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Abstract
This report describes the design of a Prolog machine organization implementing
D. Warren’s architecture [7]. The objective was to determine the maximum
performance attainable by a sequential Prolog machine for “reasonable® cost. The
report compares the organization to both general-purpose, microcoded machines and
reduced-instruction-set machines. Hand timings indicate that a peak performance rate of

450 KX LIPS (logical inferences per second) is well within current technology limitations
and 1 M LIPS is potentially feasible.
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1. Introduction

Japan's I'ifth Generation Computer Systems project [2] aims to build highly parallel
logical inference machines with prodigious performance, by exploiting advanced circuit
technology, and by pursuing research into non-von Neumann architectures. The target

is a performance of 100-1000 M LIPS (logical inferences per second).

To attain such a performance, it will be necessary to exploit large-scale parallelism in
logic programs, of which the main kinds are AND parallelism (where several goals in a
clause are executed concurrently) and OR parallelism (where several clauses matching a
goal are processed concurrently). However it remains to be seen whether practical logic
programs have enough large-scale parallelism to enable such ambitious performance
targets to be achieved. Certainly, there are important examples of logic programs that

do not have any inherent large-scale parallelism, e.g. simple list concatenation.

From a machine design standpoint, the problem is analogous to the classical argument
between advocates of vector machines and advocates of fast scalar machines in the
numerical computation environment. To attain very high performance, a vector
capability is necessary; however, performance is bottlenecked by scalar performance.
Similarly, to attain very high performance in logical inference machines, tnherent
parallelism must be exploited; however, per formance will be bottienecked by the speed of

sequential in ference.

In view of these concerns it is important to investigate the maximumn performance that
can be achieved by a sequential Prolog machine, where only small-scale parallelism
(invisible to the programmer) is exploited. It is also generally agreed that systems
relying on radical departures in both hardware and software technology usually achieve
less than what is expected. For this reason, conventional pipelining methods are used to

achieve high performance.

Although the processor model discussed here is sequential, the architecture is
structured to permit exploitation of uni fication parallelism, by allowing implementations
with multiple execution units. AND and OR parallelism can also be successfully
implemented around this machine model in a tightly coupled multiprocessor system, of

say 8 to 16 processors, attaining very high performance.



This report describes the design of a Prolog machine organization implementing
D. Warren’s architecture [7].  The objective was to determine the maximum
performance attainable by a sequential Prolog machine for ®reasonable* cost. A
compiler is used to produce object programs in a high-level, stack-oriented instruction
set. As with most high-level language processors, e.g. ICOT's PSI [3] and the Symbolics
3600 Lisp Machine [5], the organization is centered around a micro-controller because
of the complex nature of the instruction set. In this design, the following criteria are
stressed:

o A lean cycle, i.e. the hardware i3 parlilioned to minimize the number of
logic levels between lalches in the dalapath.

e [ssue one microinstruction per cycle 1 f interlocks allow.

The cost of expanding the high-level machine instructions into microsequences is offset
by overlapping the microinstructions in a pipelined execution unit. Memory accesses are
also overlapped by use of an interleaved memory. This allows the optimal use of slow
memory, which is more cost-effective for the large physical memories required by
symbolic processing applications. Such a consideration is especially important because
memory references tend to be more random than in numerical processing, so that

caching data is less effective.

The report falls broadly into three parts. The first part describes the machine
organization. The second part presents preliminary results in the form of hand timings.
In the last part conclusions are drawn and future work is summarized. Refer throughout

this report to Warren 7] for details of the Prolog machine architecture.




2. Organization

The model described is a single-user, single-pipeline Prolog processor. The memory
system, instruction and execution units (I-Uﬁit and E-Unit(s)) and pcontroller are
discussed in this report. Systems issues, e.g. interrupt handling, are not discussed. The
model description will set the stage for an answer to the following question (see

Conclusions):

Instead of designing a special-purpose processor, why not emulate the instruction set
on a general-purpoge pcoded machine, e.g. Symbolics 8600, or compile it onto a reduced
instruction set machine, e.g. IBM 801 [4]?

A summary of the design evolution is given at the end of this chapter. It is helpful in
keeping subtle and interrelated design decisions in perspective, but cannot be discussed

until terms are defined.

2.1 Memory

The memory model is an interleaved memory with a four cycle access. Because
memory accesses are overlapped, access time is not a critical parameter in the processor
model. For a single E-Unit, first-come-first-served (FCFS) module queues prevent the
possibility of read-write, write-read and write-write races; (extension to multiple E-Units

will require a more complex solution).

