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Abstract

A method for interpolating a surface through 3-D data is presented. The method is
computationally eflicient and general enough to allow the construction of surfaces with
either smooth or rough texture.



1. Imtroduction

In image analysis we are often faced with the fact that the measurements we make in
an image only constrain properties of the 3-D world, instead of specifying them. Analysis
techniques that recover 3-D shape information from image measurements incorporate very
restrictive assumptions about the nature of the world. In our attempts to avoid the need
for these restrictions, we have been examining hypothesis-and-test methods. If we assume
that we are able to obtain some shape data, from which we can hypothesize an approximate
shape model for the world, then we can use this model to predict image features. To proceed
from shape data to an approximate shape model we need to “flesh out” the data. In this
paper we address the problem of fitting a surface to a set of points whose 3-D locations are
known. While our interest centers on fitting a surface to 3-D location data that have been
acquired by processing images of that surface, the technique developed has application to a
broad class of surface-fitting tasks.

To select a surface-fitting procedure, it is insufficient merely to know the data set and
to require that a surface be fitted to the points in that set. We also need to know the desired
propertics of the surlace, tbe characteristics of the data, and the uses to which the fitted
surface will be put. If we are building a surface to allow, say, water runofl estimates to be
made, smoothness may be a desired property for that surface. For realistic rendering of a
natural surface in computer graphics, however, a fractal surface may be preferable. While
the technique we develop can construct either smooth or rough surfaces, our applications
generally require the former. Our examples, Figures 3 and 4, show both types.

Besides the desired properties of the fitted surface, the characteristics of the data limit
the approach we must adopt to surface construction. In fitting a surface we must balance
the influence exerted by the data values themselves, against that exerted by the implicit
surface model embedded in any fitting procedure. If our data values are inaccurate and we
know the class of surfaces that should fit the data, we can usually let the surface model
dominate the construction process. Least-square methods are typical of procedures that
prefer a model to data. In general, techmniques whose resultant surfaces do not conform
exactly to the data are known as approximation methods. Methods that produce surfaces
conforming exactly to the data are called interpolation methods.

Tle sclection of an approximation or interpolation method is influenced by properties
of the data other than their accuracy. Consider, for example, the terrain data collected by
a surveyor. In selecting the places at which to make measurements, he considers the break-
points of the surface — that is, those places on the surface where the gradient is discontinuous
- and his data include measurements at these breakpoints. Surface reconstruction by linear
interpolation over triangular surface patches is possible because the surveyor has furnished
not only the 3-D data, but also an implicit statement that the surface hetween his points
can be approximated by planar patches. In matching stereo pairs of images, an edge-based
matcher provides more than the 3-D data it produces. Like a surveyor’s data, it too makes
an implicit statement about the continuity of the imaged surfaces. On the other hand,
an area-based correlation matcher says less about surface continuity, but has the desirable
behavior of providing regularly spaced data.

Such data can usually he processed with considerably less computational eflort than
data that are irregularly spaced. The volume of data, the regularity of their spacing, the
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implicit characteristics of their collection procedure, and their accuracy are all essential
parameters in selecting a surface-fitting technique. For our applications we choose to
investigate interpolation methods. We want methods that will work with irregularly spaced
data, but still achieve substantial computational savings if we can use a regular grid of data
points. We need to be able to handle thousands of such points. As a rule, we do not want
to use implicit properties of the data that stem from their collection procedure.

The uses to which the fitted surface will be put further restricts the set of applicable
surface-fitting procedures. If the task at hand is surface area estimation, the accuracy of
the surface gradients is not important. Conversely, if we wish to use the fitted surface
to generate the latter’'s image under some known lighting conditions, the surface gradient
information then becomes crucial. We can classify the uses of fitted surfaces by the surface
derivatives that are needed. An application that does not require surface derivatives to be
calculated can usually be satisified by a surface composed of local patches. That is, the
surface is fitted locally patch by patch, with each patch determined by a small number of
local data points. Such methods have strong surface models and few data are needed to
instantiate them. As a conscquence, however, the surface derivatives are more a function of
the surface model than of the data. The amount of data used to determine the surface patch
may be barely sufficient to calculate an average value for the surface derivatives across the
whole patch; besides, any variations in derivatives across the patch are caused by the model,
not the data. The more data employed, the less is the influence of the surface model on the
calculation of surface derivatives. In the extreme case, all the data may be used to determine
the surface to be fitted at each locality. Such techniques are called global methods, whereas
those that use only local data are local methods. Qur applications require that we calculate
surface curvature from our fitted surface. The technique we present here is a global method
for surface fitting.

