S Imternationsal

o L.
L.
e

R
Internation
| 1.2

nt
SN
s

SN
al
7
2 ®

AN ABSTRACT PROLOG INSTRUCTION SET

Technical Note 309

QOctober 1983

By: David H.D. Warren, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

SRI Project 4776

Client: Digital Equipment Corporation

Open Publication. Release of Information.

333 Ravenswood Ave. ® Menlo Park, CA 94025
{415] 326-6200 & TWX: 910-373-2046 & Telex: 334-486






AN ABSTRACT PROLOG INSTRUCTION SET
David H D Warren
Artificial Intelligence Center
SRI International
31 August 1983

1. Introduction

This report describes an abstract Prolog instruction set suitable for software, firmware,
or hardware implementation. The instruction set is abstract in that certain details of its
encoding and implementation are left open, so that it may be realized in 2 number of

different forms. The forms that are contemplated are:

o Translation into a compact bytecode, with emulators written in C {for
maximum portability), Progol (a macrolanguage generating machine code, for
efficient software implementations as an alternative to direct compilation on
machines such as the VAX), and VAX-730 microcode.

¢ Compilation into the standard instructions of machines such as the VAX or
DECsystem-10/20.

e Hardware (or firmware) emulation of the instruction set on a specially
designed Prolog processor [3].

The abstract machine described herein (*new Prolog Engine®) is a major revision of
the "old Prolog Engine® described in a previous document. The new model overcomes
certain difficulties in the old model, which are discussed in a later section. The new
model can be considered to be a modification of the old model, where the stack contains
compiler-defined goals called environments instead of user-defined goals. The
environments correspond to some number of goals forming the tail of a clause. The old
model was developed having primarily in mind a VAX-730 microcode implementation.
The new model has, in addition, been influenced by hardware implementation
considerations [3], but should remain equally amenable to software or firmware

implémentation on machines such as the VAX.,

The new model is very similar to the abstract machine based on DEC-10 Prolog
described by Warren [4], modified to incorporate tail recursion optimization [5]. The

main differences are:

e Copying replaces structure-sharing as the means for constructing complex




terms; however structure-sharing is still used to represent the goals
constituting a resolvent.

o Choice points are separated from environments (local stack frames), and are
created only when needed rather than at every procedure call.

o Environments are "trimmed® during execution (if the computation is
determinate), by discarding variables no longer needed. This can be viewed
as a generalization of tail recursion optimization.

e Potentially "unsafe® variables in the final goal of a clause are made global
only if needed at runtime, rather than by default at compile time.

The architecture also has much in common with the abstract machine design of Bowen,
Byrd, and Clocksin [1].

One of the main ways to realize the architecture in software or firmware is via a
bytecode emulator, and this approach is stressed in this report. The design of the
bytecode emulator calls for a large virtual memory, byte-addressable machine, and is
particularly oriented towards the VAX architecture. Prolog run-time data structures are
encoded as sequences of 32-bit words. Prolog programs are represented as sequences of
instructions, encoded as sequences of 8-bit bytes. Each instruction consists of a one-byte
operation code {opcode), followed by a number of arguments (typically one, two, or

zero). An argument may be 1, 2, or 4 bytes long.

The bytecode emulator comprises a large number of small routines defining the
different operations. Execution proceeds from one routine to the next by dispatching on
the opcode of the next instruction. Some instructions can be executed in two different

modes {*read® mode or *write® mode), so there is a separate routine for each mode.

An earlier version of the emulator (for the old Engine design) has been implemented in
a Prolog-based macro language called Progol, which was used to generate a VAX
machine code version. The Progol implementation should be fairly easy to transport to
a variety of machines to give efficient software implementations. A transliteration of
this Progol code into C has been performed. The primary intention, however, behind
the Progol form of the emulator was that it should serve as a model for a microcode

implementation on a VAX-730 or other suitable machine,



2. Data Objects

A Prolog term is represented by a word containing a value (which is generally an
address) and a tag. (Possible formats for these words are given in Appendix V.) A large
address space is assumed, with values occupying around 32 bits. The tag distinguishes
the type of term, and must be at least 2 bits and preferably up to 8 bits. The main
types are references (corresponding to bound or unbound variables), structures, lists, and
constants (including atoms and integers). An unbound variable is represented by a
reference to itself. It could be distinguished by a separate tag in a hardware

implementation.

Structures and lists are represented in a non-structure-sharing manner, i.e., they are
created by explicitly copying the functor and arguments into consecutive words of
memory. For efficiency, lists have a separate tag from structures, and so no functor

needs to be stored.

3. Data Areas

The main data areas are the code area, containing instructions and other data
representing the program itself, and three areas operated as stacks, the (local) stack, the
heap (or global stack}, and the trail. (There is also a small push-down list (PDL) used
for unification). The stacks generally expand with each procedure invocation, and they
contract on backtracking.” In addition, tail recursion optimization removes
information from the local stack when executing the last procedure call in a determinate
procedure, and the cut operator excises backtracking information from both the local
stack and the trail.

