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Abstract

A relatively simple method for handling higher-order functions (funargs) in LISP is
described. It is also shown how this scheme allows extension of the LISP language to include

partial application of functions.

The basis of the approach is to defer evaluation of function-valued expressions until
sufficient arguments have been accumulated to reduce the expression to a nonfunctional value.
This results in stacklike environment structures rather than the treelike structures produced by
standard evaluation schemes. Consequently, the evaluator can be implemented on a standard
runtime stack without requiring the complex storage management schemes usually employed

for handling higher-order functions.

A full version of LISP has beer implemented by modifying the FRANZ LISP inter-
preter to incorporate the new scheme, These modifications prove to be both simple and efficient.



§1 Introduction

Higher-order functions! play a very important role in functional programming lan-
guages such as LISP. However, their implementation has always been expensive in both storage
and time (e.g., [Bobrow and Wegbreit 1973], [Greenblatt 1974], [Baker 1978]), and many of the
more common versions of LISP (e.g., FRANZ LISP [Foderaro 1980]) do not fully support them.

As is well known, in a statically scoped language (e.g., ALGOL) the value of a function
depends not only on its code, but also on the environment at the time the function is defined.
Thus, a functional value is usually represented by a construct, called a funarg or closure,
which specifies both the function code and the environment of definition. However, such
funargs can give rise to environment structures which are treelike rather than stacklike, and

this considerably complicates storage management.

Higher-order functions prove troublesome even in LISP, despite the fact that LISP
conventionally uses dypnamic binding. The problem is that, while dynamic scoping serves
satisfactorily in most cases, the usual intent of the programmer ir writing a function-valued

expression is to have static scoping.

The most straightforward way to implement such treelike environment structures is
by means of a heap. However, this requires that environment extensions be copied from the
runtime stack to the heap and back again, and the allocation and reclamation of such blocks

is time consuming.

An alternative to the use of a heap is a spaghetti stack [Bobrow and Wegbreit 1973],
where activation frames are retained on the stack until the environment component they contain
is no longer needed. Although this approach is preferable to using a heap, it is still much less
efficient than a standard runtime stack and can consume a large amount of stack space. More
importantly, the technique is poor when shallow binding is used to represent the environment
structure (e.g., [Baker 1978]) as the changes to the value cells on function entry and exit are

computationally expensive.

Another approach is to allocate binding environments on the stack, moving them to
the heap only when necessary [McDermott 1980]. In some cases, this avoids using the heap,
but the scheme requires checks on each function call to determine whether or not a transfer

to the heap is required. This is expensive, even in the case when no funargs are involved.

In this report we describe an alternative method for implementing higher-order func-

IThat is, functions that have functional arguments or return functional valyes.
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tions in LISP and similar languages. The implementation is based on the function-deferring
scheme proposed by Georgeff [Georgeff 1982, 1984]. We first describe the standard approach
to the implementation of funargs. We then describe the strategy of function deferral and
construct a LISP interpreter based on this scheme. We also show how this scheme makes it
possible to extend the LISP language to provide for partial application of functions. Finally,
we describe how to modify the FRANZ LISP {Opus 36b) interpreter so that it will properly
handle higher-order functions and partial application.

§2 Evaluation of LISP Expressions

2.1 The Standard Approach

We will be primarily concerned with the applicative part of LISP. Expressions in
applicative LISP are one of three kinds: constants and varfables, denoting such things as
primitive functions and integers; lambda abstractions, consisting of a list of binding variables
and a body, and which are used to define fﬁnctions; and applications, consisting of an operator

and zero or more operands, and which represent the application of a function to its arguments.

The value of an expression depends on the values of the variables occurring free
in the expression. The structure that provides the values of the free variables is called an

cnuironment.

Let ¢ be an expression to be evaluated under static scoping in an environment FE.

Then there are three cases to consider:

e If ¢ is a constant, its value is known immediately and, if ¢ is a variable, its value is obtained

directly from the environment E.

e If ¢ is an abstraction, evaluation of the body of the abstraction is temporarily deferred. The
value of the abstraction is thus represented by a pair consisting of the abstraction itself (i.e.,
the code defining the function), and the environment E. Such a pair is called a funarg or
closure [Landin 1964].2

e If ¢ 1s an application, its value is obtained by first evaluating the operands of the application,
then applying the value of the operator to these values. If the operator evaluates to a

2In fact, we do not need to form a funarg if the abstraction is in operator position. In such cases, we can

optimize evaluation and directly apply the abstraction to the values of the operands (see [Burge 1975|).
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primitive function, the result of the application is predefined (by the system). Otherwise
the operator must evaluate to a funarg. The binding variables of the funarg are then bound
to the values of the operands, the environment of the funarg extended to include these new

bindings, and the body of the funarg evaluated in this new environment.

However, LISP conventionally uses dynamic scoping. In this case, the body of an
abstraction must be evaluated in the application environment (i.e., the environment at the
time of application of the abstraction), rather than in the environment of definition (i.e., the
environment at the time of creation of the abstraction). It is then sufficient to represent the
value of an abstraction by the code itself (rather than a funarg), as there is no need to save

the environment of definition.

When static scoping of an expression s desired, a special construct, called function,

must be used. The function construct forces the creation of a funarg as described above.

A LISP computation will usually generate a stacklike environment structure which
is extended on entering the body of an abstraction and restored on return. However, because
funargs “capture” environments, evaluation of statically scoped function-valued operands can
create additional branches in this structure. This results in an environment structure that is

treelike rather than stacklike.

Statically scoped function-valued operands do not always destroy the stack structure.
If a functional expression is a constant, variable, or lambda abstraction, the environment
structure remains stacklike, This is because the environment that is “captured” by the funarg
is guaranteed not to be an extension of the current environment — indeed, it is exactly the
current environment. However, when a funarg is returned as the result of an application, the
“captured” environment may well be an extension of the current environment, thus creating
a treeelike structure. Such funargs will be called upward funargs to distinguish them from

those functional arguments (simple funargs) that do not destroy the stack discipline.

To illustrate the standard approach to evaluation, let us consider the following ex-

ample. Assume we have the function definitions

(defun appl (f x)
(f x))

(defun fnplus (x)
(function (lambda (y) (+ y x)))

In this case, we desired static scoping for the functional value of fnplus, and therefore

used the function construct to force creation of a funarg.
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Now consider applying the function appl to the function-valued expression (fnplus

10) and the constant 20, i.e.,

ll

2.

3.

4.

b.

7.

10.

11.

12.

(appl (foplus 10) 20)
The standard strategy for evaluating this expression is as follows:
The operands of appl are evaluated in the current (global) environment.

The first operand is the expression (fnplus 10). The operand of this expression (i.e., 10)

is evaluated, yielding the value 10.

The function foplus is applied to this argument. This results in the binding variable
(x) of the function being bound to 10. The environment is extended to include this new

variable-value pair and the body of fnplus evaluated in this new environment.

As the body of fnplus is specified to be function-valued (by means of the funection
construct), evaluation yields the funarg <FUNARG (lambda (y) (+ y x)) env>, where
env is the current environment (called the binding environment of the funarg). In this

environment, the variable x is bound to the value 10.

This funarg is returned as the value of the first operand of appl. Note that at this stage
the environment of the funarg includes a binding (i.e., X to 10) that is not present in the
current environment and that, under a stack organization, would have been popped and

thus rendered inaccessible.
The second operand of appl (i.e., 20) is now evaluated, yielding the value 20.

The binding variables of appl are now bound to the current arguments: f is bound to the
funarg <FUNARG (lambda (y) (+ y x)) env> and x to 20.

The environment is extended to include these new variable-value pairs and the body of

the function appl (i.e., (f x)) is entered.

The operand, x, of this expression is evaluated in the current environment (called the

application environment), yielding 20.

The operator, f, is evaluated, yielding the funarg <FUNARG (lambd=a (y) (+ y x))

eny> .,

This funarg is now applied to the argument 20. First, the environment is restored to the

binding environment of the funarg (i.e., env).

As the body of the funarg is an abstraction, the binding variable of the abstraction (y)
is bound to 20 and the environment env extended. The body (+ y x) of the abstraction
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is evaluated in this new environment, eventually yielding the result 30.

13. The application environment (i.e., the environment that existed at the time of application

of appl) is now restored.

14. The application of appl finally returns the result 30, and the environment is restored to

the top level.

2.2 Deep Binding and Shallow Binding

To find the value of a variable at a given stage of the computation, the environment
structure needs to be searched from the current environment block to the root for the first

occurrence of the variable.

There are two standard means of implementing this environment structure. The first
technique involves pushing each new variable-value pair onto an environment stack (often called
the bindstack) as new bindings are created, and popping the stack as we return to previous
environments. The search for a variable then simply involves looking up the stack through each
environment block until the first occurrence of the variable is found. This scheme is known as
deep binding. Unfortunately, in most cases the search will examine many environment blocks

before the desired variable is found, which can be very inefficient.

Functional arguments and values do not present too many difficulties under deep bind-
ing. When a funarg is applied, the environment must be restored to the binding environment
of the funarg. This process is known as eontezt changing or contezl swapping, and is relatively
efficient under deep binding. If upward funargs occur, environment structures are treelike
and storage management is more complicated. However, the context swapping mechanism is

unaffected.

An alternative scheme is known as shallow binding. Under this scheme, each variable
is associated with a value ecll that contains the current value of the variable. Thus, finding
the value of a given variable is straightforward, but the binding and unbinding mechanisms
are more complex. When binding a variable we have to replace the current value cell with
the new binding, saving the old binding (on a bindstack) so that it may be restored when we
return. The unbinding operation restores the value cell to its previous state. The bindstack
is therefore much like the bindstack under deep binding, except that the most recent value of

each variable is kept in a value cell rather than on the bindstack.

However, functional arguments and values complicate the shallow binding j)rocess

considerably. We cannot simply switch to a different environment as we can under deep
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binding, but must re-establish the value cells that were current when the environment was
created. This involves swapping the contents of the value cells with the values retained on
the bindstack, up to the point at which the new environment was created. Thus, whereas
deep binding is time-unbounded in accessing variables and time-bounded in context changes,
shallow binding is time-bounded for variable access and time-unbounded for context changes.
The reason shallow binding is usually preferred is that context changes occur far less frequently

than variable accesses.

Let us now consider a stack implementation of shallow binding in more detail and, in
particular, examine how functional arguments are handled. As we have previously mentioned,
evaluation of a functional argument yields a closure that contains a reference to the current
environment. In the case of shallow binding, this is simply implemented as a pointer to the

current top of the bindstack. It is usually known as the binding context pointer,

When a funarg is applied, we need to restore the value cells to their state at the time
of the funarg's creation. In the case of a simple funarg, this involves unwinding the binding
stack back to the binding environment, swapping value cell contents on the way. By the time
we reach the binding environment (indicated by the binding context pointer), the value cells
have been restored to their values at the time of creation of the funarg, and the segment of the
stack between the original application environment and the binding environment retains the
bindings that were made between creation of the funarg and its application. This stack segment
must be saved to allow restoration of the original application environment. The body of the
fﬂnarg is then entered and, after evaluation, the environment at the time of application of the
funarg is restored by winding the binding stack back to the original application environment.

A more detailed descriptior of this process can be found in [Allen 1978].

Upward funargs are much more difficult to implement. Not only do we have to
construct a scheme for representing a treelike environment structure rather than a stacklike
one, but the mechanism for rebinding from the current application environment to the binding
environment of the funarg is much more eomplex. The critical problem is that of discovering
the path between the current environment and the binding environment. One way of doing this
is first to search from the binding environment towards the root of the environment tree until
the currently active branch is intersected. Next, the binding stack is unwound from the current
active environment to this intersection, and then from there back to the binding environment
of the funarg. On completion of the application, we then wind back to the original application
environment. More details can be found in [Allen 1978] and [Baker 1978].
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2.3 The Function-Deferring Strategy

Most previous approaches to the implementation of higher-order functions in LISP
have concentrated on making the management of the treelike environment structures as efficient
as possible (e.g., [Bobrow and Wegbreit 1973, Baker 1978]). However, the approach described
in this report avoids the creation of such structures. Consequently, the relatively simple stack

management schemes used for handling simple funargs can be used without modification.