The model can be extended to include a cache in front of memory or in the I-Unit only.
If the locality of heap references is minimal, the cache is better used for instructions

only, especially in a multiple E-Unit system.

2.2 E-Unit
The basic datapaths of the E-Urit ( figure 1) form a three stage pipeline:

o C stage - Array access of the stack buffer, register file, trail buffer and
control counters, latching results into the temporary registers (T,T1) and
push-down list (PDL).

e E stage - arithmetic-logic unit (ALU) execution, latching results into the
result register (R), memory address register (MAR) and memory data register
(MDR).



e P stage - Put-away into C stage arrays.

2.2.1 Micromachine

Many of the high-level Prolog machine instructions make an arbitrary number of
passes through the execution pipe. Controlling such complex sequences while minimizing
pipeline breaks is well suited for data-stationary pcode [1]. The gcontroller {figure 2)

function is to supply the execution pipe with pginstructions of the form:
| C,LE,P control | locks to set | branck control | branck addreas |

Thus each pginstruction contains control information for a single pass through the pipe.
A pinstruction is joined with the machine instruction operand to form a control word.
Control words are latched in a series of control registers, one per stage (figure 8). At
each st.ag;e, the control word is checked against resource locks. A control word can
proceed to the next stage if no required resources are locked and subsequeni{ control
words can proceed. If the control word cannot proceed, constituting a pipeline break,
the result of stage execution is not latched. Resource locks, as indicated in the

pinstruction, are initially set when the control word first enters the pipe.

The [-Unit delivers the initial ginstruction address of the psequence corresponding to
each machine instruction. These are queued in the E-Unit. The model assumes distinct
psequences for instructions executed in read and write modes. Because the pinstructions
are overlapped, the mode may be selected after subsequent psequence addresses have
been queued. Therefore either the I[-Unit must deliver two alternative paddresses
(corresponding to the two modes) from which the E-Unit selects one, or else alternative
ptsequences are allocated on sufficient boundaries in the pstore to allow concatenating

the mode to a single paddress to form the correct gaddress.

The pstore is a two port read-only memory (ROM) permitting access to the next
sequential pinstruction and the target pinstruction indicated by the branch address field
of the current ginstruction. The type of pcontrol transfer is indicated by the branch
control field. The controller supports proutine call, return, unconditional branch,
conditional branch, dispatech next machine instruction and n-way branch (via a paddress
ROM). The controller can dispatch a new machine instruction every cycle (if the I-Unit

can supply them) by virtue of a bypass around the paddress queue. A conditional




branch can be resolved by a logic signal produced early in the cycle, selecting the correct
pinstruction late in the cycle. For branch conditions generated too late in the cycle, e.g.,

by arithmetic comparison, an extra cycle is taken, keeping the cycle lean.

2.2.2 Tag Definition

As with other tagged architecture machines, careful consideration must be given to
defining an extensive, but not excessive, set of tags. The tag encoding must permit quick
decoding for determining object type, a criterion directly related to the critical path of
the pcontroller because conditional branches can be resolved by condition codes set by
tag decoding. A benefit of the tagged architecture is the ability to introduce hardware
type checking in the Prolog engine.

Associated with each object in the machine is a 5-8 bit tag. This simplifies testing data
objects in unification and testing procedure objects in clause indexing. Most objects are
one word in length {32 bits) not including the tag. Longer objects, e.g., lists, structures,
and real numbers, are composed of more than one word. Lists are a special type of

structure with an implied arity of two. Structures and lists look like:

STRUCTURE:
| pointer to | | |
| functor | ——————————— >| functor |
| | I |
| |
| arity I
| |
| first |
| argument |
| |
| second |
last

argument




LIST:
| pointer | | |
| to list |-—=—=—---—- >| 1234 |
l | j |
| pointer | | |
| to list [|--——————-—- > 6678 I
I l I I
| pointer |
The tags are organized as follows:
tag type object contains:
000000 variable its own address ("variable reference")
011000 reference address of another object
010000 atom identifier
010001 dinteger integer value
010010 real exponent value (immediately following is:
manigsa value)
010011 structure ptr address of structure
010100 structure functor identifier (immediately following are:
arity (N)
first argument
second argument
Nth argument)
010101 1list ptr address of list
00O instruction code (remaining tag bits are opcode?)