The different areas are laid out in memory as follows:

low high

| code area I-> | heap I-> | stack [-> | trail |-> <-| PDL |
I | I I I I I I I I

P HB H B E TR
It turns out to be important that the stack and heap are arranged as shown {since then
the simple strategy of always binding the variable with the lowest address when making

a variable-variable binding is sufficient to prevent dangling references).




The heap contains all the structures and lists created by unification and procedure
invocation. The trail contains references to variables that have been bound during
unification and that must be unbound on backtracking. The stack contains two kinds of
objects: environments and choice points (whose formats are given in Appendix IV).
An environment consists of a vector of value cells for variables occurring in the body of
some clause, together with a continuation comprising a pointer into the body of
another clause and its associated environment. In effect, a continuation represents a list
of (instantiated) goals still to be executed. A choice point contains all the information
necessary to restore an earlier state of computation in the event of backtracking. It is
created when entering a procedure if {and only if) the procedure has more than one
clause which can potentially match the call. The information that is stored is a pointer
to the alternative clauses, plus the values of the following registers (see below) at the
time the procedure is entered: H, TR, B, CP, E, and A1 to Am where m is the number of

arguments of the procedure.

4, Registers and Treatment of Variables
The current state of a Prolog computation is defined by certain registers containing

pointers into the main data areas (cf. Appendices Il and Ill). The main registers are as

follows:
P program pointer (to the code area)
cp continuation program pointer (to the code area)
E last enviromnment (on the local stack)
B last choice point (backtrack point) (on the local stack)
A top of stack {(mot strictly essential)
TR top of trail
H top of heap
HB heap backtrack point (i.e., the H value corresponding to B)
] structure pointer (to the heap)
Al, A2, ... argument registers
X1, X2, ... temporary variables

The A registers and X registers are, in fact, identical; the different names merely reflect
different usages. The A registers are used to pass the arguments to a procedure. The X

registers are used to hold the values of a clause’s temporary variables.



A temporary variable is a variable that has its first occurrence in the head or in a
structure or in the last goal, and that does not occur in more than one goal in the body,
where the head of the clause is counted as part of the first goal. Temporary variables do

not need to be stored in the elause’s environment.

A permanent variable is any variable not classified as a temporary variable.
Permanent variables are stored in an environment and are addressed by offsets from the
environment pointer. They are referred to as Y1, Y2, etc. Note that there can be no
permanent variables in clauses with less than two goals in the body, and, therefore, such
clauses do not need environments. Permanent variables are arranged in their
environment in such a way that they can be discarded as soon as they are no longer
needed. This *trimming" of the environment only has real effect when the environment

is more recent than the last choice point.

5. The Instruction Set

Prolog programs are encoded as sequences of Prolog instructions. In general, there is
one instruction for each Prolog symbol. An instruction consists of an operation code
(opcode) with some operands (typically just one). The opcode generally encodes the
type of Prolog symbol together with the context in which it occurs. It need occupy no
more than one byte (eight bits). The operands include small integers, offsets, and
addresses, which identify the different kinds of Prolog symbol. Depending on the details
of the encoding, operands might occupy omne, two, or four bytes, or in some cases less

than one byte.

The Prolog instruction set can be classified into get instructions, puf instructions, uni fy
instructions, procedural instructions, and indezing instructions. (The instruction set is

summarized in Appendix 1.)

The get instructions correspond to the arguments of the head of a clause and are
responsible for matching against the procedure’s arguments given in the A registers. The

main instructions are:

get variable Yn,Ai get variable Xn,Ai
get value Yn,Al get value Xn,Ai
get comstant C,Ai get nil Ai

get structure F, Al get 1ist Ai

Here (and in the description of other classes of instructions, below) Ai represents the




argument register concerned, and Xa, Yn, C, and F represent, respectively, a temporary
variable, a permanent variable, a constant, and a functor. The get variable
instruction is used if the variable is currently uninstantiated (i.e., il this is the first

occurrence of the variable in the clause). Otherwise the get value instruction is used.

The put instructions correspond to the arguments of a goal in the body of a clause and

are responsible for loading the arguments into the A registers. The main instructions are:

put variable Yn,Ai put variable Xn,Ai
put value Yn,Ai put value Xn,Ai
put unsafe value Yn,bAl

put _constant C,Ai put nil Ai

put _structure F,Al put_list Ai

The put_unsafe value instruction is used in place of the put_value instruction in the
last goal in which an unsafe variable appears. An unsafe variable is a permanent
variable that did not first occur in the head or in a structure, i.e., the variable was
initialized by a put_variable instruction. The put unsafe value instruction ensures
that the unsafe variable is dereferenced to something other than a reference to the
current environment, binding the variable to a new value cell on the heap, if necessary,
thus "globalizing® the variable. This measure is necessary to prevent possible dangling
references to a part of the environment about to be discarded by the execute or call

instruction which follows.

The unify instructions correspond to the arguments of a structure (or list) and are
responsible both for unifying with existing structures and for constructing new
structures. The main instructions are:

unify void N

unify variable Yn unify variable Xao
unify value Yn unify value Xn
unify local value Yn unify local value Xn
unify comstant C enify nil

The unify void N instruction represents a sequence of N single-occurrence variables; no
temporary or permanent variable cell is needed for such “void® variables. The
unify local value instruction is used in place of the unify value instruction if the
variable has not been initialized to a global value (by, for example, a unify variable

instruction).