The basis of the scheme is to change the usual execution strategy for function applica-
tion and evaluation, so that the evaluation of every function-valued expression is deferred until
sufficient arguments have been accumulated to allow reduction to a basic (i.e., nonfunctional)

value.

This is accomplished by temporarily representing the value of such an expression by
the expression itself together with the current environment, just as in standard evaluators
the value of a lambda abstraction is represented by the abstraction itself together with the
current environment. And, just as with lambda abstractions, this code is evaluated (in the

saved environment) only at the time the functional value is actually applied.

Let us describe this process in more detail. Consider a function-valued applicative
expression, ¢ = (eg €1...6,), to be evaluated in an environment E. We could represent this
directly as a new type of funarg consisting of the expression ¢ and the environment E. However,
for reasons of efficiency and to better match the conventional order-of-evaluation rule, it is
preferable to evaluate the operands e; to ¢, of the expression prior to forming the funarg.
Thus, this new type of funarg consists of the (unevaluated) operator ¢, a list of the values of
the operands ¢; to ¢,, and the current environment E. The operator part is called the body of
the funarg and the list of operand values is called the arglist of the funarg. We can consider
the old type of funarg that represented a lambda abstraction to be a special case of this new

funarg, i.e., the case in which the arglist is empty.

Such a funarg is applied in much the same way as the old type of funarg: the
environment is restored to the binding environment of the funarg and body of the fumarg
evaluated in this environment. However, it differs in that the arguments in the arglist of
the funarg must first be appended to the list of current arguments. This is simply because
application of the body of the funarg to these arguments was previously deferred, and now is
the time to do that application.

This scheme ensures that the environment structure will always be stacklike, as the
evaluation of function-valued operands cannot extend the current environment. In essence,

the values of function-valued operands are forced to be simple funargs. However, we are not
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quite out of the woods: what happens when we actually come to apply a functional value to

its argumenta?

Under the function-deferring scheme, evaluation of applicative expressions is always
deferred unless the expression is basic-valued. Therefore, to answer the above question, we
need only consider basic-valued expressions. Furthermore, if the operator of such an expression
evaluates to a basic-valued function, it can simply be applied to the values of the operands in
the normal way. However, we do have difficulties if the operator denotes a function-valued

function.

Let e = (¢g €...4) be a basic-valued expression and let ¢ denote a function-valued
function. As eg is function-valued, and the expression is basic-valued, the function must only
apply to m < n of the operands (i.e., the function must have arity m < n). The problem now
is that in applying eg to ¢, €2,...¢m, We may create a functional value whose environment of
definition is an extension of the application environment. If a standard runtime stack were
used, when this functional value is returned {to be later applied to the remaining arguments),

the environment of definition would be popped and thus rendered inaccessible.

But let us look carefully at the sequence of events in the application. Let E, denote
the application environment, and assume that, under the standard LISP call-by-value scheme,
the operator ep and all the operands ¢, ¢z,...¢, have been evaluated. First, ¢ 1s applied to
€1,£2,..-cm, creating possibly an eﬁvironment E; which is an extension of E,. If a functional
value F' is created in this new environment (E}), any representation of F will need to save this
environment of definition. When F is returned as a value, the environment E, will be restored
and F applied (in the environment E,) to the remaining (evaluated) operands ¢m41...¢a. Upon
application, the defining environment of F (i.e., Ey) will need to be restored, and the body of F
applied to its arguments in this new environment. Thus the return to the environment E, was
wholly unnecessary — it would have been preferable to remain in the environment E, passing
the remaining arguments down to F, and only returning when the application was complete

(i.e., all the arguments consumed).

There are two consequences of doing things this alternative way. First, it is much more
efficient as unnecessary environment swapping is avoided. Even with the standard evaluation
schemes, this is a useful optimization. Neither need we explicitly create a functional value to

represent F', as we can apply F to its arguments immediately.

Second, and more importantly in our case, is that the environment in which evaluation
is taking place is never restored to a state which does not include the binding environment of

any funargs. Consequently, a standard runtime stack can be used for managing evaluation and
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storing environment structures.

Just as in standard LISP, we need to use the function construct to indicate static
scoping. However, it is now used differently: the function construct is used simply whenever
one has a function-valued operand for which static scoping is desired. That is, the function
construct is applied to function-valued expressions that occur in operand position. In contrast,
in standard versions of LISP, the function construct is used at the point a function is to be

returned as a value from within a function-valued function.

To reinforce these ideas, let us consider how the function-deferring scheme operates
on the example given in the previous section. We will assume the functions to be as before,

except, as mentioned above, in the way that the function construct is used:

(defun appl (f x)
(f x))

(defun fnplus (x)

(lambda (y) (+ vy x)))
The expression to be evaluated is
(appl (function (fnplus 10)) 20)

Here the function construct is used to signify a functional argumcnt or function-

valued expression. As before, it forces the creation of a funarg.
When the above expression is evaluated, the following steps will occur:
1. The operands of appl are evaluated in the current environment.

2. The first operand is the expression (function (fnplus 10)). The operand of this function-
valued expression (i.e., 10) is first evaluated, yielding the value 10.

3. The (new type of} funarg <FUNARG (lambda (x) (lambda (y) (+ y x))) (10} env>

is then formed.

4. This funarg is returned as the value of the first operand of appl. Note that the environment
structure remains stacklike.

5. The second operand of appl (i.e., 20} is now evaluated, yielding the value 20.

6. The binding variables of appl are bound to the current arguments: f is bound to the
funarg <FUNARG (lambda (x) (lambda (y) (+ y x))) (10) env> and x to 20.

7. The environment is extended to include these new variable-value pairs and the body of
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9.

10.

11.

12.

13.

14,

appl (i.e., (f x)) is entered.

The operand, x, of this expression is evaluated in the current [application] environment,

yielding 20.

The operator, f, is evaluated, yielding the funarg <FUNARG (lambda (x) (lambda (y)
(+ ¥ x))) (10) env>.

This funarg is now to be applied to the current list of arguments, at this stage containing
the value 20. The arglist of this funarg, containing the argument 10, is first appended
to the argument list. The binding envirorment of the funarg (i.e., the environment at
the time of the funarg's creation) is now restored, and the body of the funarg (i.e., the
lambda abstraction (lambda (x) (lambda (y) (4 y x)))) is entered.

The binding variable x is bound to the first argument in the current argument list (i.e.,
10), and the environment extended to include this new variable-value pair. The body of

the lambda abstraction is now evaluated.

The body of this abstraction is itself an abstraction (i.e., (lambda (y) (4 y x)). However,
unlike standard approaches, we do not create a funarg of this abstraction and return it
(to the old environment) as the result of the application to the first argument. Instead,
the binding variable y is directly bound to the remaining argument in the argument list
(20). The current environment is then extended by this variable-value pair and the body
of the abstraction (i.e., (+ y x)) evaluated in this new environment. The evaluation

eventually yields the result 30.
The environment at the time of the application of appl is restored.

The application of appl finally returns the result 30, and the environment is restored to
the top level.

As can be seen by comparing this with the standard evaluation strategy {Section 2.1},

in essence the only change is the order in which subexpressions are evaluated. Thus, under the

standard order of evaluation, the abstraction ((lambda (x) (lambda (y) (+ y x))) is applied

to the argument 10 at Step (3}, whereas under the function-deferring strategy the application

is done later, at Step (11). Of course, in the presence of side effects, the different order of

evaluation could result in an expression yielding different values.

2.4

Partial Application
One simple alternative to defining function-valued functions by abstracting a func-
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tional value is to use partial application (e.g., [Burstall et al. 1971]). Partial application allows
multi-adic functions whose range is a basic (i.e., nonfunctional) value to be partially applied
to a subset of their arguments, thus in effect yielding a functional value. As it turns out, most
of the useful function-valued functions can be simply represented as partial applications of
standard multi-adic functions. For example, consider that we want to add an integer a to each
element of a list ! of integers. One way to do this is to map the function that adds a to its
argument over the list I, Thus, in LISP we would have

i. (mapcar (function (lambda (x) (plus a x))) 1)
But, with partial application, we could write this more simply as
if. (mapcar (function (plus a)) 1)

Not only is this somewhat easier to read, but it also allows for more efficient evaluation.
In expression (i), the lambda form prevents evaluation of the variable a until application of the
abstraction. Thus a will be re-evaluated for every element in the list 1. With partial application,
however, the variable a (and, more generally, any expression standing as an argument) need
only be evaluated once. Of course, because of the diflerence in evaluation times, the two above

expressions may yield different values in the presence of side effects.

The technique of deferred evaluation of function-valued arguments can be extended
to support partial application without any major change in the evaluation mechanism. Partial
application simply results in the creation of a funarg, with the values of the partially applied
arguments forming the arglist of the funarg and the function itself forming the body. This
allows us to extend the LISP language to include partial application without significantly

complicating the interpreter.

§3 A Function-Deferring LISP Interpreter

3.1 The eval Fupction

‘We now indicate how the technique of function deferral can be accomplished by giving
a modified version of the standard LISP eval function. (Where we refer to standard LISP, we
mean LISP 1.5 [McCarthy et al. 1985}, or what is often called full LISP.) The eval function
we use is based on that given in [Allen 1978]. The definition is recursive, thus simplifying the
handling of control and letting us concentrate on the essential aspects of function deferral.

However, the environment is represented as a global data structure.
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The standard definition of eval is as follows:

function eval (exp)
if (is-const exp) then (denote exp)
elseif (is-var exp) then (lookup exp)
elseif (is-cond exp) then (evcond (arge exp))
elseif (is-funval exp) then (mkfunarg exp)
elseif (is-application exp) then
(apply (eval (func exp)) (evlis (args exp)))
else (error)

end.

The above language is a variant of LISP close to Common LISP [Steele 1984). Indentation
(rather than brackets) is used to specify program structure at the top level.

The recognizers is-const and is-var test for constants and variables, respectively.3
The function denote(exp) returns the internal represention of the constant exp and lookup(exp)
returns the value of the variable exp in the current environment. The recogrizer is-cond (exp)
tests for a conditional expression exp with clause list arge(exp), and evcond evaluates the
clauses. The recognizer is-funval{exp) checks for an expression exp whose head is the function
construct (function), and is-application(exp) checks for an applicative expression exp with
operator (function part) func(exp) and operands (arguments) args(exp). The constructor
mkfunarg creates a funarg and evlis (1) maps eval over each of the elements of the list 1
(i.e., evaluates each of the arguments in [, forming a list of the results). The function apply(f

args) applies the evaluated function f to the list of evaluated arguments args.

Note that the above eval function allows a wider class of LISP expressions than most
LISP evaluators. In conventional evaluators, only the operands (arguments) in the applicative
expression are evaluated; the operator (function part) is assumed to be either a primitive

function, a lambda abstraction or a variable denoting one of these.4

For the function-deferring evaluator, we assume the use of the function construct

3Under the dynamic binding convention of LISP, lambda abstractions are considered to be constants.

4Exceptions are the evaluation scheme proposed by [McCarthy et al. 1965] and that used for SCHEME |[Steele
and Sussman 1978]. The LISP variant described by [Henderson 1980] also evaluates the functional part of
applicative expressions, but assumes the resulting value will be a elosure representing a lambda abstraction.
MACLISP [Touretsky 1975] allows some function-valued forms but not others. Common LISP {Steele 1084]
and later versions of Franz LISP (e.g., Opus 38.78) allow the functional part of an expression to be evaluated
by using the funcall construct.

— 14 -



to defer evaluation of function-valued operands. This requires modifications to the funarg
constructor, mkfunarg, and the function that applies a funarg to its arguments. We will
consider those modifications shortly. However, we also need to modify the evaluator so that
functional values occurring in operator position are not returned as values, but are instead

directly applied to their arguments to produce a basic value (see Section 2.3).

