THE ROLE OF LOGIC IN ARTIFICIAL INTELLIGENCE

Technical Note 335

July 1984

By: Robert C. Moore
Artificial Intelligence Center
Computer Science and Technology Division

SRI IR&D Project S500KZ

To be presented at the conference "Advanced
Information Technology: Applications, Acbievements,
and Prospects,”" to be held at Churchill College,
Cambridge, England, 20-22 September 1984.

Preparation of this paper was made possible by a gift
from the System Development Foundation as part of a
coordinated research effort with the Center for the

Study of Language and Information, Stanford University.

nEernatonal

333 Ravenswood Ave. & Menlo Park, CA 94025

International 14157 326-6200 » TWX: 910-373-2046 » Telex: 334-486

“‘ "’

ABSTRACT

Formal 1leogic has played an important part in artificial
intelligence (Al) research for almost thirty years, but its role has
always Dbeen controversial. This paper surveys three possible
applications of logic imn AI: (1) as an analytical tool, (2) as a
knowledge representation formalism and method of reasoning, and (3) as a
programming language. The paper examines each of these in turm,
exploring both the problems and the prospects for the successful

application of logic.

ii

I LOGIC AS AN ANALYTICAL TOOL

Analysis of the content of knowledge representations is the
application of logic in artificial intelligence (AI) that is, in a
sense, conceptually prior to all others. It has become a truism to say
that, for a system to be intelligent, it must have knowledge, and
currently the only way we know of for giving a system knowledge is to
embody it 1in some sort of structure--a knowledge representation. Now,
whatever else 2 formalism may be, at least some of its expressions must
have truth-conditional semantics if it is really to be a representation
of knowledge. That is, there mest be some sort of correspondence
between an expression and the world, such that it makes sense to ask

whether the world is the way the expression claims it to be. To have

1
knowledge at =all is to have knowledge that the world is one way and not

otherwise. If one's "knowledge" does not rule out any possibilities for
how the world might be, then one really does not know anything at all.
Moreover, whatever AI researchers may say, examination of their practice
reveals that they do rely (at least informally) on being able to provide
truth-conditional semantics for their formalisms. W¥hether we are
dealing with conceptual dependencies, frames, semantic networks, or what
have you, as soon as we say that a particular piece of structure

represents the assertion (or belief, or kmowledge) that John hit Mary,

we have hold of something that is true if John did hit Mary and false if

he didn’t.

Mathematical logic (particularly model theory) is simply the branch
of mathematics that deals with this sort of relationship between
expressions and the world. If one is going to analyze the truth-
conditional semantics of a representation formalism, then, a fortiori,

one is going to be engaged in logic. As Newell puts it [1980, p. 17],

"Just as talking of programmerless programming violates truth 1in

While the use of logic 2s 2 tool for the analysis of meaning is
perhaps the least controversial application of logic to AI, many
proposed knowledge representations have failed to pass minimal standards
of adeqguacy in this regard. (Woods [1975] and Hayes [1977] have both
discussed this point at length.) For example, Kintch [1974, p. 50]
suggest.s representing "All men die" by (DIE,MAN) & (ALL,MAN). How are
we to evaluate such a proposal? Without a formal specification of how
the meaning of this complex expression is derived from the meaning of
its parts, all we can do is take the representation on faith. However,
given some plausible assumptions, we can show that this expression

cannot mean what Kintch says it does.

The assumptions we need to make are that "&" means logical
conjunction (i.e., "and"), and that related sentences receive analogous

representations. In particular, we will assume that any expression of

the form (P & Q) is true if and only if P is true and Q is true, and
that "Some men dance” cught to be represented by
(DANCE ,MAN) & (SOME,MAN). If this were the case, however, "All men die"
and "Some men dance" taken together would imply "All men dance." That,
of course, does not follow, so we have shown that, if our assumptions
are satisfied, the proposed representation cannot be correct. Perhaps
Kintch does not intend for "&" to be interpreted as "and," but then he
owes us an explanation of what it does mean that is compatible with his

other proposals.

