottom left-hand cell of the table that implements
action a(v), the insertion of the formula AA(a,) into memory makes it possible
for one of the kernels of the a(v) table to be active. That is, putting AA(a, o) into
memory acts like a call to execute a{c). Without AA(a, o) in memory, the a(v)
table will remain inactive—even though its interpreter is attempting unsuccessfully
to find an active kernel. For example, the table of Figure 3 would have in its bottom
left-hand cell the formula AA(deliver, y, ). No kernels of the deliver triangle table
could then be active without an instance of AA(deliver, y, z) present in memory. In
the absence of such an instance, there is no active instance of deliver and therefore
no valid reason to execute the table.

A collection of triangle tables would be linked by those active action instances
that are associated with each of their kernels. Their interpreters would compute
active action instances asynchronously and concurrently—with the proper formulas
being inserted into memory. These computations would bottom out in the selection
of primitive actions, which would then be executed. As long as the primitive actions
do not conflict, they too can be executed asynchronously and concurrently. (These
actions would bring about changes in the world, which would be perceived and
affect memory.) Provision would have to be made for resolving any conflicts among
primitive actions.

The flexibility and robustness of the triangle table idea is particularly appar-
ent in this scheme. Assume, for example, that, in running the deliver triangle
table of Figure 3 (with arguments y and z bound to JOHN and PAYCHECK re-
spectively, the robot meets (and perceives) John on its way to his office. That is,
during execution of the triangle table goto(OFFICE,JOH N), there appears in
memory the expression AT(R, p(JOH N)) (or formulas that allow derivation of that
expression). Execution of goto(OFFICE, JOH N) would cease abruptly because



the kernel supporting it would no longer be active. Instead, the kernel supporting
hand(JOHN, PAY CHECK) would become active.

To initiate activity among a collection of triangle tables, an AA formula must
somehow be inserted into memory. This can be done either by some external agent
{(such as a human user of the robot system) or by some top fable that does not
have an AA condition and can become active by other means. If a human user
wants the robot system to execute an action implemented by one of the tables,
he or she has merely to insert the corresponding AA formula into memory. If
assembled in a hierarchical and noncyclic fashion, a collection of triangle tables
would continue to execute primitive actions until there were no active kernels left.
This halting condition might result, for example, when the top table has only its
highest-numbered kernel active, i.e., the one that has no action associated with it.
The entire collection of tables, interpreters, perception, and memory can then be
regarded as a complex set of feedback circuits operating relentlessly to satisfy the
bottom row of the top table.

VI Future Work

1 have not yet worked out all the diverse mechanisms by which the contents of
memory might be changed. We have discussed the fact that memory is affected
by the perceptual apparatus of the robot. It is also affected by the addition (and
deletion) of AA formulas by the triangle table interpreters. It might prove useful to
have the primitive actions themselves insert certain formulas into memory. (Some
of these primitive actions might have such reliable effects that we could assume
them without benefit of perception.) Moreover, the triangle table interpreters could
perhaps affect memory in ways other than just adding A A formulas.

We have assumed that each kernel in a triangle table has associated with it a
single action, which might be primitive or might be programmed as a triangle table.
We could relax this assumption by allowing a certain amount of nondeterminism
in action selection. That is, we might associate two or more actions with a single
kernel. A form of nondeterministic action selection might then be accomplished by
a scheme that involved adding to memory a conjunction of A4 formulas (with each
conjunct corresponding to one of the actions) and sorting out any conflicts at the
primitive-action level.

There is also interesting work to be done on the stability properties of triangle
table programs. Under what conditions will they halt? Under what conditions will
they cycle? Some repeated action sequences will be useful and may be required to
overcome overly stubborn or resilient problems. Repetition will also be necessary
when primitive actions, although usually achieving their intended effects, do so un-
reliably. In any case, a useful system will have to cease repetitive activity eventually
and special mechanisms may be employed to break cycles.

Triangle tables might also be useful as a general computational formalism. For



computations that create and manipulate data structures, we could imagine a fic-
titious “world” of data structures (not to be confused with “memory”) that are
affected by the primitive actions. Through “perceptual” operations on the data
structures, the memory would model whatever features of this world were impor-
tant. The reader can easily create some simple triangle table programs to do list
structure manipulations. The fact that triangle tables tend to repeat an action until
a certain condition is met can be exploited to implement iteration. A program that
is recursive in a function fcan be achieved by associating with a kernel of the table -
implementing fa program that is an instance of £ Branching mechanisms are inher-
ent in active-kernel computations. Triangle table programs may have advantages
in applications other than robotics. We might even want to program some of the
robot system’s internal computations, such as perception and active-kernel com-
putation, in the triangle table language. Perhaps the potentially extravagant use
of asynchronous triangle table processors could be limited by controlling necessary
parallelism through schemes that assign tables to processors.

(Georgeff (3] has speculated about how correciness asseriions in ordinary pro-
grams might be used in a way similar to our use of kernels. Given this viewpoint,
triangle table programs would be a special case of his model. Rosenschein and
Pereira [4] are developing a new finite-state-automaton model of intelligent agents
that shares some features with our triangle table model.)

Triangle tables were originally used as structures for storing sequences of robot
actions computed by a planning system. We had in mind that they would play an
important role in learning action sequences. This possibility should be investigated
more thoroughly; it would seem advantageous to have a robot’s fundamental actions
programmed in the same language in which its more complex actions are learned.

Fikes, Hart and Nilsson [5] suggested a technique for splitting a triangle table
into component tables that could operate concurrently and independently. They
also hinted that the component tables could have more relaxed conditions for action
initiation since each could depend on the other for fulfilling needed preconditions.
I have not yet investigated how these proposals could be integrated with the hier-
archical scheme proposed in this paper.

Production systems of various types have been proposed as models of human
information processing. It would be enlightening to explore the extent to which the
special features of triangle tables might make them useful as a basis for psychological
models. They would seem particularly well suited for modeling animal activity in
which purposeful and stimulus-driven behavior are combined. (There seems to be an
intriguing connection between inserting AA formulas into memory and the relegsing
mechanisms of ethology. Readers interested in this subject might look at the models
proposed by Deutsch [6] to see whether they could be made more concrete by using
triangle tables.)
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