To do this, when eval is called to evaluate the operator of an applicative expression,
it must also be given the list of arguments to which the value of the operator is to be applied.
Thus this list of arguments, called arglists, becomes an additional parameter to eval. When
the value of the operator is eventually found, it is directly applied to the arguments in arglists
rather than returned as a functional value to be applied at a higher level in the recursion.
(As we will see later, if arglists is empty, the call on apply simply returns its argument

unchanged.)

There is one additional complication. If we are to allow niladic functions, then it is
pecessary to remember the structure of the applications in the expression being evaluated.®
Thus, instead of simply accruing a list of arguments, arglists contains a list of argument lists,
one from each application. This also helps in debugging programs, as the application of a
function to an incorrect number of arguments can then be readily detected.?

The function-deferring eval is given below. The full interpreter, implemented in LISP,

is given in Appendix 1.

function eval (exp arglists)

if (is-const exp) then (apply (denote exp) arglista)
elseif (is-var exp) then (apply (lookup exp) arglists)
elseif (is-cond exp) then (apply (evecond (arge exp)) arglists)
elseif (is-funval exp) then {apply (mkfunarg exp) arglists)
elseif (is-application exp) then

{eval {func exp) (cons (evlis (args exp)) arglists))
else {error) end.

If arglists is empty, eval simply returns the value of exp as in the original eval
(remembering that, in this case, the calls to apply do nothing). If arglists is non-empty, and
exp is a constant, a variable, a conditional or a function construct, then eval simply applies

the value of the expression exp {(corresponding to the operator of the original expression} to the

5In the previous eval function, this structure was captured in the form of the recursive calls to apply.

8in the evaluator given in [Georgefl 1982, 1984], niladic functions were disallowed, thus providing a simpler
structure for arglists.
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arguments in arglist., In this way it is no different from the original eval which called apply
directly. However, it differs from the standard definition when exp is itself an applicative
expression. In this case, it simply recurses on itself, collecting up all the [evaluated] arguments

of the application in arglists.

The technique of providing eval with a list of evaluated arguments (arglists), together
with use of the function construct to defer evaluation of function-valued expressions, prevents
funargs from being returned to higher levels in the recursion. Consequently, the environment
structure is always stacklike and relatively simple environment management schemes can be
employed. The provision of an argument list also allows for partial application, as described

later.

Now we can look at the construction of funargs. In the function-deferring evaluator,
a funarg f consists of a function part ffun(f), a list of evaluated arguments farg(f) and an

environment fenv(f). The funarg constructor mkfunarg is defined as

function mkfunarg (exp)
if (is-application, exp) then
(list 'FUNARG (func exp) (list {evlis (args exp))) env)
(list 'FUNARG exp nil env)
end.

The variable env denotes the current environment. Note that, when the expression
exp is an application, the arguments occurring in exp are all evaluated. As discussed pre-
viously, this is primarily to provide consistency with the LISP call-by-value convention, as well
as to improve efficiency. However, if other evaluation strategies were desired (e.g., call-by-name,

call-by-need) evaluation of the arguments could be deferred.

3.2 The apply Function

We will now consider the apply function. The apply function used in conventional

LISP interpreters (e.g., [Allen 1978)) is essentially as follows:
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function apply (fn args)
if (is-car fno) then (car (argl args))
elseif (is-cdr fn) then (cdr (argl args))
elseif (is-cons fn) then (cons (argl args)(arg2 args))
elseif (is-lambda fn) then (apply-abs (body fn) (vars fn) args)
elseif (is-funarg fn) then
(2pply-funarg (fbody fn) (fargs fn) (fenv fn))
else (error)

end.

The recognizers is-car, is-cdr and is-cons check for the primitive functions CAR,
CDR and CONS respectively, and the “...” represents the code for the remaining primitive
functions supported by the LISP system. The functions argl and arg2 take the first and
second arguments, respectively, in the list of arguments args. The recognizer is-lambda
checks for a lambda abstraction and applies it via the call on apply-abs, and is-funarg tests
for a funarg and applies it via the call on apply-funarg. The selectors body, vars, fbody,
fargs and fenv select the appropriate components of the structures to which they are applied.

The apply function for the function-deferring interpreter differs primarily in that it
receives a list of argument /ists, and must recurse on itself until this list is fully consumed. This
is necessary because the function eval no longer calls apply when it encounters an applicative

expression. The new apply function is as follows:

function apply (fn arglists)
if (null arglists) then fn
else
let args = (first arglists)
remains = (rest arglists)
if (is-car fn) then (apply (car (argl args)) remains)
elseif (is-cdr fn) then (apply (cdr (argl args)) remains)
elseif (is-cons fn) then (cons (argl args)(arg2 args))
elseif (is-lambda fn) then (apply-abs (body fn) (vars fn) arglists)
elseif (is-funarg fn) then
(apply-funarg (fbody fn)(append (fargs fn) arglists) (fenv fn))
else (error)

end.
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The let construct is just a convenient form of lambda binding: it binds the variable
to the left of each “==" sign to the value of the expression on the right, and then evaluates
each expression (form) in the body of the construct (i.e., the expression following the binding

part) with these bindings.

Note that some primitives (e.g., CONS) cannot produce functional values, so that
in these cases the result of the application need not be re-applied to any remaining lists of

arguments. (An error could be flagged if arglists contained more than one argument list.)

The only remaining functions we need consider are apply-abs and apply-funarg.
The function apply-abs applies a lambda abstraction in the usual way: the body of the lambda
abstraction is evaluated in an environment formed by binding the variables (parameters) of the
lambda abstraction to the arguments in arglist. It differs from standard, however, in that any
remaining (unpaired) arguments are supplied to eval as the eval arglist. This list of remaining
arguments will be nonempty only if the abstraction is function-valued, and will be used by eval

to complete the application.
The definition of apply-abs is as follows:

function apply-abs (body vars vals)
(pushvars vars)
(assign-vars vars (first vals))
let result = (eval body (rest vals))

{popvars)
result

The function pushvars extends the current environment with the binding variables
of the abstraction, and assign-vars binds the variables to their values (i.e., the values in the
first list of arguments). The function popvars restores the environment to its state prior to
the call.

The function apply-funarg is also very similar to conventional funarg application —
the environment is set to that of the funarg and the funarg evaluated therein by applying the
function part of the funarg to the list of given arguments. In this ¢ase, however, the function
part may itself be an expression and thus needs to be evaluated by eval. The call on eval will
in turn cause the evaluated functional part to be applied to the given arguments. Here is its
definition:
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function apply-funarg (body args envbinding)
let envappln = root
(setenv envbinding)
let result = (eval body args)
(setenv envappln)

result

The function setenv(env) sets (unwinds) the environment to env. The variable root

1s the current environment.

3.3 Binding Strategies

The above evaluation mechanism makes no committment regarding the binding strategy
to be used. However, unlike standard schemes for supporting functional values, the environ-
ment structure for the function-deferring interpreter is always stacklike rather than treelike.
This is because, by deferring the evaluation of function-valued expressions, upward funargs
(applicative expressions that evaluate to a function) are in essence transformed into simple
funargs (where no application takes place). This means that the environment management
schemes that work for simple funargs will work for the function-deferring interpreter, and the
more complex schemes required for handling upward funargs in the standard interpreters can
thus be avoided. In particular, the function-deferring scheme allows the environment structure
to be built on the runtime stack rather than the heap. The gain in efficiency is especially great
if a shallow-binding strategy (see Section 2.4) is used, as the swapping of value cell contents

can be considerably reduced in comparison with that of conventional LISP interpreters.

Although not realized in the above interpreter, further gains in efficiency can be
achieved by storing the eval arglists on the runtime stack. Furthermore, in the evaluation of
function-valued expressions, the function-deferring scheme allows funargs to be created and
retained on the stack without moving any of the evaluated operands. In contrast, schemes
involving heap allocation of environment structures are required to copy argument values to

the heap (and later, back again) as these arguments become part of an extended environment.

In particular cases, the gain in efficiency resulting from simpler environment struc-
tures and the avoidance of heap operations can be offset by multiple evaluation of function-
valued expressions. This can happen wben the expression to be evaluated contains multiple
applications of a function-valued variable (i.e., one that is bound to a funarg). Because the

evaluation of such expressions is deferred, multiple occurrences of a function-valued variable
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result in multiple evaluations of the functional expression to which it is bound. Conversely,
conventional interpreters for full LISP need perform but a single evaluation of the functional
expression. However, conventional interpreters must also do a context swap for each application

of the resulting functional value, and this can be just as expensive as re-evaluation.”

3.4 Partial Application

As mentioned previously, the above interpreter can be extended to allow evaluation

of expressions involving partial application.

The only effect that partial application has on the above interpreter is that the
arguments to a function may not all occur in the first argument set in the arglists given to
apply. Thus it is necessary to modify apply to allow functions to be applied to sufficient
argument sets in arglists to provide all the arguments they need. The simplest way to do this
is to restructure arglists so that all the arguments needed by the function do in fact occur in

the first argument set. Thus apply becomes

function apply (fn arglists)
if (aull arglists) then fn
else
let newarglists == (restructure (adicity fn) arglists)
let args (first newarglists)
remains = (rest newarglists)
if (is-car fn) then (apply (car (argl args)) remains)
elseif (Is-cdr fn) then (apply (cdr (argl args)) remains)
elseif (Is-cons fn) then (cons (argl args)(arg2 args))
elseif (is-lambda fn) then (apply-abs (body fn)(vars fn) newarglista)
elseif (is-funarg fn) then
(apply-funarg (fbody fn)(append (fargs fn) arglists) (fenv fn))

else (error)

end.

TSome comparisons of the conventional approach and the function-deferring approach can be found in |Georgefl
1982, 1984].

- 90 -



Note that if the function is a funarg, arglists is not restructured — this can be done

when the body of the funarg is evaluated.

The function restructure needs to be given the adicity of the function to be applied
{i.e., the number of arguments it requires). For ]ambda abstractions, this can be achieved by
counting the number of binding variables, but for primitive (system) functions requires that
their adicity be explicitly specified. In a “pure” LISP system, this is straightforward.

However, a problem arises in conventional LISP systems because some functions (e.g.,

lexprs and various system functions) can take an arbitrary number of arguments.
For example, consider the following conditional expression:

({(cond (x (function car))
(y (function cdr)))

(f =)

The intent here is that, depending on the values of x and y, the conditional expression
will yield the function car or edr which in turn will be applied to the value of the expression
(f z). The problem is that, if cond itself can be partially applied, an alternative interpretation
is that (f z) could be taken as another argument to cond. Indeed, in this case the problem
is further compounded because, under the intended interpretation, the expression (f 2) should
be evaluated before evaluation of the conditional expression, while under the alternative inter-

pretation, {f 2) should remain unevaluated until used by cond.

To handle this, we either need to restrict such functions to being basic valued, or
forbid them from being partially applied. The latter alternative is the one chosen here, as
partial application is essentially a notational convenience whereas function-valued functions

have semantic import.
The function restructure iz as follows:

function restructure (m arglists)
if (lesseq m (length (first arglists))) then arglists
else (restructure m (join (first arglists) (rest arglists)))

end.

The function join restructures arglists by appending the first argument set in arglists
to the second.
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§4 Implementation in FRANZ LISP

In this section we outline the structure of the FRANZ LISP interpreter (hereafter
called FRANZ) and describe the changes necessary to implement the function-deferring scheme

for handling functional arguments and values.

4.1 The Structure of FRANZ LISP

The eval function used by FRANZ is conceptually very similar to the LISP interpreter
described in Section 3. However, function calls are minimized to improve efficiency. The eval
function thus performs all the evaluation, instead of sharing the work witk apply. All function
applications (like car and edr) are removed from apply and are bound to the appropriate
atoms as bed (binary-coded-decimal) functions. The only time apply is called is when the
function apply is explicitly applied in a user-defined expression. A detailed description of eval

is given in Appendix 2.

The environment structure is implemented by using shallow binding. However, FRANZ

does not have any mechanisms for supporting statically-scoped functional arguments or values.