Just to show that these model theoretic considerations do not
gsimply lead to a requirement that we use standard logical notation, we
can demonstrate that ALL(MAN,DIE) could be an adequate representation of
"All @men die."™ We simply let MAN denote the set of all men, let DIE
denote the set of all things that die, and let ALL(X,Y) be true whenever
the set denoted by X is a subset of the set denoted by Y. Then it will
immediately follow that ALL(MEN,DIE) is true just in case all men die.
Hernice there is a systematic way of interpreting ALL(MEN,DIE) that is

compatible with what it is claimed to mean.

The point of this exercise is that we want to be able to write
computer programs whose behavior is a function of the meaning of the
structures they manipulate. However, the behavior of a program can be
directly influenced only by the form of those structures. Unless there
is some systematic relationship between form and meaning, our goal

cannot be realized.

IT LOGIC AS A KNOWLEDGE REPRESENTATION AND REASONING SYSTEM

Al The Logic Controversy in Al

The second major application of logic to artificial intelligence is
to use logic as a knowledge representation formalism in an intelligent
compulter system and to use logical deduction to draw inferences from the
knowledge thus represented. Strictly speaking, there are two 1issues
here. One could imagine using formal logic in a knowledge
representation system, without using logical deduction to manipulate the
representations, and one could even use logical deduction on
representations that have little resemblance to standard formal logics;
but the use of a logic as a representation and the use of logical
deduction to draw inferences from the knowledge represented fit together

in such a way that it makes most sense to consider them simultaneously.

This is a much more controversial application than merely using the
tools of logic to analyze knowledge representation systems. Indeed,
Newell [1980, p. 16] explicitly states that "the role of logic {is] as a
tool for the analysis of knowledge, not for reasoning by intelligent
agents." It is a commonly held opinion in the field that logic-based
representations and logical deduction were tried many years ago and were

found wanting. As Newell [1980, p. 17] expresses it, "The lessons of

the sixties taught us something about the limitations of using logics

for this role."

The lessons referred to by Newell were the conclusions widely drawn
from egrly experiments in "resolution theorem-proving." In the mnid
1960s, J. A. Robinson developed a relatively simple, logically
complete method for proving theorems in first-order logic, based on the

2
so-called resolution principle:

(PvQ, (-PVYR) [-(QVRE)

That is, if we know that either P is true or (Q is true amd that either P
is false or R is true, then we can infer that either Q is true or R is

true.

Robinson's work brought about =a rather dramatic shift in attitudes
regarding the automation of logical inference. Previous efforts at
antomatic theorem-proving were generally thought of as exercises in
expert problem scolving, with the domain of application being logic,
geometry, number theory, etc. The resolution method, however, seemed
powerful enough to be used as a universal problem solver. Problems
would be formalized as theorems to be proved in first-order logic in
such a way that the solution could be extracted from the proof of the

theorem.

The results of experiments directed towards this goal were

disappointing. The difficulty was that, in general, the search space

generated by the resolution method grows exponentially (or worse) with
the number of formulas used to describe the problem and with the length
of the proof, so that problems of even moderate complexity could not be
solved in reasonable time. Several domain-independent heuristics were
proposed to try to deal with this issue, but they proved too weak to
produce satisfactory results. In the reaction that followed, not only
was there was a turning away from attempts to use deduction to create
general problem solvers, but there was also widespread condemnation of

any use of logic in commonsense reasoning or problem-solving systems.

B. The Problem of Incomplete Knowledge

Despite the disappointments of the early experiments with
resolution, there has been a recent revival of interest in the use of
logic-based knowledge representation systems and deduction-based
approaches to commonsense reasoning and problem solving. To a large
degree this renewed interest seems to stem from the recognition of an

important class of problems that resist solution by any other method.

The key issue 1is the extent to which a system has complete
knowledge of the relevant aspects of the problem domain and the specific
situation 1in which it is operating. To illustrate, suppose we have a
knowledge base of perscnnel information for a company and we want to
know whether any programmer earns more than the manager of data
processing. If we have recorded in our knowledge base the job title and

salary of every employee, we can simply find the salary of each

programmer and compare it with the salary of the manager of data
processing. This sort of M"query evaluation" 1is essentially just an

extended form of table lookup. No deductive reasoning is involved.