The first tag bit represents data or program. The second tag bit indicates if the object is
bound or unhound. The third bit indicates if the object is a reference to another object.
The last bits distinguish between nonreference objects. This is confusing because a
structure pointer is considered a "nonreference® object, even though it refers to a

structure. Reference objects are the stuff with which the unification algorithm glues



together nonreference objects. Thus it makes no sense to have a list-reference object,

but a list pointer object is needed.

Consider the following example. State 1 contains two unbound variables. State 2
depicts the binding of the first variable to a list. State 3 depicts the binding of the
second variable to the first (bound) variable. The second variable becomes a reference,

not a list pointer, otherwise it would represent the wrong structure.

1. variable variable

2. list variable
I
|
integer
list
!
I
variable
atom

3. list{-———====== reference

integer
list
|
I
variable
atom

The first three tag bits are kept in decoded form to permit fast testing in hardware. If
there are less than 128 opcodes, then the remaining tag bits for instruction objects can
be used for the opcodes. This organization also permits the extension of type checking of
unbound variables and reference pointers. For instance, list-variables can be created by
the compiler with tag=00101. During runtime, binding of such a list-variable to
anything other than a list pointer causes an error interrupt. A list-reference with
tag=01101 is then needed to bind a list-variable to a list pointer object (as in above
example). Other unbound variables to be bound to the same reference chain compare

their list-variable tags with the list-reference tag during runtime type checking.

In the dereferencing algorithm (see Appendiz I), it is essential that the reference and



variable tags are mutually exclusive because only the reference tag is checked. If all
variables were also considered references, then dereferencing would loop forever when it

hit a leaf variable.

An object, once loaded into 2 temporary register, exists in two places: that register and
the stack where it permanently resides. This means that a variable reference in a
temporary register is like a nonvariable reference to a variable (reference). For this
reason, whenever an object of tag ®"variable® is loaded into a temporary register, its tag
is changed to "reference.” The object in the temporary register will be referred to as "a

reference to a variable.®

nonreference

T: | 123 I simple case
| | atom, integer, etc.

nonvariable reference

T: | Y [ = mmn >~ 123 | still simple
! [ | I Y is a bound variable

Bnonvariable reference® variable reference
T:] X [~=—mmm > X [--+ confusing
I [ I | | X is an unbound variable
- | X’s tag in T is changed from
[ | variable to reference.
pmm————— +

2.2.3 Datapaths
The E-Unit datapath includes a stack buffer, general register file, trail buffer and PDL.

The trail buffer is used to cache the trail stack segment, and is not strictly necessary.

The PDL is used during unification. Both arrays are first-in-last-out stacks which are

burst to memory when they fill up. A multiple E-Unit organization refers to multiple
pipes, each with its own pcontroller and ALU, sharing a single IF-Unit, stack buffer and

register file.

The register file is modeled as a one input, one output array storing the temporary

variables and procedure arguments. Control pointers are implemented in ad hoc



registers and counters. The B, E and A (top-of-stack) pointers are needed for managing
the stack. The S and H pointers are kept in counters, reducing interlocks. The P and CP

pointers require access from both the I-Unit and E-Unit(s).

The stack buffer caches the top of stack in a fast array. The stack holds two types of
objects: environments and choice points. Each is arbitrary in length. An environment
holds permanent variables, which are directly referenced. A choice point holds state
pointers and goal arguments, which require nothing more than sequential referencing,

but are accessed directly for design uniformity.

It is stipulated at present that, to avoid thrashing in the stack buffer, current
environments not contained in the buffer must be copied onto the top of the stack from
memory. This policy increases stack size in an effort to enforce locality of stack
references. It also simplifies buffer management because all references are forced to map
into the buffer.

Because the stack is a segment in the virtual address space, it is conceivable to
reference the stack directly from memory. If a memory cache is needed anyway, e.g., for
the heap and program, the stack reference penalty will be reduced. Such an
organization does not differ greatly from a standard (scientific/numerical) processor [4].
However, in such a model, general-purpose register allocation puts a burden on the
compiler whereas there is no register allocation, per se, for a specialized stack-buffer
model. This problem worsens with multiple E-Units, which must lock portions of the
stack. Setting and testing locks on word units is less expensive in a sequential stack

buffer than in a set-associative cache,

Without a general-purpose cache, a specialized buffer is needed to decrease the stack
reference penalty. The stack-buffer design we favor holds a sequential set of locations
from the virtual stack segment. The buffer is managed explicitly by the ucontroller. A
copy-back policy is instituted, i.e., updates are not immediately reflected in memory. All
direct memory references interrogate the buffer and make updates if the virtual address

falls between the bounds registers.