FRANZ uses three stacks for managing evaluation. One of these is the C runtime
stack, which is used by the LISP kernel for storing return addresses, non-LISP arguments to

subroutines, and saved registers.

The other two stacks are used exclusively for interpreting LISP expressions. The first
is used for representing the environment structure and is called the bindatack. As mentioned

above, shallow binding is used.

The second stack is called the namestack. It is used for storing the values of the
operands involved in function application (i.e., for passing parameters to LISP functions). It
simply contains all current activations of the argument lists that, in the interpreter of Section
3, were passed as the arglist parameter of the apply function. It also holds local data within
LISP functions and doubles as a temporary storage area for LISP data that must be protected
from garbage collection.

To ensure that functions get the right number of arguments, it is important that the
extent of each arglist on the namestack be known. This is achieved by using a variable (lbot)
that is [effectively] local to eval, and setting it to the top of the stack just prior to pushing the
arguments at this level of evaluation. Thus, at each call to eval, the variable lbot denotes the

base address of the current arglist.
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The base address of each arglist is also needed for other purposes. In any function
application, the list of operands will be scanned from left to right, and hence the operand values
will be placed on the stack with the rightmost operand on top. This causes no problem for
the primitive (system} LISP functions, which expect their arguments in this order. However,
for user-defined lambda abstractions, the binding variables are also scanned from left to right,
and so the first variable to be bound will be the leftmoat one. This means that the binding of
variables must start at the base of the current arglist, successive bindings being made as we

move up the namestack to the top.

For the sake of efficiency, both the bindstack and the namestack use contiguous
memory elements; allocation and deallocation are then implemented simply by respectively

incrementing and decrementing a pointer.

Let us now consider the implementation of the deferred-evaluation scheme. A detailed

description of the modified eval function can be found in Appendix 3.

4.2 Saving the Bindstack

FRANZ has no facilities for simple funargs, let alone upward funargs. Thus, the first
thing that has to be implemented is a mechanism for handling simple funargs. Once this is
done, we can consider how to implement upward funargs, using the function-deferring scheme.

Implementation of simple funargs requires that, when a funarg is applied, the bindstack
be unwound to the binding environment of the funarg and the application environment saved
for restoration at the conclusion of the application. This is quite straightforward and can be
achieved using a single stack (for example, see [Allen 1978]). However, the existing structure
of the FRANZ LISP bindstack is not suitable for such a solution, and consequently a second
bindstack is introduced for retaining the old variable bindings when the primary bindstack is

unwound. This second bindstack is called the saved-bindstack.

It is clear that, as the bindstack is unwound, the saved-bindstack will grow, and that,
as the bindstack is restored, the saved-bindstack will shrink. This behavior allows both stacks
to be conveniently placed at either end of the same address space, both growing towards each
other.

An example of the development of both bindstacks during the application of a funarg
is given in Figure 1. The example is the same one as that considered in Section 2, where we

had the following function definitions:
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(defun appl (f x)

(f x))
(defun fnplus (x)

(lambda (y) (+ ¥ x)))

The expression to be evaluated is
(appl (function (fnplus 10)) 20)

First, the operands of appl are evaluated and pushed onto the namestack (Figure 1.1).

f : <UNBOUND>
20 x ¢ <UNBOUND>
<funarg...> y : <UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 1.1. Development of the Bindstack

The variable x is then bound to 20 and fis bound to the funarg <FUNARG (lambda
(x) (lambda (y) (+ y x))) (10) env>. (Note that the operand values remain on the namestack

until we return from the instance of eval that put them there.)

The body of the function appl is then entered. First, the value of x is pushed onto
the namestack for the call to f (Figure 1.2).

>
/ 20 f : <funarg...>
7 20 x : <UNBOUND> % 1 20
1 {funarg...> f : <UNBOUND> y : <UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 1.2. Development of the Bindstack (cont.)
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As [ is bound to a funarg, the environment must next be restored to the binding
environment of the funarg (envin this case). As we want to recover the old bindings later, they
are placed on the saved-bindstack (i.e., at the other end of the bindstack space) until needed.
Now the arglist held by the funarg is also placed on the namestack (Figure 1.3).

[ x : 20
— | 10 f : <funarg...>
1/ 20 £ : CUNBOUND>
7 20 x : <UNBOUND>
1 {funarg...> y : <UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 1.8. Development of the Bindstack (cont.)

Evaluation continuves in the normal manner; the first lambda of the funarg is given
the first block of arguments on the namestack, binding x to 10. The second lambda is given
the second block of arguments, binding y to 20. Finally, the values of y and x are pushed onto
the namestack for the call to “+” (Figure 1.4).

x : 20

10 f : {funarg...>

20

10

20 f : (funarg...>

20 vy @ <UNBOUND> x : 10

<funarg...> % : <UNBOUND> vy : 20

Popstack Namestack Bindstack Current Bindings

Figure 1.4. Development of the Bindstack {(cont.)
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The bed function “+" returns 30, whereupon eval returns, taking 10 and 20 off the
namestack. The two lambdas of the funarg return, and the evironment prior to the lambda

application is restored (Figure 1.5).

x : 20
10 f : <{funarg...>
20 f : {UNBOUND)>
20 x : <{UNBOUND>
{funarg...> y : <UNBOUND)>
Popstack Namestack Bindstack Current Bindings

Figure 1.5. Development of the Bindstack (cont.)

At this stage, the initial application environment is restored by using the old bindings
on the saved-bindstack (Figure 1.8). The funarg returns, all the calls to eval finish, and the

value 30 is returned.

20 f : <funarg...>
20 x : {UNBOUND> x : 20
{funarg...> f : (UNBOUND> y ¢ <UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 1.6. Development of the Bindstack (cont.)

4.3 Handling Function Application

Having modified the environment representation to support the handling of simple
funargs, we now need to consider what changes are necessary to allow implementation of the
deferred-evaluation scheme for upward funargs. The major change that needs to be made is
to allow the arglist to continue accruing arguments until application of a function is possible

(as is done in the interpreter described in Section 3).
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Under the proposed evaluation scheme, the execution of a function-valued function is
deferred until there are enough arguments for the expression to reduce to a basic (i.e., nonfunc-
tional) value. Only when sufficient arguments have been accumulated is the function-valued
function applied. The resultant function is then applied to the remains of the accumulated ar-
guments, and so on, until a basic value is finally returned as the value of the expression. With
this approach, by the time a functional value is applied, it is already in its correct binding

environment.

The only difficulty with implementing this scheme is that, at the time any function is
to be applied, it must be capable of reaching down the namestack far enough to collect all the
arguments it needs for the application. In the standard FRANZ LISP interpreter, the current
arglist corresponds to the block of arguments pushed onto the namestack at the current call
to eval, and thus the base address of this arglist is represented by the top of the stack prior
to pushing the arguments. However, under the function-deferring scheme, the arglist must
include enough arguments to allow reduction to a basic value, and the base of this arglist may
not correspond to the top of the stack at the current call to eval. It corresponds, in fact, to
the top of the stack when the evaluation of the enclosing basic-valued expression is initialized.
This is not difficult to implement, requiring only a simple change in the way the base address

of the current arglist is determined.

, However, in addition to the foregoing, we still need to store the address of the top
of the stack on each call to eval. This is necessary to enable the correct binding of variables
and to distinguish argument blocks from temporary information that is also stored on the
pamestack. Furthermore, this information must be globally accessible, and therefore cannot

be represented as a simple variable local to the eval function.

The address of the top of the namestack on each call to eval could very easily be
placed on the namestack along with other temporary information. However, so as to minimize
changes in the current data structures, this information is stored instead on another stack,
called the popstack. Thus, in eflect, the popstack records the storage locations of the relevant

argument blocks on the namestack.

The popstack is used only in evaluating expressions whose operator part is either a
funarg or a function-valued applicative expression. In these cases, two entries are pushed onto
the popstack for every set of arguments placed on the namestack. The first is the address of
the top of the set and the second is the number of arguments in the set. This efectively gives
the base address of the block.
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Figure 2 contains an example of the develépment of the popstack and namestack

during evaluation of the basic-valued expression
((f1 argl) arg2 arg3)

Assume the current situation is as shown in Figure 2.1.
fl : <funarg...>
x : <UNBOUND>

‘ I l | y : <UNBOUND)>

| : | ‘ H I z : <UNBOUND>

Popstack Namestack Bindstack Current Bindings

Figure 2.1. Development of the Popstack and Namestack

To evaluate the expression, the operands arg2 and arg3 are evaluated, yielding arg2"
and arg3’ respectively. These values are placed on the namestack. Because the operator (f1
argl) is a function-valued applicative expression, the popstack is used to record the extent of

the argument block at this level of evaluation (Figure 2.2).

fl : <{funarg...>
|~
/ argl”’ x : <UNBOUND)>
e arg2’ y : <UNBOUND)
2 : H z : <UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 2.2. Development of the Popstack {cont.)

Then the subexpression (f1 argl) is evaluated. The operand argl is first evaluated,
yielding argl’, which is pushed onto the namestack. The extent of this argument block is

recorded on the popstack (Figure 2.3).
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argl”’ f1 : {(funarg...>
1 / argl’ x : <UNBOUND>
d arg2’ y : <UNBOUND>
2 : : z : <{UNBOUND>
Popstack Namestack Bindstack Current Bindings

Figure 2.8, Development of the Popstack (cont.)

At this point, the function f1 is to be applied to its arguments on the namestack. Let
us assume that fl is bound to the funarg <FUNARG (lambda {x) (lambda (y £) (plus x
y z))) nil env>.

The first thing that happens is that any arguments in the arglist of the funarg are
pushed onto the namestack. In this case, the arglist of the funarg is empty and so nothing
is done. Next, the binding environment of the function is restored {as described above), and
the body of the funarg is entered. Now the binding variables {formal parameters) get bound
to the arguments in the first argument block on the namestack, pointed to by the popstack.
In this case x gets bound to the value of argl (argl’). The corresponding information on the
popstack is popped off, since the argument block is no longer needed. Thus the arguments are
no longer accessible. Note, however, that the actual values remain on the namestack (i.e., the
top of the namestack is unchanged) until we return from the instance of eval that put them
there.

The environment is extended to include this new variable-value pair and the body
(lambda (y £) (plus x y z)) of the abstraction is evaluated. The situation is shown in Figure
2.4. The binding variables are bound to the arguments in the next argument block, pointed
to by the popstack. In this case, the variables y and £ are now bound to the values of arg2
{arg2') and arg3 (arg3’). The corresponding information on the popstack is popped off, as

this argument block is also no longer needed.
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argl’ fl : {funarg...>
) .
/ argld’ x : argl
7 arg2’ x : <UNBOUND) y : CUNBOUND)
2 : : z @ <UNBOUND>
Popstack Ramestack Bindstack Current Bindings

Figure 2.4. Development of the Popstack (cont.)

The environment is extended by these new variable-value pairs and the body {plus x
¥ z) evaluated in this new environment. The values of the variables x, y, and s are placed on
the namestack, but the corresponding block address information is not placed on the popstack,

as the expression under evaluation is of standard form (Figure 2.5).

l
argld’
arg2’
argl”’
argl’ z : <UNBOUND> £l : {funarg...>
argld’ y ¢ <UNBOUND> x ¢ argl’
arg2”’ x : <UNBOUND> y : arg2’
: z : argld”’
Popstack Namestack Bindstack Current Bindings

Figure 2.5. Development of the Popstack (cont.)
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The primitive plus function is then applied to the arguments on the namestack and
the result returned as the value of eval at this level. This value is then returned as the result
of each higher-level call to eval (restoring environments on the way) and eventually placed on

the namestack as the value of the original expression (Figure 2.8).

£l : {funarg...>

l x : <UNBOUND>

30 y : CUNBOUND>

z : <{UNBOUND>

.
e —
(2]

Popstack Namestack Bindstack Current Bindings

Figure 2.6. Development of the Popstack (cont.)