On the other hand, we might not have specific salary information in
the knowledge base. Instead, we might have only general information
such as "all programmers work in the data processing department, the
manager of a department is the manager of all other employees of that
department, and no employee earns more than his manager." From this
information, we can deduce that no programmer earns more than the
manager of data processing, although we have no information about the

exact salary of any employee.

A representation formalism based on logic gives us the ability to
represent information about a situation, even when we do not have a
complete description of the situation. Deduction-based inference
methods allow us to answer logically complex queries using a knowledge
base containing such information, even when we cannot "evaluate" a query
directly. On the other hand, Al inference systems that are not based on
automatic-deduction techniques either do not permit logically complex
queries to be asked, or they answer such queries by methods that depend

on the possesion of complete information.

First-order logic can represent incomplete information about a

situation by

Saying that something has a certain property without saying
which thing has that property:
IxP (x)

Saying that everything in a certain class has a certain
property without saying what everything in that class is:

vx(P(x) 3 Q(x))

Saying that at least one of two statements is true without
saying which statement is true:

(P v Q)

Explicitly saying that a statement is false, as distinguished

from not saying that it is true:

-P

These capabilities would seem to be necessary for handling the

kinds of incomplete information that people can understand, and thus
they would be required for a system to exhibit what we would regard as
general intelligence. Any representation formalism that has these
capabilities will be, at the very least, an extension of classical
first-order logic, and any inference system that can deal adequately
with these Lkinds of generalizations will have to have at least the

capabilities of an automatic-deduction system.

C. The Control Problem in Deduction

If the negative conclusions that were widely drawn from the early
experiments in automatic theorem-proving were 'fully justified, then we
would have a virtual proof of the impossibility of creating intelligent
systems based on the knowledge representation approach, since many types
of incomplete knowledge that people are capable of déaling with seem to

demand the use of logical representation and deductive inference. A

careful analysis, however, suggests that the failure of the early
attempts to do commonsense reasoning and problem solving by theorem-
proving had more specific causes that can be attacked without discarding

logic itself.

The point of view we shall adopt here 1is that there is nothing
wrong with using logic or deduction per se, but that a system must have
some way of knowing, out of the many possible inferences it could draw,
which ones it should draw. A very simple, but nonetheless important,
instance of this arises in deciding how to use assertions of the form
P>Q ("P implies Q"). Intuitively, such a statement has at least two
possible wuses in reasoning. Obviously, one way of using P 2 Q is to
infer (), whenever we have inferred P. But P J Q can also be used, even
if we have not yet inferred P, to suggest a way to infer Q, if that is
what we are trying to do. These two ways of using an implication are

backward chaining ("To infer @, try to infer P") , respectively. We can
think of the deductive process as a bidirectional search, partly working
forward from what we already know, partly working backward from what we

would like to infer, and converging somewhere in the middle.

Unrestricted use of the resolution method turns out to be
equivalent to using every implication both ways, leading to highly
redundant searches. Domain-independent refinements of resolution avoid
some of this redundancy, but usually impose uniform strategies that may

be inappropriate 1in particular cases. For example, often the strategy

is to use all assertions only in a backward-chaining wmanner, on the
grounds that this will at least guarantee that all the inferences drawn

are relevant to the problem at hand.

The difficulty with +this approach is that whether it 1is more
efficient to use an assertion for forward chaining or for backward
chaining can depend on the specific form of the assertion, or the set of
assertions in which it is embedded. Consider, for instance, the

following schema:
vx(P(F(x)) 2 P(x))
Instances of this schema include such things as:

Vx (x+1<y 2 x<¥)

vx (JEWISH (MOTHER(x)) D JEWISH(x))

That is, a number X is less than a number y if x+1 is less than y; and a
3
person is Jewish if his or her mother is Jewish.