Stack references consist of an offset plus a base register. The offset is specified by
machine instructions with a value. pginstructions can specify a value or hardware

counter (for use when reading and writing choice points). The base register is either the
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E or B register. Because of the time critical nature of stack address generation, the
number of buffer entries must be kept low. The generated address is guaranteed to fall
within the valid buffer range by virtue of the following policy. When the allocate and
try instructions update a base register to become the new top of the stack and that
point is within a certain number of buffer entries from the lowest page, a copy-back is
initiated. In the current model, a copy-back cannot proceed in parallel with E-Unit

operation, i.e., the pipe is broken.

2.3 I-Unit
The primary function of the instruction unit is to supply instructions to the E-Unit(s).
The I-Unit also processes certain control instructions directly from the instruction buffers

in an effort to reduce the procedure call penalty.

The Prolog machine instruction set has no conditional branches, only procedure calls,
which can match one of possibly several clauses. The main design criterion of the I-Unit
is to compute clause addresses quickly. To this end, only indexing on (ag
(switch on term) is optimized. Control instructions detected and executed in the I-Unit
are prefetch and prefetch continuation. These instructions attempt to prefetch the
next clause to be executed into the I-Unit. If the indexing method is not by tag,

however, no prefetching is done.

prefetch P is generated by the compiler anywhere before the corrésponding jump or
invoke instruction. P is the address of a switch on term instruction having four
operands defining a dispatch table. Each operand, a clause address, corresponds to a
different type tag. If the clause has alternatives, they are explicitly defined by try,
retry and trust instructions linking the alternatives. The jump instruction is generated
by the compiler at the clause end, indicating that the instruction streams should be
switched, i.e. it is an unconditional branch to a clause determined in the preceding

prefetch.

The I-Unit services prefetch P by using the low-order bits of P to address a small map
cache (figure 4}. This cache holds a set of previously seen switch on term instructions.
If the entry key matches P, the tag of register A1 (holding first argument of a procedure

call) is used to select which clause is to be executed.
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To allow synchronization between the I-Unit and E-Unit, there is a bit in the
pinstruction associated with the P stage. The bit indicates that the put-away should
also be directed to the I-Unit (this complicates the datapaths given in figure 1). The
architecture specifies that only an Al register (holding the functor of the first argument)
put-away stage should be used in conjunction with this bit; hoWeVer the mechanism
described is more general and powerful, allowing any A register (any argument) to be

used for hashing.

The functor is latched into a dedicated register in the I-Unit and the register then
becomes valid. This allows the placement of the prefetch anywhere in the stream. The
I-Unit simply retries the mapping each cycle if the register is not yet valid. Note that
this mechanism allows the compiler to use the Al register to accumulate partial results

and then transmit the complete result for hashing.

This scheme complicates the machine architecture, however. Each of several
operations used to modify an A register must have two opcodes corresponding to the
special pinstruction bit. A compiler must recognize the final put-away of A1 and use the

alternate opcode.

It may be sufficient, in the cases where Al is used to accumulate partial results, for the
compiler to simply *turn off" this optimization, i.e., not use prefetching. Thus an
alternative scheme is to assume the compiler will never reload A1, and automatically

direct the (single) A1 put-away to the I-Unit. This method requires no extra opcodes.

When the mapping is finally completed and the map entry does not match, the
instruction cache is accessed for P. A suitable map cache entry is chosen for replacement
by the returning switch on term instruction. Note the map operates under the
principle that clause addresses exhibit locality, i.e. computation in a given time window
repeatedly executes the same set of clauses. This is reasonable because of recursive
looping. The map buffer can be considered a dynamic collection of "road maps* for

various procedure invocations.

There are two interchangeable instruction buffers (FCFS queues) in the I-Unit. With
each is associated a program counter. At any given time, one is marked ®current® and
the other *future.® The eventual clause address produced by the prefetch mapping is

latched into the future program counter. This counter contends with the current
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counter {and E-Unit(s)) for cache cycles, in an effort to fill up the future instruction
buffer.