4.4 Providing for Partial Application

As discussed in Section 3.4, for functions that can produce functional results, the
interpreter must know the exact number of arguments expected by the function. This required
two changes in the FRANZ LISP interpreter: one to mark those functions unsuitable for
partial application, the second to provide information on the number of arguments required

by functions.

Marking particular functions as unsuitable_for partial application is straightforward,
but it is more difficult to provide information on the number of arguments required by LISP
functions. For user defined functions this is a trivial matter, as the number of binding variables
can simply be counted. However, because system primitives are in binary, it is necessary to
associate with each bed function the number of formal parameters it requires, or a special value
(taken to be anynumber) indicating that the function will accept any number of arguments

(as, for example, is required by lexprs).

4.5 Implementation

The scheme outlined above has been implemented by modifying the FRANZ LISP
(Opus 36b) interpreter. The modified version of the evaluator is given in Appendix 3. The

modifications were both simple to make and did not affect the efficiency of interpretation.
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There are, however, some restrictions in the current implementation. First, if the
function function is applied to an expression, it will evaluate the operands occurring in the
expression in the current environment and will save that environment pending evaluation of
the operator. Thus the operator is treated as a lambda or lexpr discipline (i.e., its arguments

are evaluated). There is no provision for the other disciplines like nlambda and macro.

One solution is that function can take a second argument describing the discipline
of the operator. Another possible solution is to have variations of the function function, say,

function for lambda function bindings, nfunction for nlambdas and mfunction for macros.

Second, the current system does not allow compilation of function-valued applicative
expressions, function-valued arguments {with static scoping) or partial applications; only the
interpreter can evaluate such exﬁressiona. To rectify this deficiency, compiled LISP code has
to be altered so that the number of arguments is known and the last expression evaluated
can use unapplied arguments from previous applications, as in the case of interpreted code.
In addition, of course, the interpreter for the compiled code would have to be modified along
the same lines as the LISP interpreter. Alternatively, the compiler could first transform such

expressions into a form that avoids upward funargs {see [Georgeff 1984]).

Third, in the current implementation, some constructs cannot be used freely with
function-valued functions. Nonlocal gotos cannot be used with function-valued functions or
partial application. Partial application of array references has also been ignored. Furthermore,
the use of do and prog will not allow arguments from previous (enclesing) applications to
be employed by expressions within their bodies, as the last expression executed is a return

statement.

§5 Examples

In this section we provide some examples of the use of function-valued expressions
and partial application. We assume that the reader is familiar with the standard FRANZ LISP
language as described in the FRANZ LISP Manual [Foderaro 1980].

There are two major extensions of the language: the use of the function construct to
preserve static scoping of function-valued expressions, and the introduction of partial applica-

tion.
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5.1 Function-Valued Qperands

In the extended version of FRANZ LISP, the function construct is used to preserve
static scoping of function-valued expressions. It is thus different from the function construct
in standard FRANZ LISP, which does not preserve static scoping. It will work in the same
way as the function construct in MACLISP [Touretsky 1978], but is more general in that it
will also work for upward funargs — which MACLISP does not. Furthermore, it differs from
the use of the function construct in various versions of full LISP, in which it is used at the

point a function is to be returned as a value from within a function-valued function.

In the extended version of FRANZ LISP, the function copstruct is used simply when-
cver one has a function-valued operand for which static scoping is desired. That is, the func-

tion construct is applied to function-valued expressions that occur in operand position.
Some examples are given below:

(defun increment (x)
(Iambda (y)
(+ x )

(defun twice (f)
(lambda (x)

(r (f x)))

(defun double-increment (x)

(twice (function (increment x))))

(mapcar (function 1+) '(1 2 3))
— (2 34)

(mapcar (function (lambda (x) (+ x 2))) (1 2 3))
— (3 4 5)

(mapear (function (double-increment 3)) ’(1 2 3))

~ (189)
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(mapcar (function (twice (function (increment 3)))) ’(1 2 3))

—~ (7 8 9)

Note that, since scoping rules are irrelevant for primitive functions, it was not necessary to
use the function construct for the operand “1+"; “quote” would have sufficed equally well.
However, it is good practice and yields more readable code if the function construct is used for

all function-valued operands.

5.2 Function-Valued Operators

In FRANZ LISP and most other versions of LISP, the operator (function) position
in an applicative expression must be a function comstant {e.g., car), a variable denoting a
function, or some kind of abstraction (e.g., a lambda abstraction). The extended version of
FRANZ LISP, however, allows any function-valued expression to occur in operator position.

Some examples are given below.

((increment 3) 2)
— b
(+ ((increment 3) 2) 5)
~ 10
((twice (function (lambda (x) (+ x 2)))) 5)
-9
((car (list (function (increment 3))(function (increment -3)))) 10)
— 13

((cond (x (function 1+))(t (function 1-))) 10)
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— 11 (if x is non-nil)

— 9 (if x is nil)

5.3 Partial Application

The extended version of FRANZ LISP also allows most functions to be partially
applied to a subset of their arguments. Such partial application is not allowed in any other
version of LISP. However, a similar facility exits in the language POP2 [Burstall et al. 1971].

Some examples follow:

(mapcar (function (4 3)) (1 2 3))

— (4 5 86)
This expression is equivalent to the expression
(mapcar (function (Iambda (x) (+ 3 x))) ’(1 2 3))

However, the partially-applied form is more efficient in evaluation than the latter expression.
Under partial application, the variable x is evaluated only once (at the time the functional
argument is evaluated), whereas in the latter case the lambda form prevents evaluation of x
until application time (thus resulting in x being evaluated three times). Of course, because of
the difference in evaluation times, the two above expressions may yield different values in the

presence of side eflects.

The next example shows how partial application ¢an be used directly in operator

position (albeit, in this case, to no advantage).

((cons 'a) ’(b c d))

— (a b cd)
This expression is equivalent to

(cons ’a *(b ¢ d))

§6 Conclusions

A simple and efficient scheme for handling both simple and upward funargs in LISP has

been described and implemented. This allows the definition and use of higher-order functions
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that provide static scoping for free (global) variables. Furthermore, the scheme enables partial
application of functions to a subset of their arguments, thus providing a simple means of

generating function-valued functions from basic-valued functions.

The essence of the scheme is to defer evaluation of function-valued expressions until
sufficient arguments exist to allow the expression to be reduced to a nonfunctional value. In
this way, upward funargs are converted into simple funargs and a standard runtime stack can

be used for managing evaluation.

Experimentation shows that, in most cases, there are less environment swappings
under this scheme than in other implementations. The scheme offers the added advantage that,
not only can a simple stack be used, but no awkward processing, such as garbage collection
on the stack space, is needed. Indeed, given a LISP system that handles simple funargs, the

modifications necessary to handle upward funargs as well are extremely straightforward.

The scheme has been implemented by modifying an existing FRANZ LISP interpreter.
The implementation handles interpreted expressions only, and function-valued functions must
be either of lambda or lexpr discipline. To qualify as a practical LISP system, the scheme needs
to be extended to enable compilation of expressions involving function-valued functions as well

as their interpretation. Techniques for doing this are described elsewhere [Georgeff 1082, 1984].

It is likely that more efficient and better-structured code could be produced if the
current scheme were implemented from scratch, or if an interpreter already endowed with
facilities for handling simple funargs were modified. Further simplification would result if
partial application were disallowed. This feature proves more difficult to implement in a full
LISP system than in an abstract interpreter where efficiency is not at issue. Although the
wisdom of extending the LISP language to include partial application is open to question, it

may prove a useful addition to other, less standardized, applicative languages.
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Appendix 1: LISP Interpreter with Full Funargs

The full listing for the eval function described in Section 3 is given below. Note that to
compare approaches to the handling of higher-order functions, the interpreter includes both the
conventional scheme for handling funargs (which must allow for tree-structured environments)
and the function deferring scheme described in this report (which can be implemented on a
simple stack). Which scheme is used during evaluation depends on how the programmer uses
the function FUNCTION (see Sections 2.1 and 2.3). Of course, the environment management
procedures given below would be considerably simplified by implementing the function deferring

scheme alone.

Descriptions of the important functions are given in Section 3 of this report. The
environment structure is implemented using shallow binding, and is based on the method
described in [Allen 1978]. The global variable root always points to the current environment.
For ease of tracing the enviroment structure, each node in the environment is named by a
unique symbol. This can be changed (and the interpreter made more efficient) by modifying

the functions ptr and frame.



§1 Main Routines

(defun read-eval-print ()
(prog (exp root)
(setq root (ptr (list nil (ptr nil) *active)))
loop
(print "EXPRESSION:)
(setq exp (read))
(cond ((atom exp) (print (EVALNEW exp nil)))
((is-exit (func exp))(return ’exit))
((is-defun (func exp)) (print (declare exp)))
(t (print (EVALNEW exp nil))))
(terpri)(terpri)
(go loop)))

(defun EVALNEW (exp arglists)
(cond ((is-const exp) (APPLYNEW (denote exp) arglists))
((is-var exp) (APPLYNEW (lookup exp) arglists))
((is-cond exp) (APPLYNEW (evcond {argsc exp)) arglists))
((is-funcons exp) (APPLYNEW (mkfunarg (fbody exp)) arglists))
((is-application exp) (EVALNEW (func exp) (cons

(evlis (args exp)) arglists)))))
(defun lookup (var) (get var ’value))

(defun denote (exp)

(cond ((is-number exp) exp)
((is~-truth exp) exp)
((is-false exp) nil)
((is-sexpr exp) (rep exp))
((is-lambda exp) exp)))

(defun evcond (exp)
(do {(x exp (rest x)))((null x) nil)
(cond ((EVALNEW (ante (first x)) nil)
(return (EVALNEW (conseq (first x)) nil})))))
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(defun mkfunarg (exp)
(cond ((is-application exp)
(list 'FUNARG (func exp)(list (evlis (args exp))) root))
(t (list 'FUNARG exp nil root))))

(defun evlis (exp)
(mapcar '(lambda (x) (EVALNEW x nil)) exp))

(defun APPLYNEW (fn arglists)
(prog (newarglists args remains)
(return
(cond ((null arglists) fn)
(t (setq newarglists (restructure (adicity fn) arglists))
(setq args (first newarglists))
(setq rest (rest newarglists))
(cond ((is-car fn) (APPLYNEW (car (argl args)) remains))

((is-cons fn) (cons (argl args) (arg2 args)))

((is-cdr fn) (APPLYNEW (cdr (argl args)) remains))
((is-times fn) (* (argl args) (arg2 args)))

((is-plus fn) (+ (argl args) (arg2 args)))

((is-diff fn) (-~ (argl args) (arg2 args)))

((is-null fn) (null (argl args)))

((is-set fn) (assign (argl args) (arg2 args)))

((is-lambda fn) (apply-abs (body fn) (vars fn) newarglists))
((is-funarg fn) (apply-funarg (fbody fn)
(append (fargs fn) arglists)

(fenv fn))))))))

(defun declare (exp)
(assign (def-name exp)
(cons ’lambda (def-body exp)))

(def-name exp))
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§2 Stack Manipulation

(defun apply-abs (body vars vals)
(prog (result)
(pushvars vars)
(assign-vars vars (first vals))
(setq result (EVALNEW body (rest vals)))
(popvars)
(return result)))

(defun pushvars (vars)

(mknode (mapcar 'val-cell vars) root))

(defun popvars ()
(replace (typeptr root) '(binding))
(swap-env root)

(setq root (parent root)))

(defun assign-vars (vars vals)

(mapcar ’assign vars vals))

(defun apply-funarg (body args envbinding)
(prog (result envappln)
(setq envappln root)
(setenv envbinding)
(setq result (EVALNEW body args))
(setenv envappln)
(return result)))

(defun setenv (ptr)
(prog (nodepair)
(setq nodepair (find-intersect ptr))
(unwind-active (first nodepair))
(unwind-bind (rest nodepair))))

— 40 -



(defun find-intersect (envptr)
(do ((next nil ptr)
(ptr envptr parent)
(parent (parent envptr)(parent parent)))
((is-active ptr)
(conspair ptr next))