Suppose we were to try to use an assertion of the form
vx(P(F(x)) 2 P(x)) for backward chaining, as most "uniform" proof
procedures would. In effect, we would have the rule, "To infer P(x),
try to infer P(F(x))." If, for instance, we were trying to infer P(A),
this rule would cause us to try to infer P{F{A)). This expression,
however, 1is also of the form P(x), so the process would be repeated,

resulting in an infinite descending chain of formulas to be inferred:

10

P(A)

P(F(A))

P(F(F(A)))

P(F(F(F(A)))), etec.
If, on the other hand, we wuse the rule for forward chaining, the number
of applications 1is limited by the complexity of the assertion that
originally triggers the inference. Asserting a formula of the form
P(F(x)) would result in the corresponding instance of P(x) being
inferred, but each step reduces the complexity of the formula produced,
so the process terminates:

P(F(F(A)}})

P(F(A))

P{A)

It turns out, then, that the efficent use of a particular assertion
often depends on exactly what that assertion is, as well as on the
context of other assertions in which it is embedded. Kowalski [1979]
and Moore [1980] illustrate this point with examples involving not only

the distinction between forward chaining and backward chaipning, but

other contrcl decisions as well.

In some cases, control of the deductive process is affected by the
details of how a concept 1is axiomatized, in ways that go beyond "local”
choices such as that between forward and backward chaining. Sometimes
logically equivalent formalizations can have radically different
behavior when used with standard deduction techniques. For example, in

the blocks world that has been used as a testbed for so much AI

11

research, it is common to define the relation "A is ABOVE B" in terms of
the primitive relation "A is (directly) ON B," with ABOVE being the
transitive closure of ON. This can be done formally in at least three

4
ways:

n

vx,y (ABOVE(x,y) (ON{x,y) Vv 3z(ON(x,z) A ABOVE(z,y})))

¥x,y(ABOVE(x,y) = (ON{(x,y) v 3z(ABOVE(x,z) A ON(z,y))))

vx,y (ABOVE(x,y)

(ON(x,y) v 3z(ABOVE(x,z) A ABOVE(z,y))))

Each of these axioms will produce different behavior in a standard
deduction system, no matter how we make such local control decisions as
whether to use fbrward or backward chaining. The first axiom defines
ABOVE in terms of ON, in effect, by iterating upward from the lower
ocbject, and would therefore be useful for enumerating all the objects
that are above a given object. The second axiom iterates downward from
the upper object, and could be used for enumerating all the ébjects that
a given object 1is above. The third axiom, though, is essentially a

"middle out" definition, and is hard to control for any specific use.

The early systems for problem solving by theorem-proving were often
inefficient because axioms were chosen for their simplicity and brevity,
without regard to their computational properties--a problem that also
arises in conventional programming. To take a well-known example, the
simplest procedure for computing the nth Fibonacci number is a doubly

n
recursive algorithm whose execution +time is proportional to 2 , while a

12

slightly more complicated, less intuitively defined, singly recursive

procedure can compute the same functiorn time proportional to n.

D. Prospects for Logic-Based Reasoning Systems

The fact that the issues discussed ip this section were not taken
into account in the early experiments in problem solving by theorem-
proving suggests that not too much weight should be given to the
negative results that were obtained. As yet, however, there is not
enough experience with providing explicit control ipformation and
manipulating the form of axioms for computational efficiency to tell
whether large bodies of commonsense knowledge can be dealt with
effectively through deductive techniques. If the answer turns out to be
"no," then some radically new approach will be required for dealing with

incomplete knowledge.

13

IIT LOGIC AS A PROGRAMMING LANGUAGE

The parallels between the manipulation of axiom systems for
efficient deduction and the design of efficient computer programs were
recognized in the early 1970s by a number of people, notably Hayes
[1973], Kowalski [1974], and Colmerauer [1978]. It was discovered,
moreover, that there are ways to formalize many functions and relations
so that +the application of standard deduction methods will have the
effect of executing them as efficient computer programs. These
observations have led to the development of the field of logic
programming and the creation of new computer languages such as PROLOG

[Warren, Pereira, and Pereira, 1977].

As an illustration of the basic idea of logic programming, consider
the function APPEND, which appends one list to the end of another. This

function can be implemented in LISP as follows:

(APPEND A B) =
(COND ((NULL &) B)
(T (CONS (CAR A) (APPEND (CDR A) B))))

What this function definition says is that the result of appending B to

the end of A is B if A is the empty list, otherwise it is a list whose

14

first element is the first element of A and whose remainder is the

result of appending B to the remainder of A.