In summary, we address the problem of fitting a surface to a large data set composed
mostly of regularly spaced data points, but which also includes grid points at which we have
no data, and non grid points where data values are known. The data are acquired through
a collection process that is assumed to yield accurate values, but for which we choose not
to characterize the data further. We require a solution that is smooth and from which
we can calculate the first and second surface derivatives. We present details of a global
interpolation method that is computationally efficient and appears to applicable to a broad
range of tasks. Although the general form of the method applies to non gridded data our
computationally efficicot algorithm comes from exploiting the regularity of the data points.

We commence by considering the multiquadric method invented by Hardy [1] for
modeling natural terrain. In its generalized form, we examine it under the restriction of
regularly spaced data points and derive an algorithm to solve for the unknown parameters.
We show how to generate the interpolated surface in an elficient manner.
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2. Surface Interpolation

2.1 Hyperbolic Multiquadrics

Suppose we have a set of data points, [(z;, ys, 2:)l7=e in 3-D space to which we wish to

fit a byperbolic multiquadric surface [1] defined by
-1
#z,y) = Z;=0c5[d?(z, y)+ h]"-} ,

where di(z,y) = (2 — 2;)° + (y — y;)%, h is a user-specified constant, and ¢;'s are the
coefficients that must be determined.

To understand this method, let us suppose that A = 0. The data are fitted by placing
a cone at each of the n data points so that the cone’s axis is aligned with the z axis direction
and the cone’s apex is in the z = 0 plane. That is, the data are fitted with a set of cones,
some of which are inverted. The 2 value of the constructed surface at position (z,y) is
calculated by sumining the z values contributed by each of the n cones at this (z, y) position.

Each cone has one free parameter, namely, its apex angle; we determine these apex
angles by requiring that the constructed surface pass exactly through the data points. In
the foregoing expression, the ¢;'s correspond to the apex angles of the cones. We calculate
the c;'s by solving the nxn system of linear equations

n—1 .
ijo%'[d?(zi, y)+hi =2 i=0,.,n-1

Note that this fitting tecbnique does not require that the data be regularly spaced;
furthermore, when £ 5= 0, hyperboloids rather than cones are fitted to the data. Cones and
hyperboloids are not the only options. Stead [2], for example, has generalized this method,
using the form

Hz,y) = cildi(z,y) + ]S

=0

2.2 General Form

We examine surface-fitting techniques that use the general form of the above method,
namely,

n—1
2(31 y) = Zj___ocjg(x — I,y yj) '

where the kernel function g is any function of the parameters z — z;,y — y;. Clearly, the

previously defined functions are particular cases of this form. As before, we determine the
¢;'s by solving the nxn system of linear equations

n—1 .
Zj=oﬁj9($£ — T4 — V)= % 1=0,.,n—1

For large valucs of n it is not feasible to solve this system of equations. In our
applications n may be 10,000. However, for smaller » we have used the above form to
“patch” loles in a regular grid of data points. While any kernel function can be employed,
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we have found it important to match the method used to solve the nxn system of linear
equations to the form of the kernel function selected. The numerical difficulties encountered
in solving some of the systems of equations produced by a particular kernal can often be
averted by exploiting properties of the linear system stemming from the choice of kernel
function. For example, if we use the Gaussian function as the kernel, the symmetric positive
definite cocllicient matrix of the system of linear equations allows solution by the “square-
root” method (see, for example [3]), and avoids the numerical problems created by Gaussian
elimination. If we impose the restriction that the data points must be gridded, we can find
feasible solution techniques even when n is of the order of millions.

2.3 Regular Grid Solution

Consider the problem of fitting the surface

#(z,y) = Z;;ZL;"fﬂ(z —-zi5Y —¥ii) (1)
where [(z:, ¥:.5)]7Zo _;n o is an nxm regular grid, to the data set [(z:j, ysj, 2 ; l]i___l,;"___oI
We can find an expression for calculating the c;;'s in the following manner.