(swap-links ptr next)))

(defun unwind-active (envinter)
(do ((ptr root parent)
(parent (parent root)(parent parent}))
((eq ptr envinter)
(setq root ptr))
(swap-env ptr)

(replace (typeptr ptr) ’(binding)}))

(defun unwind-bind (envptr)
(do ((next root ptr)
(ptr envptr parent)
(parent))
((null ptr)
(setq root next))
(setq parent (parent ptr))
(swap-links ptr next)
(replace (typeptr ptr) ’(active))
(swap-env ptr)))

(defun swap-links (x y)
(rplaca (parentptr x) y))

(defun swap-env (ptr)

(prog (temp)
(setq temp (binding ptr))
(cond ((null temp) (return nil}}))
(replace (binding ptr) (mapcar ’swap-var temp))))
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(defun swap-var (var-val)

(swap (variable var-val) (value var-val)))

(defun swap (var val)
(prog (temp)
(setq temp (val-cell var))
(assign var val)

(return temp)))

§3 Recognizers

(defun is-defun (x) (eq x ’defun))

(defun is-exit (x) (eq x ’exit))

(defun is-const (x)
(or (is-truth x)
(is-false x)
(is-number x)
(cond ((atom x) nil)
((is-sexpr x))
((is-lambda x)))))

(defun is-var (x) (atom x))

(defun is-car (x) (egq x 'CAR))
(defun is-cons (x) (eq x 'CONS))
(defun is-cdr (x) (eq x 'CDR))
(defun is-times (x) (eq x 'TIMES))
(defun is-plus (x) {eq x ’PLUS))
(defun is-diff (x) (eq x 'DIFF))
(defun is-null (x) (eq x 'NULL))
(defun is-set (x) (eq x 'SET))
(defun is-truth (x) (eq x 't))
(defun is-false (x) (eq x ’nil))
(defun is-number (x) (numberp x))
(defun is-sexpr (x) (eq (first x) ’quote))
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Warning: The LISP reader may automatically convert “quote” to the symbol . In this case,
one would have to replace “quote” in the preceding definition with some atom (e.g., “QUOTE")
which would not be modified by the LISP reader.

(defun is-lambda (x) (eq (first x) ’lambda))

(defun is-cond (x) (eq (first x) ’cond))

(defun is-funcons (x) (eq (first x) 'function))

(defun is-funarg (x) (eq (first x) 'FUNARG))

(defun is-application (x) (not (or (is-const x)(is-var x))))

(defun is-active (x) (eq ’active (type x}))

§4 Selectors

(defun func (x) (first x))

(defun args (x) (rest x))

(defun fbody (x) (second x))

(defun fargs (x) (third x))

(defun fenv (x) (nthelem 4 x))
(defun body (x) (third x))

(defun vars (x) (second x))

(defun argsc (x) (rest x))

(defun argl (x) (first x))

(defun arg2 (x) (second x))

(defun ante (x) (first x))

(defun conseq (x) (second x))
(defun rep (x) (second x))

(defun def-name (x) (second x))
(defun def-body (x) (cddr x))
(defun value (x) (second x))

(defun variable (x) (first x))

(defun frame (x) (eval x))

(defun binding (x) (first (frame x)))
(defun parent (x) (second (frame x)))
(defun parentptr(x) (cdr (frame x)))
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(defun type (x) (third (frame x)))
(defun typeptr (x) (cddr (frame x)))

(defun first (x) (car x))
(defun second (x) (cadr x))
(defun third (x) (caddr x))
(defun rest (x) (edr x))

§5 Constructors

(defun val-cell (var)

(list var (get var ’value)))

(defun assign (var val)

(putprop var val 'value))

(defun mknode (env parent)
(setq root (ptr (list env parent ’active))))

(defun ptr (val)
(prog (a)
(eetq a (gensym))
(set a val)
(return a}))

(defun restructure (m arglists)
(cond ((lesseq m (length (first arglists))) arglists)

(¢t (restructure m (join (first arglists) (rest arglists))})))

(defun join (11 12)
(rplaca 12 (append 11 (first 12))))

(defun conspair (x y)

(cons x y))
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(defun adicity (fn)
(cond ((member fn (CAR CDR NULL)) 1)
((member fn (CONS TIMES PLUS DIFF EQUAL SET)) 2)
((is~lambda fn)(length (vars fn)))

(t 0)))

(defun lesseq (x y)
(or (= xy) (< x ¥))

§6 Compatibility

For MACLISP compatibility the following functions need to be defined:

(defun replace (x y)
(rplaca x (car y))(rplacd x (cdr ¥)))

(defun nthelem (n 1)
(nth (1- n) 1))

For Common LISP you will need, in addition, the following function:

(defun putprop (var val key)
(setf (get var key) val))

Furthermore, the variable root must be proclaimed special.

87 Basic Functions Used

To run the system, the following basic functions {or something similar) must be loaded:

(assign 'mapcar
’(lambda (fen 1)
(cond ((null 1) nil)
(t (cons (fen (car 1))
(mapcar fea (cdr 1)))))))
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(assign
(assign
(assign
(assign
(assign
(assign
(assign
(assign
(assign
(assign
(assign
(assign

(assign

‘car 'CAR)
‘edr ’CDR)
'cons 'CONS)
‘times 'TIMES)
'+ "TIMES)
plus '"PLUS)
'+ 'PLUS)
'diff *DIFF)

*. 'DIFF)

’null "NULL)
’equal 'EQUAL)
'= 'EQUAL)
’set 'SET)
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Appendix 2: The Structure of FRANZ LISP

§1 Data Types

In any real LISP system, the types of objects the system can manipulate are much
more complex and varied than the simple atoms and lists assumed for the simplified interpreters
discussed in Section 3. FRANZ’'s most basic data structure is a LISP object, called lispoby.
These lispobjs are used to represent all the data in the system. For our purposes, we need only

know the following:

1. An atom, referred to as a. Atoms hold most user information and include a current level

binding, referred to as clb, plus any function binding (fnbnd).

2. A list node (dotted pair}), referred to as dipr. List nodes have associated with them one
pointer to a LISP object (ear) and another pointer to the rest of the list (cdr).

3. A LISP object, used as a value, referred to as 1.

4. A pointer, referred to as bed, to a formal descriptor (bfun) for executable binary code.
The bfun structure is used to store all executable binary functions; hence the name bed
(binary-coded-decimal). These structures have associated with them a pointer to the entry
point (entry) and the discipline of the function (lambda, nlambda, etc.), referred to as

discipline.

§2 The Structure of EVAL

The eval function used by FRANZ is conceptually very similar to the LISP interpreter
described in Section 3. Function calls are minimized to improve efficiency; thus eval performs

all the evaluation, instead of sharing the work with apply.



As discussed in section 4, FRANZ uses three stacks for managing evaluation. One of
these is the C runtime stack, which is used by the LISP kernel for storing return addresses,
non-LISP arguments to subroutines, and saved registers. The other two stacks, called the
bindstack and the namestack, are used exclusively for interpreting LISP expressions. The
bindstack is employed for representing the environment structure, using a shallow binding
schems. The namestack is used for storing the values of the operands involved in function
application (i.e., for passing parameters to LISP functions). It also holds local data within
LISP functions and doubles as a temporary storage area for LISP data that must be protected

from garbage collection.

The structure of the FRANZ LISP eval function is given below in pseudocode.

Indentation is used instead of brackets to show structure.

function eval(actarg)
a = actarg;
oldbindstack = bindstack;
savestack();
_ if isatom(a) then
restorestack();
return(clb(a));
elseif isvalue(a) then
restorestack();
return(l(a));
elseif isdtpr(a) then
lbot = namestack;
& = func(a);
if isatom(a) then
& = funcbind(a);
elseif isvalue(s) then
a = l(a);
argptr = arglist(actarg);
if isbcd(a) then
if isnlambda(discipline(a)) then
push(argptr,namestack);
eleeif ismacro(discipline(a)) then
push(actarg,namestack);
else {* islambda(discipline(a)) or islexpr(discipline(a)) *}
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map(pushnamestack,map(eval,argptr));
viemp = call(a);
elseif isarray(a) then
viemp = array(a,argptr);
elseif isdtpr(a) then
if islambda(func(a)) then
map(pushnamestack,map(eval,argptr));
elseif isnlambda(func(a)) then
push(argptr,namestack);
elseif ismacro(func(a)) then
push(actarg,namestack);
elseif islexpr(func(a)) then
map(pushnamestack,map(eval,argptr));
push(namestack - lbot, namestack);
Ilbot = namestack - 1;
workp = lbot;
while not isempty(bvars(a)) do
push(bind(next(bvars(a)),top(workp)),bindstack);
workp = workp <+ 1;
vtemp = last(map(eval,body(a)));
unbind(oldbindstack);
if ismacro(func(a)) then
viemp = eval(vtemp);
restorestack();
return(vtemp);
else {* isconstant(a) *}
restorestack();

return(a);

The recognizers, constructors, and selectors used in the above procedure should be

clear from their names. Some important functions are the following:

funcbind: extracts the function binding of its argument

push: pushes the first argument onto the stack named as its second argument
pushnamestack:pushes its argument onto the namestack
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call: executes beds

bind: performs shallow binding of the first argument to the second, and returns
the old binding

unbind: restores old bindings
savestack: saves the value of namestack and lbot

restorestack: restores the old values for namestack and lbot

A more detailed description of these and other functions can be found in Appendix 4.

Note that, for the sake of clarity, we have made some minor modifications of the
original FRANZ code: the variable argptr is assigned earlier and the in-line code for extracting
function bindings is replaced by a call to the function funcbind.

The evaluation of an expression proceeds as follows:

1. Initialization

The expression to be evaluated, actarg {(actual argument), is passed to eval. That
expression is also assigned to the temporary variable a; a will eventually hold the actual function
binding or array. The current top of the bindstack is then saved so that, when eval exits, the
bindstack can be reinstated (thus restoring the values of locally used atoms). Similarly, the
current top of the namestack and the variable lbot are saved by using savestack. These will

be restored just prior to return from eval.

2. Type Determination and Evaluation

The second phase of evaluation hegins by determining the type of eval's argument.

The following actions occur, depending on the type:

atom: Return its current level binding.

value: Return its value.

dtpr: Complete the third phase of processing and return the result.
constant: Everything else is considered a constant and is simply returned.
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3. Function Application

8.1. Initialszation

The third phase of evaluation handles the application of functions to their arguments.
First, the current top of the namestack is saved in a global variable lbot to indicate the bottom
of the arglist. This is done so that all routines can determine how many arguments there are
(by comparison with the top of the stack after pushing the arguments) and where they begin.

The operator (functional part) of the expression is then extracted and assigned to the
variable a. If this is an atom (isatom), the variable a is reassigned to the actual function
binding of the atom (funcbind(a}).

Finally, the variable argptr (argument pointer) is made to point to the actual operands

to which the function is to be applied.
8.2. The Real Work

This is where the real work begins. The processing is now divided, depending on
whether the functional part of the expression is a binary-coded-decimal function (isbed, as in
the case of compiled code), an array (isarray), or an expression representing an abstraction

(isdtpr, as in the case of interpreted code).
Case 1: Binary-coded-decimal

If the function's discipline is nlambda (isnlambda), then argptr is pushed onto the

namestack. This leaves the operands unevaluated and in list form on the stack.

If the function’s discipline is macro (ismacro), then actarg is pushed onto the names-

tack. This ieaves the original calling expression on the stack with the operands unevaluated.

All else is assumed to be of lambda discipline;! therefore, each operand is evaluated
and pushed onto the namestack.

Finally, control is transferred to the bed function by calling a special function, call.
The result is placed in the variable vtemp.

Case 2: Array

The array is accessed by calling a special function array. The resulting array element

is placed in the variable vtemp.

Case 8: Abstraction (dtpr)

1At this point, lexprs are represented and handled as lambdas.
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If the abstraction’s discipline is lambda (islambda), each operand is evaluated and

pushed onto the namestack.