We can easily write a set of axioms in first-order logic that
explicitly say what we just said 1in English. If we treat APPEND as a
three-place relation (with APPEND(A,B,C) meaning that C is the result of

appending B to the end of A) the axioms might look as follows:

Vx (APPEND(NIL,x,x)
5

vx,v,z{APPEND(x,y.z) D Vw(APPEND(CONS(w,x),y,CONS(w,z})))
The key observation is that, when these axioms are used via backward
chaining to infer APPEND(A,B,x), where A and B are arbitrary lists and x
is a variable, the resulting deduction process not only terminates with
the variable x bound to the result of appending B to the end of A, it
exactly mirrors the execution of the corresponding LISP program. This
suggests that in many cases, by controlling the use of axioms correctly,
deductive methods can be used to simulate ordinary computation with no
loss of efficiency. The new view of the relationship between deduction
and computation that emerged from these observations was, as Hayes

[1973] put it, "Computation is controlled deductiom."

The ideas of logic programming have produced a very exciting and
fruitful new area of research. However, as with all good new ideas,
there has been a degree of "over-selling" of logic programming and,

particularly, of the PROLOG language. So, if the following sections

15

focus more on the limitations of logic programming than on its
strengths, they should be viewed as an effort to counterbalance some of

the overstated claims made elsewhere.

To date, the main application of the idea of logic programming has
been the development of the programming language PROLOG. Because it has
roots both in programming methodology and in automatic theorem-proving,
there 1is a widespread ambivalence about how PROLOG should be viewed.
Sometimes it is seen as "just a programming language,” although with
some very interesting and useful features, and other times it is viewed
as an "inference engine,"” which can be used directly as the basis of a
reasoning system. On occasion these two ways of looking at PROLOG are
simply confused, as when the (false) claim is made that to program in
PROLOG one has simply to state the facts of the problem one is trying to
solve and the PROLOG system will take care of everything else. This
confusion 1is also evident in the terminology associated with the
Japanese fifth generation computer project, in which the basic measure
of machine speed is said to be "logical inferences per second." We will
try to separate these two ways of looking at PROLOG, evaluating it first

a3 a programmeing language and then as an inference system.

To evaluate PROLOG as a programming language, we will compare it

6
with LISP, the programming language most widely used 1in AI. PROLOG

incorporates a number of features not found in LISP:

16

Failure-driven backtracking

Procedure invocation by pattern matching {unification)
Pattern matching as a substitute for selector functions
Procedures with multiple outputs

Returning and passing partial results via structures
containing logical variables

These features and others make PROLOG an extremely powerful
language for certain applications. For example, its incorporation of
backtracking, pattern matching, and logical variables make it ideal for

7
the implementation of depth-first parsers for language processing. It

is probably impossible to do this as efficiently in LISP as in PROLOG.
Moreover, having pattern matching as the standard way of passing
information between procedures and decomposing complex structures makes
many programs much simpler to write and understand in PROLOG than in
LISF. On the other hand, PROLOG lacks general purpose operators for
changing data structures. In applications where such facilities are
needed, sﬁch as maintaining a2 highly interconnected network structure,
PRDLDG_can be awkward to wuse. For this type of application, using LISP

is much more straightforward.

To better understand the advantages and disadvantages of PROLOG
relative to LISP, it is helpful to consider that PROLOG and LISP both
contain a purely declarative subset, in which every expression affects
the course of a computation only by its value, not by "side effects."

For example, evaluating (2+43) would normally not change the

17

computational state of the system, while evaluating (X«3) would change
the value of X. In comparing their "pure" subsets, one finds that
PROLOG 1is strictly more general +than LISP. These subsets can both be
thought of as logic programming languages, but the logic of pure LISP is
restricted to recursive function definitions, while that of PROLOG
permits definitions of arbitrary relaticns. This is what gives rise to
the use of backtracking control structure, multiple return values, and
logical variables. Pure PROLOG, then, can be thought of as a conceptual

extension of pure LISP.