A sequence of uni fy instructions is preceded by an instruction to get or put a structure



or list. This preceding instruction determines one of two modes, read mode or write
mode, that the following unify instructions will be executed in. In read mode, unify
instructions perform unification with successive arguments of an existing structure,
addressed via the S register. In write mode, unify instructions construct the successive

arguments of a new structure, addressed via the H register.

Nested substructures or sublists are translated as follows. If the substructure or sublist
occurs in the head, it is translated by a unify variable Xn instruction followed, after
the end of the current unify sequence, by a corresponding get structure F,Xa or
get list Xn instruction. If the substructure or sublist occurs in the body, it is
translated by a unify value Xn instruction preceded, before the start of the current

uni fy sequence, by a corresponding put_structure F,Xn or put list Xn instruction.

The procedural instructions correspond to the predicates that form the head and goals
of the clause and are responsible for the control transfer and environment allocation

associated with procedure calling. The main instructions are:

proceed allocate
execute P desllocate
call PN

where P represents a predicate and N is the number of variables (still in use) in the
environment. The procedural instructions are used in the translation of clauses with
zero, one, or two or more goals in the body as follows:
P. P :-Q. P :-Q. R, 5.
get args of P get args of P allocate
proceed put args of Q get args of P
execute Q put args of Q
call Q.N
put args of R
call R, Nt
put args of 8
deallocate
execute S

Note that the size of an environment is specified dynamically by the call instruction.

The size always decreases, so N1 is less than or equal to N.

The indering instructions link together the different clauses that make up a procedure
and are responsible for filtering out a subset of those clauses that could potentially

match a given procedure call. This filtering, or indexing, function is based on a key




which is the principal functor of the first argument of the procedure (given in register

Al). The main instructions are:

try me else L try L ewitch on term Lv,L¢,L1,Ls
retry me else L retry L switch on constant N,Table
trust me else fail trust L gswitch on structure N,Table

Here L, Lv, Le, L1, Ls are addresses of clauses (or sets of clauses), and Table is a hash
table of size N.

Each clause is preceded by a try me else, retry me else, or trust me else
instruction, depending on whether it is the first, an intermediate, or the last clause in the
procedure. These instructions are executed only in the case that Al dereferences to a
variable and all clauses have to be tried for a match. The operand L is the address of the

following clause.

The switch on term instruction dispatches to one of four addresses, Lv, Le, L1, Ls,
depending on whether Al dereferences to a variable, a constant, a list, or a structure. Lv
will be the address of the try me else (or trust me else) instruction, which precedes
the first clause in the procedure. L1 will be either the address of the single clause whose
key is a list, or the address of a sequence of such clauses, identified by a sequence of try,
retry, and trust instructions. Le¢ and Ls may be the addresses of a single clause or
sequence of clauses {as in the case of L1), or more generally may be, respectively, the
address of a switch on constant or switch on structure instruction, which provides

hash table access to the clause or clauses that match the given key.

6. Optimizations
Since the argument registers and the temporary registers are identical, certain
instructions are null operations and can be omitted:

get variable Xi,Ai
put value Xi,Ai

The compiler takes pains to allocate temporary variables to X registers in such 2 way as

to maximize the scope for this optimization.

Note also that the following instructions denote the same operation of simply
transferring the contents of register Xi to register Xj:

goet _variable Xj,Ai
put variable Xi,Aj



7. Examples of Clause Encoding
As examples of clause encoding, here is the code for the concatenale and quick sort
procedures.
concaterate ([],L,L).
concatenate ([X|L1],L2, [XIL3]) :- concatenate(L1,L2,L3).

concatenate/3: switch on term Cia,C1,C2,fail

Cla: try me else C2a % concatenate(
C1: get nil Al % (1.
get value AZ,A3 % L,L
proceed %).
C2a: trust me else fail % concatenate(
c2: get list Al ] [
unify variable X4 5 XI
unify variable Al % L1], L2,
get list A3 % [
unify value X4 % X|
unify variable A3 4 L3]) :-
execute concatenate/3 ® concatenate{L1,L2,L3).

gsort ([1,R,R).
gsort([XIL],RO,R) :-
split(L,X,L1,L2), gsort(L1,RO, [XIR1]), gsort{L2,R1,R).

gsort/3: switch on term Cla,C1,C2,fail

Cia: try me else C2a % gsort(

ci: get nil Al % (1.
get value A2,A3 § R.R
proceed ®).