If the abstraction's discipline is nlambda (isnlambda), then argptr is pushed onto

the namestack. This leaves the operands unevaluated and in list form on the stack.

If the abstraction's discipline is macro (ismacro), then actarg is pushed onto the

namestack. This leaves the original calling expression on the stack, with the operands un-

evaluated.

If the abstraction's discipline is lexpr (lexpr), each operand is evaluated and is pushed
onto the namestack. The number of arguments (the current namestack level minus the bottom
of the arglist Ibot) is then pushed onto the namestack, and lbot is made to point one position
below the current namestack position. This in effect allows a lexpr function to have only one

argument and leaves it to its own devices to extract the real arguments.

Now comes the task of binding the binding variables (formal parameters) to the
arguments. First, a variable workp (as it does most of the work) is made to point to the first
argument by using the lbot pointer. Then, moving up the namestack, each binding variable
is bound to a value from the namestack and the old bindings pushed onto the bindstack.
This corresponds to binding the evaluated arguments to the binding variables in a left-to-right

fashion.

Finally, eval is mapped over all expressions appearing in the function body, and

vtemp is assigned the result of the last evaluated expression.
5.8 Finishing Off

The old bindings are reinstated by using the saved bindstack pointer. If the function
18 a macro, its result is re-evaluated and assigned to vtemp. Finally, the top of the namestack
and the variable lbot are restored to their original values by wsing restorestack, and vitemp

is returned as the result of eval.
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Appendix 3: Implementation of Deferred Evaluation

As discussed in the main body of the paper, implementation of the deferred-evaluation
scheme required the introduction of two additional stacks: the saved-bindstack and the popstack.
These are described in Section 4. In this section, we outline the changes in the evaluation

routines.

To separate the modifications as much as possible from the original FRANZ code, the
flow of control within eval was unchanged except for the evaluation of nonstandard functional

expressions.

If the expression to be evaluated is function-valued (i.e., if there remain “un-applied”
arguments from previous (enclosing) applicative expressions), eval redirects the processing to
an auxiliary evaluator called evalauxl. The function evalauxl handles evalvation of all

function-valued expressions.

In addition, if the operator (functional part) of an expression is either a funarg or
an applicative expression, then another auxiliary routine called evalaux2 is invoked to handle

evaluation.

§1 Changes in eval

The function deferring eval function is given below. It is identical to the original eval

except for the segments appearing in italics.



function eval(actarg)
a = actarg;
cldbindstack =— bindstack;
savestack();
if not bottom(popstack} then
viemp = a;
if tsatom(a) then
if not hasfnbnd{a} then
if not hasclbfa) then goto skip;
vtemp = clbfa)
if not fsatomfuvtemp) or not hasfnbnd{vtemp) then goto skip;
e = [nbndfvtemp)
elseif not izdtpria) then goto skip;
reatorestack(};
returnfevalauzl(al);
akip:
if isatom(a) then
restorestack();
return(clb(a));
elseif isvalue(a) then
restorestack();
return(l{a));
elseif isdtpr(a) then
lbot = namestack;
a = func(a);
if isatom(a) then ....
elseif isvalue(a) then ....;
argptr = arglist(actarg));
if isbcd(a) then ....
elseif isarray(a) then ....
elseif isdtpr(a) then
if islambda(func(a)) then ....
elseif isnlambda(func(a)) then ....
elseif ismacro(func(a)) then ....
elseif islexpr(func(a)) then ....
else {* isfunarg(func(a)} or isapplication(funcfa}} *}
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vtemp = cvalauzf{argptr,a);
golo akipl;
workp = lbot;
while not isempty(bvars{(a)) do
push(bind(next(bvars(a)),top(workp)),bindstack);
workp = workp + 1;
viemp = last(map(eval,body(a)));
akipl:
unbind(oldbindstack);
if ismacro(func(a)) then
viemp = eval(vtemp);
restorestack();
return(vtemp);
else {* isconstant(a) *}
restorestack();

return(a);

As before, processing can be divided into three phases. These are described below.

1. Initialization

The first phase differs from the old eval only when there exist unapplied arguments
from previous applications, in which case evalauxl is called. As the addresses of all such
arguments are kept on the popstack, the test for whether or not such arguments exist is simply
a test for the bottom of the popstack (bottom}. The function evalauxl handles the evaluation

of all function-valued expressions.

2. Type Determination and Evaluation

The second phase of evaluation is the same as the old eval.

3. Function Evaluation

The third phase of evaluation is almost exactly the same as that of the old eval, the

only difference being when the functional part of the expression is itself an expression (isdtpr).
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If, in this case, the functional part is not an expression representing an abstraction (lambda,
nlambda, macro or lexpr), then, instead of an error occurring, a call to evalaux2 will be
made. The function evalaux2 handles application of funargs and function-valued applicative

expressions.

§2 The Function evalauxl

We now need to describe the auxillary eval function evalauxl:

function evalauxl(actarg)
partial = true
oldbindstack == bindstack;
savestack();
if isatom(actarg) then
actarg = list(actarg);
a = func(actarg);
if isatom(a) then
if islambda(a) or isfunarg(a) or islexpr(a) then
a = actarg
actarg = list(actarg);

elseif isnlambda(a) or iamacro(a) then

error();
elae
a = funcbind(a);

elseif isvalue(a) then
a = I(a);
argptr = arglist{actarg);
Ibot = namestack;
if isbcd(a) then
newpopstack();
if count{a) = O then
partial = false;
if isnlambda(discipline(a)) then
if partial then
error{);

else
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push(argptr,namestack);
elseif ismacro(discipline(a)) then
if partial then
error();
else
push(actarg,namestack);
else {* islambda(discipline(a)) or islexpr(discipline(a)) *}
numargs = count(a);
restorepopstack();
pushallarguments();
pop(popstack);
pop{popstack);
newpopstack();
vtemp = call(a);
restorepopstack();
elseif isarray(a) then
vtemp = array(a,argptr);
elseif isdtpr(a) then
if islambda(func(a)) then
numargs = length(bvars(a));
pusharguments();
elseif isnlambda(func(a)) or ismacro(func(a)) then
error();
elseif islexpr(func(a)) then
pusharguments();
push(namestack-lbot,namestack);
lbot = namestack - 1;
pop(popstack);
pop(popstack);
push(1,popstack);
push(namestack,popstack);
numargs = 1;
else {* isfunarg(func(a)) or isapplication(a) *}
vtemp = evalaux2(argptr,a);
goto skipl;
savedpopstack == popstack;
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nargstack = 0;
while numargs > nargstack and not bottom(popstack) do
pop(popstack);
nargstack = nargstack + pop(popstack);
while savedpopstack > popstack do
savedpopstack = savedpopstack - 1;
top = top(savedpopstack);
savedpopstack = savedpopstack - 1;
workp = top - top(savedpopstack);
while not isempty(bvars(a)) and workp <« top do
push(bind(next(bvars(a)),top(workp)),bindstack);
workp = workp 4 1;
newpopstack();
map(eval,all-but-last(body(a)));
restorepopstack();
viemp = eval(last(body(a)));
skipl:
unbind(oldbindstack);
if ismacro(func(a)) then
newpopstack();
vtemp = eval(vtemp);
restorepopsatack();
restorestack();

return(vtemp);

Most of the recognizers, selectors, and constructors are as before, and the function of
all new ones are briefly described in Appendix 4. However, before we begin the description of

evalauxl, it is necessary to have a clear idea of how the popstack works.

As mentioned previously, the popstack has two entries per set of arguments saved on
the namestack (2 set of arguments corresponds to the evaluated arglist of a function). One
entry gives the address of the top of the set, the second the number of arguments. This is
necessary because there is extraneous information placed on the namestack between these sets

and it is necessary to know where on the namestack the arguments are located.

Each argument within a set of saved arguments is pushed in a left-to-right fashion.

However, the sets themselves are pushed right to left (because the operands in the outermost
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applications are evaluated before those in inner appli¢ations). Furthermore, when we come to
bind variables to these values, the binding variables will be scanned in left-to-right order. Thus,
to achieve the correct bindings, we begin by processing the topmost set of saved arguments,
while initiating the binding of variables with the bottommost argument within that set. When
all arguments in that set have been bound, we move down the stack to the next set. In effect,

this achieves a left-to-right ordering of the arguments as we take them off the namestack.

Unfortunately, if partial application is allowed, the above technique cannot be used
for applying bed functions to their arguments.! These functions access the namestack explicitly
and thus expect their arguments to be in the same order irrespective of whether or not the
application is partial. In these cases, therefore, arguments previously saved on the namestack

must be copied back onto the namestack in the correct order.

It is sometimes necessary to protect arguments on the namestack, since evaluating
an improperly defined user function or a partially applied function could otherwise consume
arguments that belong to some earlier function application. To achieve this protection, the
bottom of the popstack is raised by executing newpopstaek. When it is no longer necessary
to protect the saved arguments, the bottom of the stack is reinstated to its previous position

by executing restorepopstack.

Now we are in a position to describe evalauxl. Since evalauxl expects a function

application to evaluate, it has no need for a type determination phase as in eval.

1. Initialization

The expresion to be evaluated (actarg) is passed to evalauxl. The current level of
the bindstack is saved so that the bindstack can be reinstated when evalauxl exits.

2. Function Evaluation

2.1, Initialization

The next phase of evaluation is similar to the third phase in eval, except that extra
mechanisms have to be added to extract the arguments from the namestack.

IFunctions of lexpr discipline would present the same difficulty. However, as mentioned in Section 3.4, we do
not allow lexprs to be partially applied.
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Although evalauxl expects a function application, some or all of the arguments of
the application will be on the namestack, as indicated by the popstack. When all the arguments
are on the namestack, the expression passed to evalauxl will not be an applicative expression,
i.e., it will be either an atom or an abstraction (lambda, lexpr, nlambda or macro). The first
thing we must do, therefore, is convert such expressions into applicative form: this is done
by forming a list of the atom or abstraction and reassigning actarg to this new expression.

Functions of type nlambda or macro are invalid and cause an error.

At the same time, the temporary variable a is assigned to the operator (functional
part) of the expression. Finally, the variable argptr (argument pointer) is made to point to the
actual operands to which the function is to be applied, and the current top of the namestack

is saved in the global variable Ibot.
2.2, The Real Work

As in eval, the processing is now divided according to whether the functional part
of the expression is a binary-coded-decimal function (isbed), an array (isarray), or another

expression (isdtpr).
Case 1. Binary-coded-decimal

This phase would be identical to the old eval if partial application were not allowed.
However, because partial application of bed functions leaves the arguments on the namestack
in the wrong order, it is necessary to copy them back onto the namestack in the correct order

(i.e., the one expected without partial application).

First, the bottom of the popstack is saved with newpopstack. Then it is determined
whether or not the function can be partially applied. Such partial application is possible if the

count field of the function (count(a)) is not zero.2

If the function's discipline is nlambda (isnlambda) or macro (ismacro) and it is
partially applicable, then an error occurs (as only lambdas can be partially applied); otherwise

its arguments are pushed onto the namestack, as in the old eval.

All else is assumed to be of lambda discipline.? First, the number of expected argu-
ments is extracted through the count field. The bottom of the popstack is restored with
restorepopstack. All the required arguments are then copied back onto the namestack in

their correct order, using pushallarguments. The bottom of the popstack is then raised by

2The count field dictates the number of arguments required by the function, and is set to zero if the function
cannot be partially applied.

3Lexprs are also evaluated here; as their count fields are zero, they are handled properly.
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using newpopstack.

Finally, control is transfered to the bed function by calling the special function (call).
The result is placed in the variable vtemp and the bottom of the popstack then restored

with restorepopstack. It is assumed that compiled code cannot represent a function-valued

function.
Case 2. Array
This is the same as for eval.
Case 8. Function-Valued Ezpression (dtpr)

As in eval, it is necessary to distinguish whether the functional expression represents
an abstraction, a funarg or an applicative expression. If it is either of the latter two, then,
just as in eval, the auxillary function evalaux2 is called. If, on the other hand, the expression

represents an abstraction, prbcessing will depend on the discipline.