Let G{u,v) denote the discrete Fourier tramsform [DFT) of g(z,y). Using the
shift theorem of DFT theory, we note that the DFT of gz — z:i;y — yis) Is
G(u, v)e” 27320+ 5vi) If Z{u,v) denotes the DFT of z(z,y), we can write the DFT of
Equation (1), namely,

m=-1
Z(Uf:.z,vk.z)=zf Z_, o CL.iGluk, 1, vr e 2l

kl' 65, ViAW f

) k=0,..,n—-1

Removing G(ug,, vg,i) from the summation, we have

.I:l-; Yk, ¥y

Zn_lzm_lﬁ o= 27 foididy M
=0 F=0 W G(Uk’h vk’!)

Taking the inverse DFT of the above expression, we obtain

Yk i%p,q VY l¥p.q

1 -1 L WAL Yk A¥i, 5 . ' .
DI DI D DA e e P e e

Yk I¥p.g

"—lzm—lz(ukhvk!) PR LI AL L
k=0 {=0 G(Ukt v ’)

Using F~! to represent the inverse DFT, F‘l[g(%:%](zp'q, Yp,q) is the inverse DFT of %,
calculated at {(z, 4, ¥yp,,). We have

Z Zm— jzn Zm—l 21“( kl‘u '-'klfu) 2ri( Vi l%p.a ”k,lﬂ:'p.q) _
r
k=

—1: Z{u, v)
[G’(u,v)

{zp,9: ¥p,q)



Now

kr Tig Vi ¥y .("k.r‘p.q "k,l”p.q)

—1 —1 = ' -
ST S A )

n m

=nm IXij= Tpq ¥ij = YUpyg>

=0 otherwise.

IHence

tij = LF_I[GEEZ :;](Ii.j: vij) - (@)

nm

An alternate way of viewing the above derivation is to note that g(z, ¢ — ;i 7, Vp,g — ¥1,5)
forms a circulant matrix, and to recall that such matrices are diagonalized by the discrete
Fourier transform [1].

2.4 Surface Rendering

Once the ¢;;'s have been calculated, Equation (1) provides an analytic expression for
the construcled surface. We can calculate z(z,y) for any (z,y) position. However, each
such calculation involves the sum of nm terms. If it is our intention to use this analytic
expression for surface interpolation we may have to calculate this sum a very large number
of times. The cost savings gained in computing the ¢; ; coefficients by means of the DFT
{implemented by the fast Fourier transform) will be offset by the cost of these summations.
As a rule, if we commence with data on a regular grid we want an interpolated surface on
a finer grid. This results in considerable savings which are realized when the DFT is again
employed.

Suppose we want to interpolate each grid interval in z and y at an additional number
of points so that the final surface is calculated on a rnxem grid. Consider Equation (1),
revised for the pew, larger grid:

rn—1 em-—-1
#z,y) = Z;‘:o Z_‘;—'O ..’n‘g T LY i) ! (3)

where

€ s =Cizrjse i (mod r) =0, 7 (mod &) =0,

=0 otherwise.

That is, we assume the surface is constructed by the placing of objects at each of the
new grid points, but zero coefficients are associated with all objects except those placed at
the original data points. Now, taking the DFT of Equation (3), we get

LNE .,, "l:l"i.j)

rn—1 sm—1 :
Z(Uk,h Vi, l Z: Z ’ Uk LYk, ;) —2mi( t—= k=2g,..,rm—1

l=0,..,sm—1,
ie.,
Z(ug. 1, ve) = G'(ug,t, vie 1)C" (tr,1, Vi 1) )

where G'(u,v) is the DFT of g(z,y), defined on the finer grid, and ¢’(u,v) is the DFT of
the array c; ;.