C2a: trust me else fail % geort(

c2: allocate
get list A1 % [
unify variable Y8 % X|
unify variable Al % L],
get variable Y5,A2 % RO,
get variable Y3,A3 § R :-
put value Y6,6A2 % split(L.X,
put variable Y4,6A3 1 L1,
put variable Y1,A4 % L2
call split/4,8 %).
put unsafe value Y4,Al % goort(L1,
put _value Y5,A2 ' % RO,
put list A3 % [




XI
R1]

unify value Y6

unify variable Y2

call gsort/3,3
put_unsafe value Y1,Al
put_value Y2,A2
put_value Y3,A3
deallocate

execute gsort/3

ort (L2,
R1,

| AP AARNR
.DV
m

The following example further illustrates the handling of permanent variables:

compile{Clause, Instructions) :-
preprocess (Clause,C1),
translate (Ci, Symbols),
number variables (Symbols,O,N,Saga),
complete saga(0,N,Saga),
allocate registers(Saga),
generate (Symbols, Instructions) .

try me else fail
allocate

get variable Y2, A2
put_variable Y5, A2
call preprocess/2,b
put_unsafe value Yb,Al
put variable Y1,A2
call translate/2,4
put_value Y1,Al
put_constant 0,A2

put variable Y4,6A3
put_variable Y3,A4
¢all number variables/4,4
put constant 0,Al
put_unsafe value Y4,A2
put variable Y3,A3
call complete saga/3,3
put_unsafe value Y3,Al
call allocate registers/1,2
put_unsafe value Y1,Al
put value Y2,A2
deallocate

exacute generate/2

try me else ...
get_structure ’*°/2,A1

% compile( Clausse,

% Instructions) :-
% preprocess(Clause,Cl

),
translate(C1,
Symbols

-

=

umber variables(Symbols,
0,
N,
Saga

;mplatq_paga(o,
N,
Saga

ot =

locate registers(Saga

m ~p

enerate(Symbols,
Instructions

an MWARANVABAANMAARAAANRAAAARN
[« B

L
.

The following two examples illustrate the encoding of nested substructures:

d (U%V,X, (DU*V) +(U*DV)) :~- d(U,X,DU), d(V.X,DV).

% d(
% *(



test :

unify variable Al
unify variable Y1

get variable Y2,6A2

get structure ’+’/2,A3
unify variable X4
unify variable X5

get structure ’*°/2,X4
unify variable A3
unify value Y1

get structure ’*’/2,X5
unify value Al

unify variable Y3

call d/3.3

put_value Y1,Al

put value Y2,6A2

put _value Y3,A3
execute d/3

10

U,
V),
X,
+(
551,
552),
*(
DU,
V),
*(
U,
o)) -
.X,bu),

©n
2]
Py

[}

MAMNMMAXAMXAAAARAAAANANMN
[92]
[7]
[
]

L4
.

do(parse (8 (np,vp), [birds,£1y],[1)).

trust me elss fail
put etructure s/2,X2
unify constant np
unify constant vp
put list X4

unify constant fly
unify nil

put list X3

unify constant birds
unify value X4

put structure parse/3,A1
unify value X2

unify value X3

unify mil

execute do/1

[22]
7]
N
]
o}

f1yl

111,

[

birds|

582],

paras (
581,
552,
m

M!ARAAAXAAXAANRAN AN
L2
€
w
n

S
.

The following example illustrates the use of the indexing instructions:

call(X or Y) :- call(X).
call(X or Y) :- call(Y).
call(trace) :- trace.

call (notrace) :- notrace.
call(nl) :- nl.

call(X) :- builtin(0).
call(X) :- ext(X).

call(call (X)) :- call(X).
call(repeat) .

call(repeat) :- call(repeat).




call{true).

call/1:

L1:

L2:

L3:

Cla:
Cil:

C2a:
Cc2:

C3a:

C3:

Cda:
C4:

Cba:
Ch:

Cba:

C7a:

L4:

Lb:

LS:

try me else C6a

sw1tch on_type Cla.Ll, £ail,L2

switch on constant 4, $(trace:

C3,

C‘4:

gwitch on structure 1, ${or/2: L3)

try C1
trust C2

try me else C2a

get structure or/2,Al
unify variable Al
execute call/1i.

retry me else C3a
get structure or/2,Al
unify void 1

unify variable Al
execute call/1

retry me else Cda
get constant trace,Al
execute trace/0

retry me else Cba
get constant notrace,Al
execute notrace/0

trust me elge fail
get constant nl ,Al
exacute nl/0

retry me else C72
execute builtin/1

retry me else L4
execute ext/1

truet me else fail

sw1tch on type CB8a,LS, fail L7

switch on comstant 2, $(repeat: L6, true:

try C9

call(
or(

call(X) .

call(
or(
X,
Y))
call(Y).

call(
trace)

trace.

call(

notrace.

callf

¥ call(X)

% builtin(X).

% call(X)
¥ ext(X).

X.))

notrace)

-

* -

Cc11)

* -

-



12

trust C10

L7: switch on structure 1, $(call/1i: C8)

CBa: try me else C9a % call(

C8: get structure call/1,Al % call(
unify variable Al % X)) :-
execute call/i % call(X).

C9a: retry me else C10a % call(

C9: get constant repeat,Al 4 repeat
proceed %).

Ci0a: retry me else Clla % call(

C10: get constant repeat,Al 1 repeat) :-
put constant repeat,Al % call(repeat
execute call/i %).

Clla:  trust me else fail % call(

C11: get constant true,Al % true
proceed %).

8. Description of Instructions and Basic Operations

Note: In the descriptions that follow, Vn is used generically to denote either a

permanent variable Yn or a temporary variable Xa. Some of the descriptions are

followed by algorithmic code for the operation performed, for the simpler cases.