The creators of LISP, however, recognized that "although this
language [pure LISP] is wuniversal in terms of computable functions of
symbolic expressions, it 1is not convenient as a programming system
withouﬁ additional tools to increase its power," [McCarthy et al, 1962,
p. 41]. What was added to LISP was a set of operations for directly
manipulating the pointer structures that represent the abstract symbolic
expressions forming the semantic domain of pure LISP. LISP thus
operates at two distinct levels of abstraction; simple things can be
done quite elegantly at the level of recursive functions of symbolic
expressions, while more complex tasks can be dealt with at the level of
operations on pointer structures. Both levels, though, are conceptually

coherent and, in a sense, complete.

PROLOG =also has extensions to its purely logical core that most
users agree are essential to its use as practical programming language.

These extensions, however, do not have the kind of uniform conceptual

18

basis that the structure manipulation features of LISP do. Such
features as the "cut" operation for terminating backtracking, "assert”
and "retract" for altering the PROLOG database, and predicates that test
whether variables are free or bound are all powerful and useful devices,
but they do not share any common semantic domain of operation. There is
nothing categorically objectionable about any of these features 1in
isolation, but they do not fit together in a coherent way. The result
is that, while PROLOG provides a very powerful set of tools, the
effective use of those tools depends to a greater extent than with many
other languages on the ingenuity of the programmer and his acquaintance
8

with the lore of the user community.

This suggests +that if PROLOG is really to replace LISP =as the
language of choice for AT systems, it should be given a more powerful
and more conceptually coherent set of nonlogical extensions to the basic
logic-programming paradigm, analogous to LISP’s nonlogiczl extensions to
the recursive-function paradigm. This suggestion would no doubt be
resisted by purists who see the present nonlogical features of PROLOG as
already departing too far from the semantic elegance of a system where
the correctness of a program can be judged simply by whether all of its
statements are true; but that is an idealized vision whose practical

9
realization is doubtful.

19

C. PROLOG as an Inferepnce System

Whatever its merits purely as a programming language, much of the
current enthusiasm for PROLOG undoubtedly stems from the impression
that., because a PROLOG interpreter can be viewed as an automatic
theorem-prover, PROLOG itself can be used as the reasoning module of an
intelligent system. This is true to an extent, but only to a2 limited
extent. The major limitation 1is that all practical logic programming

systems to date, including PROLOG, are based, not on full first-order

The easiest way to view Horn-clause logic is tc say that axioms
must be either atomic formulas such as ON(A,B) or implications whose
consequent is an atomic formula and whose antecedent is either am atomic

formula or a conjunction of atomic formulas:
(ON{x,y) A ABOVE(y,z)) 2 ABOVE(x,z)

Furthermore, the only queries that can be posed are those that can be

expressed as a disjunction of conjunctions of atomic formulas:
(ON{A,B) A ON(B,C)) v (ON(C,B) A ON(B,A))

These limitations mean that no negative formulas--e.g., -0ON{A,B)--
can ever be asserted or inferred, and no disjunction can be inferred
vnless one of the disjuncts can be inferred. Thus, Horn-clause logic
gives up two of the main features of first-order logic that permit

reasoning with incomplete knowledge: being able to say or infer that one

20

of two statements 1s true without knowing which is true, and being able
tc distinguish between knowing that a statement is false and not knowing

that it is true.

The question of quantification is more complicated. Horn-clause
logic does not permit quantifiers per se, but it does allow formulas to
contain function symbols and free variables, and there is a result
(Skolem’s theorem) to the effect that with these devices, any quantified
formula can be replaced by one without quantifiers. However, this
quantifier-elimination theorem does not apply to most logic programming
systems, because of the way they implement wunification (pattern

matching).

According the wusual mathematical definition of wunification, a
variable cannot be unified with any expression in which it is a proper
subexpression. That is, x will not unify with F(G(x)), because there is
no fully instantiated value for x that will make these two expressions
identical. The test for this condition is usually called "the occur
check." The occur check is computationally expensive, though, so most
logic programming systems omit it for the sake of efficiency. There is
a mathematically rigorous foundation for wunification operatiom without
the occur check, based on infinite +trees, but +this version of
unification is not compatible with the quantifier-elimination techniques
usually wused in automatic theorem-proving. In particular, without the
occur check, a logic programming system cannot properly distinguish

between formulas that differ only in quantifier scope, such as,

21

vx(3y(P(x,y)))} and 3y (¥x(P(x,y))). That is, the system cannot
distinguish between the statement that every person has a mother, and

the statement that every person has the same mother.