The interpolated surface can be formed by taking the inverse DFT of the above expres-
ston:
(i 5, ¥1,5) = F G (w1, 1 0)C (w1, v1,0)]

Note that, in finding the ¢; ;’s in Equation (2), we took the inverse DFT of -éi(%%, then
stretched these ¢; ;'s by adding zeros at the points corresponding to the new interpolation
points, and finally took the DFT of the stretched coeflicients to calculate C’(u,v). These
steps are in fact unnecessary, for we can calculate the C/(u, v)'s directly from the %E%’—:_-:))"s.
The similarity thereom of DFT theory [5] is required: ,

1 Z(ug, (mod n), ve, (mod m))
rs G(ug, (mod n), vk, (mod m))

Cup,p,vi ) =

2.5 Algorithm

We can now write down our interpolation algorithm:

1. Given the data array z(z:;,y:,;), find its DFT, Z(u; ,vi ;)

2. Find the DFT, G(u; ;,v; ;), of the kernel function, ¢(z; ;, v: ;)

3. Oluag va5) = Gty

4. Calculate C'(u; 4, vi ), using Equation (4)

5. Calculate G’(u; ;, v; ;) for the larger interpolation grid

6. Z'(uig,vig) = C'ui g, vi5)G (w45, vi,5)

7. Find the interpolated surface by taking the inverse DFT of Z/(u; , vi ;).

Note that for selected kernel functions Steps 2 and 5 could be precomputed for standard-
size grids. As an alternative, these steps can sometimes be accomplished by analytic means

if the analytic form of the kernel function is known.

3. Discussion

FFor purposes of illustration, let us compare the computational efficiency of this method
on a regular grid with the cost of the usual non gridded formulation of the multiquadric.
Of course, since the usual formulation deals with irregularly spaced data, we would not
expect it to compare favorably with this method; such a comparison nevertheless confirms
the advantages of our technique. Consider a square nxn grid of data points on which we
want an interpolated surface over a raxrn grid. The usual multiquadric formulation solves
a n?xn? system of linear equation at a cost proportional to n®, and calculates ruxrn sums
of terms at a cost proportional to r®n®. If it is assumed that n > r, this cost is dominated
by the n® term.

The algorithm outlined above is dominated hy the cost of the DFTs in Steps 5 and 7.
We use the fast Fourier transform to implement the DFT. This means that we pad our data
with zeros to force the dimension size of the grid to be a power of 2. At worst, our grid
is 2rnx2rn. The cost of the DFT is proportional to 4r°n®log2rn. Even if r were as great
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as n, this cost would be proportional only to nlogn. From an empirical standpoint, the
algorithm outlined is faster for n (and k) of the order of 10.

The outlined algorithm places little limitation on the type of kernel function employed.
Not only smooth, but also rough functions may comprise the hasic ohjects from which the
surface is built. We have used, inter alia, cones, hyperboloids, and Gaussian-shaped objects,
some of which had fractal texture added to them. In Figures 1-4 we show profile plots.
Figure 1 shows a real surface, Figure 2 the sampling grid we used to select data points.
In Figure 2 the profiles depict what would have been obtained if we had used bilinear
interpolation to build the surface. Figure 3 reveals the resultant surface when Gaussian
kerne! functions were used, while Figure 4 was obtained with a kernel function that had
fractal texture added to a Gaussian base. When we compare the fitted surface to ground
truth, the average error for the smooth kernel functions used by us, is approximately one
percent of the data height range. As with any fitting technique, we cannot construct surface
features that are not described by the sampled data.

We indicated that one reason for investigating global surface interpolation techniques
was the neced to calculate reliable estimates of surface curvature. In our preliminary trials
with synthetic surface data the constructed surface appears to allow adequate surface
curvature estimation. This will be tested further in future applications.

4., Conclusions

We have presented a method of surface interpolation that is computationally efficient.
The reconstructed surface is fitted globally to enable the data rather than an implicit surface
model to control the construction process. The method makes it possible to build not only
the more customary smooth interpolated surface, but the roughly textured type as well.

Surface reconstruction methods provide a means of using the hypothesis-and-test ap-
proach in image analysis. They provide a mechanism for using image information that only
constrains rather than specifies 3-D world parameters. The outlined algorithm is a tool for
hypothesizing a broad range of surface types.
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Figure 1. Real Surface Used as Ground Truth

Figure 2. Data Sampled at Grid Intersections




Figure 8. Reconstructed Surface by Means of Gaussian
Kernel Functions.

Figure 4. Reconstructed Surface by Means of Fractal
Textured Gaussian Kernel Functions.,

10