8.1. Control Instructions

allocate

deallocate

This instruction appears at the beginning of a clause with more than
one goal in the body. (It can, in fact, be placed anywhere before the
first occurrence of a permanent variable) Space for the new
environment is allocated on the stack after the last choice point or
environment, the continuation is saved, and E is set to point to the

new environment.

CE :=E

E := (CE <B ->B | CE + env_gize(CP))
CP(E) := CP

CE(E) := CE

This instruction appears before the final execute instruction in a

clause with more than one goal in the body. The previous




13

continuation is restored and the current environment is discarded.

CP := CP(E)
E := CE(E)
call Proc.R This instruction terminates a body goal and is responsible for setting

CP to the following code, and the program pointer P to the procedure.
N is the number of variables in the environment at this point. It is
accessed as an offset from CP by certain instructions in the called
procedure.

CP := following code
P := Proc

execute Proc This instruction terminates the final goal in the body of a clause.
The program pointer P is set to point to the procedure.

P := Proc

proceed This instruction terminates a unit clause. The program pointer P is
reset to the continuation pointer CP.
P :=CP

8.2. Put Instructions

put variable Yn,Ai ]
This instruction represents a goal argument that is an unbound
(permanent) variable. The instruction puts a reference to permanent
variable Yn into the register Ai, and also initializes Yn with the same
reference.
Ai := Yn := ref to(Yn)

put variable Xn,Ai
This instruction represents an argument of the final goal that is an
unbound variable. The instruction creates an unbound variable on the
heap, and puts a reference to it into registers A1 and Xn.
Ai := Xn := next term(H) := tag ref(H)

put value Vn,Ai This instruction represents a goal argument thata is a bound variable.
The instruction simply puts the value of variable Vo into the register
Ai.



14

Al = Vn

put_ungafe value Yn,Ai

put _cecnst C,Ai

put nil Ai

This instruction represents the last occurrence of an unsafe variable.
The instruction dereferences Yan and puts the result in register Ai. If
Yn dereferences to a variable in the current environment, that variable
is bound to a new global variable created on the heap, the binding is
trailed if necessary, and register Ai is set to a reference to the new

global variable.

This instruction represents a goal argument that is a constant. The
instruction simply puts the constant C into register Ai.
Ai :=C

This instruction represents a goal argument that is the comstant [].
The instruction simply puts the constant [] into register Ai.

Al := nil

put structure F,bAi

put_list Ai

This instruction marks the beginning of a structure (without
embedded substructures) occurring as a goal argument. The
instruction pushes the functor F for the structure onto the heap, and
puts a corresponding structure pointer into register Ai. Execution
then proceeds in "write® mode.

Ai := tag struct(H)
next term(H) :=F

This instruction marks the beginning of a list occurring as a goal
argument. The instruction places a list pointer corresponding to the
top of the heap into register Ai. Execution then proceeds in "write®
mode.

Al := tag list(H)



15

8.3. Get Instructions

get variable Vm, Ai

This instruction represents a head argument that is an unbound
variable. The instruction simply gets the value of register Ai and
stores it in variable Vn.

Vo := Al

get value Vn,Ai This instruction represents a head argument that is a bound variable.

The instruction gets the value of register Ai and unifies it with the
contents of variable Vn. The fully dereferenced result of the
unification is left in variable Vn if Vo is a temporary.

get corstant C,Ai

get nil Ai

This instruction represents a head argument that is a constant. The
instruction gets the value of register A1 and dereferences it. I the
result is a reference to a variable, that variable is bound to the
constant C, and the binding is trailed if necessary. Otherwise, the
result is compared with the constant C, and if the two values are not

identical, backtracking occurs.

This instruction represents a head argument that is the constant [J.
The instruction gets the value of register Ai and dereferences it. If the
result is a reference to a variable, that variable is bound to the
constant [], and the binding is trailed if necessary. Otherwise, the
result is compared with the constant [}, and if the two values are not

identical, backtracking occurs.

get structure F, Al

This instruction marks the beginning of a structure (without
embedded substructures) occurring as a head argument. The
instruction gets the value of register Ai and dereferences it. If the
result is a reference to a variable, that variable is bound to a new
structure pointer pointing at the top of the heap, and the binding is
trailed if necessary, functor F is pushed onto the heap, and execution
proceeds in "write® mode. Otherwise, if the result is a structure and
its functor is identical to functor F, the pointer 8 is set to point to the
arguments of the structure, and execution proceeds in *read" mode.



get list Ai

i6

Otherwise, backtracking occurs.

This instruction marks the beginning of a list occurring as a head
argument. The instruction gets the value of register Ai and
dereferences it. If the result is a reference to a variable, that variable
is bound to a new list pointer pointing at the top of the heap, the
binding is trailed if necessary, and execution proceeds in “write®
mode. Otherwise, if the result is a list, the pointer § is set to point to
the arguments of the list, and execution proceeds in "read® mode.
Otherwise, backtracking occurs.

8.4. Unify Instructions

unify void N

This instruction represents a sequence of N head structure arguments
that are single occurrence variables. If the instruction is executed in
"read® mode, it simple skips the next N arguments from 8. If the
instruction is executed in “write® mode, it pushes N new unbound
variables onto the heap.