The jump instruction, also executed in the I-Unit, switches the buffers. In clauses
requiring even moderate unification of procedure arguments, the I-Unit will be able to at
least partially fill the future instruction buffer beneath normal E-Unit operation, if the
cache holds the instructions. This gives a one cycle delay, needed to recognize the jump

and switeh I-buffers.

prefetch continuation is similar to prefetch, but is used in unit clauses and has no
operand. The CP register holds the address of a switch on term instruction. The
invoke instruction is similar to jump, but stores the continuation address in the CP

register. Both are executed in the I-Unit.

2.4 Summary

The machine design is the result of several iterations of both architecture and
organization redefinition. The original architecture (goal-stacking) defined a ®zero
address® instruction set, i.e., an instruction got its operand (implicitly} from the stack.

An organization model was developed, involving a stack buffer, and timings were done.

This architecture evolved into the environment stacking architecture, using a "single
address® instruction set described in Warren [7]. The operand is specified explicitly in
the instruction by a base register and offset, although address generation is more limited
than in a conventional machine. The idea was to directly address the current
environment on the stack. This permits multiple E-Units to operate concurrently with

less interlocking than if all operands were implicit.

The organization model developed for the environment-stacking architecture gave
timings similar to those of the goal-stacking architecture. This was due to model
assumptions that the stack buffer could be accessed either explicitly or implicitly in one

cycle.

The machine organization also evolved. Portions of the design are optional, such as
the trail buffer and PDL. Removal of this hardware would involve relatively minor
pcode modification. A major change involves increasing the number of temporary

registers to three, by adding a TO register (placed between the {E, B, HB, TR} registers
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and the ALU). This register speeds up certain instructions (e.g., get list) at the

expense of increased complexity and cost of the datapaths.

The next evolutionary step for the organization is to go to multiple E-Unit pipelines.
Each such pipeline contains a private ALU,PDL and {T, T1, MDR, MAR, R, §} registers.
All the pipelines share 2 common stack buffer, register file, and control registers (it may
be necessary to increase the number of ports in each array). Each pipeline has it own
pcontroller. The I-Unit issues groups of machine instructions to each pipe. A group
contains the code unifying a single term or argument of the clause head or a goal in its
body. Development of a multiple E-Unit model is a topic for future research [see

Conclusions).
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3. Timing Results

Using the hardware model described, approzimate pcode translations were written for
the machine instruction set. Two simple Prolog programs were expanded from machine

instructions to gcode traces. This chapter presents hand timings of those traces.

3.1 Determinate Concatenate

The first program trace is the determinate execution of concatenate:

concatenate([],L,L).
concatenate ([X|L1],L2, [X|L3]) :- concatenate(L1,L2,L3).

Recall from (7] that concatenate translates into the following machine instructions:

concatenate/3: awitch__on_term(Cia..Cl.C2,Ia.i1)

Cla: try me else C2a
Cl: get nil Al
get value A2,A3
proceed
C2a: trust me else fail
Cc2: get list Al

unify variable X4
unify variable Al

get list A3

unify value X4

unify variable A3
execute concatenate/3

For instance, "?- concatenate([a,b], [c.d,e].X)." instantiates X to [a,b,c,d,e].
The timing considered here is based on the execution of
“?- concatenate(fa,b,c,...],[z],X)." To execute this goal, the following machine

instructions are executed repeatedly.

prefatch concatenate/3
get list Al
unify variable X4
unify variable Al
get list A3
unify value X4
unify variable A3
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jump

The second clause is always immediately chosen, i.e., no unification is attempted with
the first clause, by virtue of indexing. The 8 machine instructions are dynamically

expanded into 12 ginstructions. The gcode trace is given in Appendiz II.

The timing diagram below has time, in machine cycles, running vertically and pipe
stages running horizontally. The decode (D) stages, representing the ustore access, are
annotated with the ginstruction number. The start of a usequence is labeled with the
corresponding machine instruction. Memory references are denoted by blank stages
extending beyond the execution stage. Memory reads are followed four cycles later by a

put-away stage.

time

11D | 1 get list Al

21 C| D} 2

3 fc1D| 3 unify variable X4
4 | E | S REG DEP

5 | P

6 ' ¢ 1 D | 4 unify variable Al
7 [ElCIiDI b get list A3

8 [ TEICIDI 6 .