These restrictions are so severe that PROLOG is almost never used
as a reasoning system without using the extra-logical features of the
language to augment its expressive power. In particular, the wusual
practice is to define negation in the system, using the "cut" operation,
so that -P can be inferred by having an attempt to infer P terminate in
failure. Making this extension permits the implementation of nontrivial

10
reasoning systems in PROLOG in a very direct way, but it amounts to

making "the closed-world assumption": any statement that cannot be
inferred to be true is assumed to be false, To adopt this principle,
though, is to give up entirely on trying to reason with incomplete
knowledge, which is the main advantage that logic-based systems have

over their rivals.

To see what one gives up in making the closed-world assumption,
consider the following problem, adapted from Moore [1980, p. 28].

Three blocks, A, B, and C, are arranged as shown:

A is green, C is blue, and the color of B 1is unstated. In this

arrangement of blocks, is there a green block next to a block that is

22

not green? It should be clear with no more than a moment’s reflection
that the answer is "yes."™ If B 1is green, it is a green block next to
the nongreen block C; if B is not green then A is a green block next to

the nongreen block B.

To solve +this problem, a reasoning system must be able to withold
judgment on whether block B is green; it must know that either B is
green or B is not green without knowing which; and it must use this fact
to infer that some blocks stand in a certain relation to each other,
without being able to infer which blocks these are. None of this is

possible in a system that makes the closed-world assumption.

This is not to say that using PROLOG as a reasoning system with the
closed-world assumption is always a bad thing to do. For applications
where the closed-world assumption is justified, using PROLOG in this way
can be extremely efficient--possibly more efficient than anything that
can be programmed in LISP (for much the same reasons thﬁt top-down
parsing is so efficient in PROLOG). But not all situations justify the
closed-world assumption, and where it is not justified, the fact that
PROLOG can be viewed as a theorem-prover is irrelevant. The usefulness
of PROLOG in such a case will depend only on its utility as a

programming language for implementing other inference systems.

23

IV CONCLUSIDNS

In this paper we have reviewed three possible applications of
formal logic in artificial intelligence: as a tool for analyzing
knowledge-representation formalisms, as a source of Trepresentation
formalisms and reascning methods, and as a programming language. As an
analytical tool, the mathematical framework developed in the study of
formal logics is simply the only tool we have for apnalyzing anything as
a representation. There is little more to say, other than to note all
the efforts to devise representation formalisms that have come to grief

for lack of adequate logical analysis.

The other two applications are more controversial. A large segment
of the AI community believes that any representation or deduction system
based on standard logic will necessarily be too inefficient to be of any
practical value. We have argued that such negative conclusions are
based on experiments in which there was insufficient control of the
deductive process, and we have presented 2 number of cases in which
better control would lead to more efficient processing. Moreover, we
have argued that when an application involves incomplete knowledge of

the problem, only systems based on logic seem adequate to the task.

24

The use of logic as a basis for programming languages is the most
recent application of logic within AI. We had two major points to make
in this area. First, current logic programming languages (i.e., PROLOG)
need to be more developed in their nonlogical features before they can
really replaée LISP as the primary language for developing intelligent
systems. Second, as they currently exist, logic programming languages
are suitable for direct . use as inference systems only inm a very

restricted class of applications,

After thirty years, where does the use of logic in AI now stand?
In all fairness, would one have to say that its promise has yet to be
proven--but, of course, that is true for most of the field of AI. It
may be that, if the promise of logic is to be fulfilled, it will have to
come in 2 remerging of two of the main themes explored in this paper:
automatic deduction and logic preogramming. Logic programming grew out
of the realization that, if automated reasoning systems are to perform
efficiently, the information they are given must be carefully structured
in much the same way that efficient computer programs are structured.
But, instead of using that insight to produce more efficient reasoning
systems, the developers of logic programming applied their ideas to more
conventional programming problems. Perhaps the time is now right to
take what has been learned about the efficient use of logic in logic
programming, and apply it to the more general use of logic in automated
reasoning. This just might produce the kind of basic technology for

reasoning systems on which the development of the entire field depends.