In read mode:
5 := § + N*word width

In write mode:
next term(H) := tag ref (H)
... {repeated N times}

unify variable Vn

unify value Vo

This instruction represents a head structure argument that is an
unbound variable. If the instruction is executed in "read® mode, it
simply gets the next argument from S and stores it in variable Vo. If
the instruction is executed in "write® mode, it pushes a new unbound
variable onto the heap, and stores a reference to it in variable Va.

In read mode:
Vo := next term(S)
In write mode: ‘
Vo := next term(H) := tag ref(H)

This instruction represents a head structure argument that is a
variable bound to some global value. If the instruction is executed in
"read® mode, it gets the next argument from S, and unifies it with the

value in variable Vn, leaving the dereferenced result in Vo if Va is a




17

temporary. If the instruction is executed in ®write® mode, it pushes
the value of variable Vn onto the heap.

In write mode:
next term(H) := Vn

unify local value Vo

This instruction represents a head structure argument that is a
variable bound to a value that is not necessarily global. The effect is
the same as unify value, except that, in "write® mode, it
dereferences the value of variable Vn and only pushes the result onto
the heap if the result is not a reference to a variable on the stack. H
the result is a reference to a variable on the stack, a new unbound
variable is pushed onto the heap, the variable on the stack is bound to
a reference to the new variable, the binding is trailed if necessary, and

variable Vn is set to point to the new variable if Vn is a temporary.

unify constant C

This instruction represents a head structure argument that is a
constant. If the instruction is executed in "read" mode, it gets the
next argument from S, and dereferences it. If the result is a reference
to a variable, that variable is bound to the constant C, and the binding
is trailed if necessary. If the result is a nonreference value, that value
is compared with the constant C and backtracking occurs if the two
values are not identical. If the imstruction is executed in ®write®
mode, the constant C is pushed onto the heap.

In write mode:
next term(H) := C

8.5. Indexing Instructions

try me else L

This instruction precedes the code for the first clause in a procedure
with more than one clause. A choice point is created by saving the
following n+8 values on the stack: registers An through A1, the current
environment pointer E, the current continuation CP, a pointer to the
previous choice point B, the address L of the next clause, the current
trail pointer TR, and the current heap pointer H. HB is set to the

current heap pointer, and B is set to point to the current top of stack.



18

retry me else L This instruction precedes the code for a clause in the middle of a

procedure (i.e., it is not the first or last clause). The current choice
point is updated with the address L of the next clause.
BP(B) :=L

trust me else fail

try L

retry L

trust L

This instruction precedes the code for the last clause in a procedure.
(The argument of the instruction is arbitrary, but exists simply to
reserve space in the instruction in order to facilitate the asserting and
retracting of clauses). The current choice point is discarded, and

registers B and HB are reset to correspond to the previous choice point.

B := B(B)
HB := H(B)

This instruction is the first of a sequence of instructions identifying
clauses with the same key. A choice point is created by saving the
following n+6 values on the stack: registers An through A1, the current
environment pointer E, the current continuation CP, a pointer to the
previous choice point B, the address of the following instruction
(alternative clauses), the current trail pointer TR, and the current heap
pointer H. HB is set to the current heap pointer, and B is set to point
to the current top of stack. Finally, the program pointer P is set to
the clause address L.

This instruction is one in the middle of a sequence of instructions
identifying clauses with the same key. The current choice point is
updated with the address of the following instruction (alternative
clauses), and the program pointer P is set to the clause address L.

BP(B) := following code
P :=L

This instruction is the last of 2 sequence of instructions identifying
clauses with the same key. The current choice point is discarded, and
registers B and HB are reset to correspond to the previous choice point.
Finally, the program pointer P is set to the clause address L.

B := B(B)
HB := H(B)
P:=L




19

switch on term Lv,Lc,L1,Ls

This instruction provides access to a group of clauses with a non-
variable in the first head argument. It causes a dispatch on the type
of the first argument of the call. The argument Al is dereferenced
and, depending on whether the result is a variable, constant, (non-
empty) list, or structure, the program pointer P is set to Lv, Lc, L1, or
Ls, respectively.

switch on constant N,Table

This instruction provides hash table access to a group of clauses
having constants in the first head argument position. Register Al
holds a constant, whose value is hashed o compute an index in the
range 0 to N-1 into the hash table Table. The size of the hash table is
N, which is a power of 2. The hash table entry gives access to the
clause or clauses whose keys hash to that index. The constant in Al is
compared with the different keys until one is found that is identical, at
which point the program pointer P is set to point to the corresponding
clause or clauses. If the key is not found, backtracking occurs.

switch on structure N,Table

This instruction provides hash table access to a group of clauses
having structures in the first head argument position. The effect is
identical to that of switch on constant, except that the key used is
the principal functor of the structure in Al.

8.6. Other Basic Operations

fail

trail (R)

This operation is performed when a failure occurs during unification.

It causes backtracking to the most recent choice point. The trail is
"unwound® as far as the choice point trail pointer, by popping
references off the trail and resetting the variables they address to
unbound. Registers H, A, and C are restored to the values saved in the
choice point. The program pointer P is set to the next alternative
clause as recorded in the choice point.