If the abstraction’s discipline is lambda (islambda), the number of required arguments
is extracted by counting the binding variables. All the operands of the current application are
evaluated and pushed onto the namestack with pusharguments. Note that there is no need
to copy arguments from enclosing applications back onto the namestack as we did for bed

functions.

If the function's discipline is nlambda (isnlambda) or a macro (ismacro), an error

occlurs.

If the function’s discipline is lexpr (islexpr), then, as in eval, the number of arguments
(the current namestack leve]l minus Ibot) is pushed onto the namestack and the lbot pointer
made to point one position below the current namestack position. It is important to note that
the lexpr wants only one argument; consequently the popstack entries for all the arguments
are popped and new entries are set to indicate a single argument. The variable numargs is

then reassigned a value of one.

Now comes the task of binding the binding variables (formal parameters) to the
arguments. We first make the temporary variable savedpopstack point to the top of the
popstack. The number of saved arguments is counted in the original set by looking at the first
two entries on the popstack. If there are not enough arguments the next saved set is examined.
This continues until at least the correct number of arguments, or the bottom of the popstack,
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is reached.4 The obtained number is now in nargstack.

The main loop starts with the first set of saved arguments, does the binding (at the
same time pushing old bindings onto the bindstack), and then moves down the namestack to
repeat the procedure on the next set of saved arguments. This continues until all the binding

variables are bound to their arguments.

Note that, as in the foregoing cases, partial application considerably complicates the
binding process. If partial application were not allowed, the number of arguments in each block
of arguments saved on the namestack would match the number of binding variables exactly

and there would be no need to loop through previous blocks of saved arguments.

Finally, eval is mapped over all expressions appearing in the body of the function
and assigns vtemp to the result of the last evaluated expression. So that omly the last
expression will be allowed to use arguments from previous (enclosing) applications, the elements
on the popstack are protected (using newpopstack and restorepopstack) from access by all

expressions except the last.
2.8. Finishing Off

The old bindings are reinstated by using the saved bindstack pointer. If the function

Wwas a Imacro, its result is re-evaluated and assigned to vtemp.

Finally vtemp is returned as the result of evalauxl.

§3 The Function evalaux2

We will now consider the function evalaux?2.

function evalaux2(argptr,a)

savestack();

pusharguments();

if isfunarg(func(a)) then
unwind(env(a));
argptr = fargs(a);
pusharguments1();
vtemp = eval(fbody(a));
wind();

As we give the function a set of saved arguments [arglist) at a time, it is possible to have too many arguments,
This, of course, is treated as an error.
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else
vtemp = eval(a);
while not bottom(popstack)
vtemp = eval(vtemp);
restorestack();

return(vtemp);

The function evalaux2 gets two arguments, the first being the operands of an ex-
pression and the second the operator (function part} of the same expression. The operands are
first evaluated and pushed onto the namestack by means of pusharguments. Processing ther
depends or whether the functional part of the expression (i.e., the first argument to evalaux2})

is a funarg or a function-valued applicative expression.

If the functional part is a funarg (isfunarg), then evalaux2 will extract its environ-
ment (env) and unwind the bindstack to that environment. This involves reinstating bindings
from the bindstack, with the old bindings being saved on the saved-bindstack. The variable
argptr is made to point to the already evaluated arguments of the funarg. These arguments are
then pushed onto the namestack by using pushargumentsl (which is the same as pushar-
guments except that it does not evaluate the arguments). The routine eval is then called
with the body of the funarg as argument (which, in turn, will call evalauxl, thus applying the
funarg to the arguments saved on the namestack). The result of the call is placed in vtemp.
Finally the bindstack is wound back up to the calling (application) environment, using the

bindings saved on the saved-bindstack.

If the function is not a funarg, it must be a function-valued application. This
expression is given to eval (which, again, will call evalauxl to complete the application).

The result of the call is placed in viemp.

It is possible, at this stage, that the value returned is a function. If it is, there must
exist unapplied arguments on the namestack to which it can be applied. Thus evalaux2 first
checks the popstack. If it indicates that there are still some unapplied arguments on the
namestack, the value returned from the previous call to eval is assumed to be a function and
eval is called again. This will cause the function to be applied to the unclaimed arguments
remaining on the namestack. The process is continued until the popstack is empty, and the

result placed in vtemp.
Finally, vtemp is returned as the result of evalaux2.
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§4 Changes in the Function function

The function of function in FRANZ LISP is little different from quote’s role. It

differs in that, on receiving an atom with a function binding, it returns that binding.

function()
handy = first(lbot);
if (isatom(handy) and hasfobnd(handy)) then
return(fnbnd(handy));
else

return(handy);

The new role of function is to create a funarg triple. The first component is a
functional form, called the body of the funarg; the second is a list of evaluated arguments;
the third is the current environment. That is, the function function returns funargs with the

form
<FUNARG body argument-list environment>

This is achieved in the modified FRANZ LISP interpreter as follows:

function()
handy = first(lbot);
args = empty;

if isatom(handy)

handy = funcbind(handy);
elseif isdtpr(handy)

temp = func(handy);

if isatom(temp) then

if not isspecial(temp) then
temp = funcbind(temp);

args — evalaux3(arglist(handy));

handy = temp;
return(list(’FUNARG,handy,args,bindstack));

The argument to function is first stored in the variable handy. The function is an

nlambda, so its argument is in list form and unevaluated. That is why the argument needs to

- 64 —



be extracted by taking the first element from the argument list pointed to by lbot.

The variable args is initialized by pointing to an empty list (empty). Processing is
now divided into two, depending on whether function's argument is an atom (isatom) or an

expression (isdtpr).

If the argument (bandy) is an atom, the associated funarg <FUNARG function-

binding nil env>> (where env is the current environment) is returned.

If the argument is an expression, a funarg is constructed as follows. As before, the
funarg's first element is “FUNARG” and the fourth element is a pointer to the bindstack
indicating the current environment. The second and third elements depend on the following:

1. If the argument is an abstraction, as in {lambda (..) ...), the second element is the
abstraction itself and the third element is the empty list.

2. If the argument is a function application (applicative expression), the third element is the
list of evaluated arguments. The second element of the funarg depends on whether the
operator of the expression is an atom or not. If it is an atom, the second element is set to
the function binding of the atom. If not an atom, the second element is set to the operator

subexpression itself.

§5 The Function evalaux3

The function evalaux3 simply evaluates a list of expressions, and is defined as follows:

function evalaux3(argptr)
savestack();
newpopstack();
temp == map(eval,argptr);
restorepopstack();
restorestack();

return(temp);

Any arguments previously saved on the namestack are protected by using new-

popstack and restorepopstack.
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§6 Some Possible Improvements

One possible improvement to the system is in the handling of abstractions. Consider

the following expression, where fen is a function of n arguments:
((fen argl arg2) ... argn)

Let us now compare this with the application of a [ambda abstraction:
((lambda (binding-vars) expl) ... argn)

From a syntactic point of view, the construct “lambda” is acting in the role of a
partially applied function. Indeed, the semantics are also the same if we allow the first two

arguments to be quoted implicitly.

Thus a lambda construct ¢an be looked upon as a partial application of the “function”
lambda. The code for lambda can be taken out of eval and shallow-bound as a bed function
to the atom lambda. This would simplify the interpreter and improve modularity. The same

implementation technique could be applied to nlambda, macro, and lexpr applications.

It is also possible to avoid the copying of arguments that is sometimes necessitated by
partial application. For functions of lambda discipline, there is no need to copy arguments from
previous (enclosing) applications to the top of the namestack prior to binding. The hinding
process knows exactly where the arguments are using information from the popstack. However,
bed functions expect their arguments in correct order, and make no use of information on the
popstack. If the system were modified to compile in the access routine for the namestack
when partial application is involved, then copying of the arguments would not be needed and

evaluation would be made more efficient.

This also applies to foreign and system functions. However, as all foreign functions
have interfacing routines with LISP, these routines can readily be changed to account for partial

application. System functions can be recoded or can utilize an interfacing function.
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Appendix 4: Functions and Predicates

The important functions and predicates used in the modified eval function are given

below.

§1 Recognisers

isatom: tests if argument is an atom

isvalue; tests if argument is a value

isdtpr: tests if argument is a list

isbed: tests if argument is a compiled function
islambda: tests if argument is a lambda

isnlambda: tests if argument is a nlambda

ismacro: tests if argument is a macro

islexpr: tests if argument is a lexpr

isarray: tests if argument is an array

hasfnbnd: tests if argument has a function binding
hasclb: tests if argument has a current level binding
isspecial: tests if argument is a special construct (e.g., “lambda”)
isfunarg: tests if argument is a funarg

isempty: tests if argument is empty

bottom: tests if stack is at the bottom marker (not if empty!)



§2 Selectors

clb:

B

fnbnd:
funcbind:
arglist:
bvars:
body:
discipline:
array:
last:
func:
next:

top:
fbody:
fargs:
env:

all-but-last:

returns the atom’s current level binding

returns the object’s value

returns the atom's function binding

as for fnbnd, but also handles clbs, etc.

returns the expression’s actual operands

returns the abstraction’s binding variables

returns the abstraction’s bedy

returns the bed's binding type

returns the array’s required element

returns the list's last element

returns the expression's operator

returns the list's next element, given started at the begining
returns the top of the stack indicated by the argument
returns the body of a funarg

returns the arglist of a funarg

returns the environment of a funarg

returns the argument, except for the last element

§3 Miscellaneous

push:
pop:

map:

call:

bind:

pushes the first argument onto the stack named as the second argument
pops the top of the stack named as argument and returns it

applies the first argument to each element of the second argument,

returning a list of results
executes beds
performs shallow binding of the first argument to the second argument

and returns the old binding
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unbind: restores old bindings
aavestack: saves the value of namestack and lbot

restorestack: restores the old values for namestack and Ibot

length: returns the length of the argument

unwind: unwinds the bindstack to the point indicated by the argument
wind: rewinds the bindstack to the normal position

empty: a constant representing an empty list

€error: indicates an error

§4 Macros

The macros used are as follows:
macro newpopstack()

This macro raises the bottom of the popstack to the present position

macro restorepopstack()

This macro restores the bottom of the popstack

macro pusharguments()
lbot = namestack;
newpopstack();
map(pushnamestack,map(eval,argptr));
restorepopstack();
push{namestack-lbot,popstack);

push(namestack,popstack);

The above macro first saves the bottom of the popstack. It then evaluates the operands.
The results of the evaluations are pushed onto the namestack, the bottom of the popstack is
reinstated and finally the number and the address of the evaluated arguments are both pushed

onto the popstack. This is so that future calls to eval will know where they are.
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macro pushargumentsl()
lbot = namestack;
map(pushnamestack,argptr);
push(namestack-lbot,popstack);
push(namestack,popstack);

This is the same as pusharguments except it does not evaluate the operands and, because it

does not call eval, does not save the bottom of the popstack.

macro transferargs()
lbot = pop(popstack);
for i = 1 to pop(popstack)
do
push(pop(lbot),namestack);

This macro copies a set of arguments to the top of the namestack.

macro pushallarguments()

pusharguments();

pop(popstack);

nargstack = pop(popstack);

if partial then

while numargs > nargstack and not bottom(popstack) do

transferargs();
nargstack = nargstack + top(popstack));

push(nargstack,popstack);

push(namestack,popstack);

The macro pushallarguments copies numargs arguments to the top of stack in correct order
(i.e., as if not partially applied). Using pusharguments, it will first evaluate the operands
pointed to by argptr and push the values onto the namestack. It will then get the number
of arguments just pushed using the information in the popstack. If the function is partially
applicable and there are not enough arguments for the application (numargs > nargstack),
it will keep transferring saved arguments (using transferargs) until there are enough for the

application.
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funcbind(a)
if not hasfnbnd(a) and hasclb(a) then
a = clb(a);
if isatom(a) then

a = fnbnd(a);

else
a = fnbnd(a);
return(a);

The function funcbind is simply a function that extracts the function binding of an atom.
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