25

NOTES

1
Or at least a belief; most people in AI don’t seem concerned too much

about truth in the actual world.
2

We will assume basic knowledge of first-order logic. For a clear
introduction to first-order logic and resolution, see Nilsson [1980].

3
I am indebted to Richard Waldinger for suggesting the latter example.

4These formalizations are not quite equivalent, as they allow for
different possible interpretations of ABOVE, if infinitely many objects
are involved. They are equivalent, however, if omnly a finite set of
objects is being considered.
5

To see the equivalence between the LISP program and these axioms, note
that CONS(w,x) corresponds to A, so that w corresponds to {CAR A} and x
corresponds to (CDR A).

6

The fact that the idea of logic programming grew out of AI work on
automated inference, of course, gives Al no special status as a domain

of application for logic programming. But because it was developed by

26

people working in AI, and because it provides gocd facilities for symbol
manipulation, most PROLOG applications have been within AT.

7
This is in fact the application for which it was invented.

8T0 be fair, this last statement is true of LISP as well, especially
with regard to recent extensions, such as "flavors." But it seems that
with PROLOG one is forced into this domain of semantic wuncertainty
sooner than with LISP.

9

One can make a plausible argument that the advent of massively parallel
computer architectures will change this situation. For the type of
problem that would normally be solved by an algorithm that changes data
structures, using an imperative language typically requires fewer
computation steps than using a declarative language but creates more
timing dependencies. Thus parallel architectures and declarative
languages are well matched, because the architecture provides the
greater computational resources required by the language, and the
language provides the lack of timing dependencies required to take
advantage of the architecture. It remains to be seen, however, for how
wide a class of problems the speedups due to parallelism outweigh the
additional computation steps required.

10

Ironically, it is necessary to go outside the purely logical subset of

PROLOG to do this!

27

REFERENCES

Colmerauer, A. [1978] "Metamorphosis Grammars," in Natural-langauage
w

Communication ith Computers, L. Bolc, ed. féB;EEEQEZVe;iag,

Berlin, Germany).

Hayes, P. J. [1973] "Computation and Deduction," Proc. 2nd Symposium on
Mathematical Foundations of Computer Science, Czechoslovak Academy

of Sciences, pp. 105-116 (September 1973).

Hayes, P. J. [1977] "In Defence of Logic," Proc. Fifth Intermational

Joint Conference on Artificial Intelligence, Cambridge,

Associates, Inc., Hillsdale, New Jersey).

Kowalski, R. [1974] "Predicate Logic as a Programming Language," in
Information Processing 74, pp. 569-574 (North-Holland Publishing

Newell, A. [1980] "The Knowledge Level," Presidential Address, American
Association for Artificial Intelligence, AAATSO, Stanford
University, Stanford, California ({19 August 1980), in AI Magazine,
Vol. 2, No. 2, pp. 1-20 (Summer 1981).

28

Nilsson, N. J. [1980] Principles of Artificial Intelligence (Tioga

Publishing Company, Palo Alto, California).

Robinson, J. A. [1965] "A Machine-Oriented Logic Based on the Resclution
Principle," Journal of the Association for Computing Machinery,

Vol. 12, No. 1, pp. 23-41 (January 1965).

Warren, D. H. D., Pereira, L. M., and Pereira, F. C. N. [1977] "PROLOG--
The Language and Its Implementation Compared with LISP," in Proc.

Symposium on Artificial Intelligence and Programming Languages

{ACM); SIGPLAN Notices, Vol. 12, No. 8; and SIGART Newsletter, No.

64, pp. 109-115 (August 1977).

Woods, W. A. [1975] "What’s in a Link: Foundations for Semantic
Networks," in Representation and Understanding, D. G. Bobrow and

A. Collins, eds., pp. 35-82 (Academic Press, Inc., New York, New
York) .

29