This operation is performed when a variable, whose reference is R, is
bound during unification. If the variable is in the heap and is before



20

the heap backtrack point HB, or the variable is in the stack and is
before the stack backtrack point B, the reference R is pushed onto the
trail. Otherwise, no action is taken.

9. Encoding of Instructions
The instructions could be encoded in various ways. A possible encoding, suitable for

software emulation, is shown in Appendix VL

Each opcode occupies a single byte. This is followed, in the case of gel and put
instructions, by another byte giving the number of the A register concerned. Other

arguments are encoded as follows.

Temporary or permanent variable numbers are encoded as a single byte. Constants
are encoded by giving their full-word (32-bit) value (including tag). Special opcodes may
be provided to support a half-word (16-bit) representation, in cases where the constant
value can be obtained by sign-extending a 16-bit value. Functors are encoded as a 16-bit
functor number, which is used to index into a functor table to obtain the full-word
representation of the functor. Predicates and clause addresses are represented as 16-bit
offsets into the current segment of the address space, i.e., the full address of the
corresponding procedure or clause is obtained by appending the 16-bit offset to the top
16 bits of the address of the current instruction. Some escape mechanism must be

provided in order to cross segment boundaries.

It is assumed that 16-bit and 32-bit arguments do not have to be specially aligned, as is
allowed on the VAX. On machines that require alignment, dummy one-byte skip

instructions can be inserted by the compiler to provide the correct alignment.

An important optimization of the instruction set would be to provide opcodes that
build in the values of certain small numeric arguments, making the instructions shorter
(and probably faster). The main candidates for this optimization are the one-byte
arguments giving the number n of a register An, Xn, or Yn, where n is small. For

example, get 1ist A3 might be repaced by a new instruction get_list 3.




21

10. Environment Stacking versus Goal Stacking
The present design is an environment-stacking model. Although it is a non-
structure-sharing implementation as far as terms are concerned, structure-sharing is still

used to represent the goals on the stack.

An earlier version of the design used a goal-stacking model. The goal-stacking model
differs from all existing Prolog implementations, that I know of, in that there is no
structure-sharing whatsoever. Not only are constructed terms (structures} represented
explicitly, but goals are too. The goal stack contains an explicit representation of the list
of goals remaining to be executed. This list is just the "resolvent" of traditional
resolution theory. There is no need to store vectors of variable cells representing binding

environments.

The advantages of the goal stacking model are:

¢ Implementation simplicity. The implementation (i.e., kernel code, microcode,
or specialized hardware) should be smaller.

e Garbage collection is more straightforward (and Bruynooghe's 1982
optimization [2] follows by default).

e Tail recursion optimization is much simpler and is applicable at every
procedure call--one simply discards the calling goal if it is later than the last
choice point. ) -

o All variables in a clause are *"temporaries® and can correspond directly to
hardware registers.

e Once resolution with a clause is complete, there is no further reference to the
code for that clause. This will tend to reduce paging in a virtual memory
system. In contrast, structure-sharing {full or partial) tends to cause random
accesses to the code area.

e Related to the previous item, there are no jumps within a clause. Fewer
jumps mean better performance on pipelined hardware.

However, goal stacking also has significant disadvantages relative to environment
stacking:
e Time can be wasted in unnecessary copying, particularly when a clause is

entered and then fails early in the body. This disadvantage is not too severe,
however, since copying can be relatively fast, compared with other overheads.



22

e The stack size is less stable, so there is less scope for optimizations that buffer
the top of stack in registers or fast memory.

¢ As each goal is popped off the stack, one has to check for unsafe variables to
avoid dangling references. There does not seem to be an elegant solution to
this problem.

e It is difficult to optimize the body code. Once the goal has been copied onto
the stack, it is hard to take special actions. This makes it awkward to handle
arithmetic expressions and frustrates the possibility of checking for unsafe
variables in the body code.

¢ Disjunction is awkward to handle, for similar reasons.

e The representation of goals on the stack is less compact than the
environment model, at least in the present refinement of the environment
model where environments are trimmed during execution.

The problem of dealing with unsafe variables is particularly severe, since it involves
much checking at runtime, which can be largely avoided in the environment-stacking
model by compile-time analysis generating special instructions only where needed. For
this reason, the goal-stacking model was dropped in favor of the environment stacking

model.

However the environment-stacking model has been strongly influenced by the earlier
design and can be viewed as a source-language-level variation of goal stacking. From
this point of view, an environment is a compiler-generated goal corresponding to the tail

of a clause. A clause:

P :- Q. R, 5.
is viewed as being transformed into:
P :-Q, Z1.
Zl :- R, Z2.
22 :- 8.

where Z1, 22 correspond to successive states of the environment.

11. Pros and Cons of Copying Nondeterminate Environments
With the present model, the current environment is not necessarily at the top of the
stack. It may have become "buried® by subsequent choice points. Leaving it in its

original position conserves space and avoids copying overheads. However, there would



23

be a number of advantages in copying "buried* environments to the top of the stack:

e Permanent and temporary variables can be accessed uniformly as offsets from
the top of stack.

e Environments can be modified as well as trimmed, allowing them to be
smaller.

e When dereferencing a variable, it is permissible to modify it; i.e., permanent
variables can be treated just like temporary variables.

e If copying of the environment includes relocating any self references, then a
lot of trailing will be avoided.

e Memory accesses are less random, improving performance of paging and
stack buffering.

For a software implementation, these advantages do not appear to outweigh the
copying overhead. However, the tradeoffs may well be different for a firmware or

hardware implementation.

12. Acknowledgements
This work was supported by a Digital Equipment Corporation external research grant.
I would like to particularly thank the following for making possible and encouraging this

research: Peter Jessel, Nils Nilsson, Michael Poe, and Daniel Sagalowicz.



I. Summary of Instructions

PROCEDURAL

GET/PUT

UNIFY

INDEXING

24

Appendix
HEAD BODY
proceed execute P
call P N
allocate deallocate

get variable Xn,Ai
get variable Yn, Ai
get value Xn,Ai
get value Yn,Ai

get constant C,Ai
get nil Ai
get structure F,Ai
get list Ai

unify void N

unify variable Xn
unify variable Yn
unify local value Xn
unify local value Yn
unify value Xn
unifj7§alue Yn

unify comstant C
unify nil

try me else L
retry me else L
trust me else fail

put variable Xn,Ai
put _variable Ymn,Ai
put_value Xn,Ai

put value Ym,Ai

put unsafe value Yn,Ai
put constant C,Ai

put nil Ai

put structure F,Ai
put _list Ai

try L

retry L

trust L

switch on term Lv,Lc,L1,Ls
switch on constant N,Table
switch_pq_ptructure N,Table




25

II. Prolog Machine State (during unification)

arguments

stack - heap trail
l | HB->H’| I TR’ |
p c | An | | | |
o h | goal : | ] | bound
g8 o | arguments A2 | [ [ | variable
e i __ Al | [ I | addresses
i ¢ | contin. BCE | | structures | [
b el ) BCP_| | | TR ->|
1 | backtrack B” | | I
e p | state BP | H ->| |
t.l TR’ |
E.B ->| H* |
e | contin. CE |
n ) CP_|
v i Y1 |
i | permanent Y2 |
r | variables : |
o | o
n | Yo |
m
e
n | X1 |
t | temporary : |
| variables : |
! Xn’ |
l An |
| goal 2o
| arguments A2 |
A > AL |
(PDL) | urification |
| |



26

I. Stack State (during procedure call)

determinate call . nondeterminate c¢all

| [ |

I

I

| choice point
B —>I|

|

|
E ->|

!

| environment

|

|

environment

choice point




£

27

IV. Run-Time Structure Formats

ENVIRONMENT : STRUCTURE (COMPLEX TERM)
{ cont. env. | (CE) | functor |
: cont. code : (CP) : argument 1 :
: variable 1 : (Y1) : ; :
| : | | argument N |
E variable N i (Yn) ! !
CHOICE POINT

| goal arg. ¥ | (Am)

T

| goal arg. 1 | (A1)

: cont. env. : (BCE)

: cont. code : (BCP)

: prev. choice : (B*)

: noxt clause I (8P)

: trail point : (TR;)

i heap point i (H*)




28

V. Data Formats (provisional)

bit:

Value / Address Tag
32 2 0
i refoerence address il 00|
| | |
| structure (or box) address o1 |
| | |
| list address I 101
| | |
32 2 0
| + | integer value 011 |
| | i
3z 31 0
| atom or functor number 1111
| |
32 0
N.B. Key = Term<32:3>
box *FRACTION® 111

floating point number




29

VI. Instruction Formats (provisional)

In the formats marked with a +, the opcode may be immediately followed by a one
byte argument number in the case of get and put instructions. The formats marked with
an asterisk are ponessential optimisations.

Op-Code Argument

byte: O 1 2 3 4 b
* | var |
{ I
+ | var | number |
| I I
* + | const | short value | (eign extended)
| [ [
+ | const | 1long value |
| I
+ | struct | functor no. i
I | |
| pred | procedure addr. | (an offset within the segment)
| l I
| try | clause address | (an offset within the segment)

sewitch table gize

[ |
I I
key | clause address | (an offset within the segment)
l !
I I



30

References

1. D. L. Bowen, L. M. Byrd and W. F. Clocksin. A portable Prolog compiler. Logie
Programming Workshop '83, Universidade Nova de Lisboa, June, 1983, pp. 74-83.

2. M. Bruynooghe. A note on garbage collection in Prolog interpreters. First
International Logic Programming Conference, University of Marseille, September, 1082,
Pp- 52-55.

3. E. Tick. An overlapped Prolog processor. Artificial Intelligence Center, SRI
International, Menlo Park, California $4025, 1983.

4. D. H. D. Warren. Applied Logic -- 1t3 use and tmplementation as programming
tool. Ph.D. Th., University of Edinburgh, Scotland, 1977. Available as Technical Note
290, Artificial Intellizence Center, SRI International.

6. D. H. D. Warren. An improved Prolog implementation which optimises tail
recursion. Research Paper 156, Dept. of Artificial Intelligence, University of Edinburgh,
Scotland, 1980. Presented at the 1980 Logic Programming Workshop, Debrecen,
Hungary.