g 1 1 ¢lDI 7

10 | | | | E | MEMDRY ACCESS

11 [

12 el 1 b |

13 2 T

14 P

15 | P |

16 | ¢ | DI 8

17 lciDI 9

13 FEICI DI 10

19 i FTEICH LATE JUMP CONDITION
20 I | VTEID] 11 unify value X4
21 I I | 1¢clDI 12 unify variable A3
22 | I ! | E | C I JUMP DELAY
23 IV I JTEID]I] 1 <pext>
24 N
25 [ I
26 oo

27 | |

It is assumed that the I-Unit can supply an aligned instruction to the E-Unit each cycle

within the context of a single clause, i.e., instruction boundary problems are ignored. It
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is assumed that the heap is not cached. jump and prefetch are not shown because they
are removed from the instruction stream by the I-Unit. The timing indicates 8
instructions exectite in 22 cycles, giving 2.8 cycles per instruction. If one procedure call
is considered a single logical inference, the performance is 22 cycles per logical in ference
(CPL1).

The following table summarizes the frequency and total penalty of each type of break

in determinate concatenate:

# occurrences penalty % total
(cycles)
control reg. dependency 1A 2 20
memory Tread 1B 8 80
microcontrol 1C 1 10
macrocontrol 1D 1 10
10 100

Miecrocontrol refers to delayed branch resolution due to arithmetic compares. Macro-
control refers to jump delay. The control register dependency was due to an interlock on

the 8 pointer.

3.2 Nondeterminate Concatenate

The second program trace is a list substring search requiring the nondeterminate

execution of concatenate:

substring(Sub,Bef,Aft,Str) :- concatenate(Bef,Int,Str),
concatenate (Sub,Aft, Int).

For instance, *?- substring([a,b],X,Y,[d,a,a,b,c])." instantiates X to [d,a] and
Y to [el, indicating the strings delimiting the substring [a,b]. The timing considered
here is based on the execution of *?- substring([z].X,Y,[a.b,c,...]1).* which

repeatedly fails. The machine instructions executed in each iteration are listed below:

<guccesding unit clause>

prefstch continuation prefetch next clause

try me elee Ci create choice point

get nil Al 1 level of indirection on dereferencing Al
bind A1 (variable) to nil
trail binding
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get value A2,A3 unify A3 (list pointer) to A2 (variable)
- 1 level of indirection on dereferencing A2
¢ levels of indirection on dereferemncing A3
trail binding

jump

<failing recursive clauge>

prefetch concatenate/3

get list Al

unify variable X4

unify variable Al

get list A3

unify value X4 unify bound to bound - fails, backtrack
detrail 2 bindings

<succeading recursive clzause>

prefetch concatenate/3

get _list Al 1 level of indirection on dereferencing Al
bind Al (variable) to newly created list pointer
trail binding

unify variable X4

unify variable X1

get list A3

unify value X4 unify X4 (variable) to bound argument
1 level of indirection on dereferemncing X4
no trailing ‘

unify varizble A3

jump

The timing was done with assumptions similar to determinate concatenate. The failure
of unify value X4 causes the top of stack to be reset to the last choice point. The 19

instructions expand into approximately 89 pinstructions. The gcode is given in

Appendiz III. The timing follows.

time

11D 1 try_me else
21ci{D]| 2

3| E|. TEST FOR COPY-BACK
4 | P .

b

8 | D | 3

7 FC 1 DI 4

8 lE| ¢ LATE JUMP CONDITION
9 | EI DI B

10 Pl clD]| 6
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11 {EI C I LATE JUMP CONDITICN
12 | E| D 7

13 | Pl C| DI 8

14 lEI C | LATE JUMP CONDITICON
15 [EIDI 9

18 {|PICIDI 10

17 | EICI DI 11

18 IPIEICI DI 12

19 [ D | IPTE]| CI 13

20 | ¢ I DI lPIlEI 14

21| E|CI|D] | P I 15 get nil Al

22 | PIEI|ICIDI 16

23 { P | fciDI 17

24 | E | MEMORY ACCESS
25 | |

26 I I

27 [ I

28 | [

29 | P |

30 | ¢c1 DI 18

31 fCc{DI 19

32 fEICLIDI 20

33 IE] C I LATE JUMP CONDITICN
34 | E| D | 21

35 | I ciDl 22 get_val A2,A3
36 I lIEjCciDI 23

37 ! | P 1| lciDl| 24

ag I I | ¢ | DISPATCH VIA ROM
39 | D | 25

40 | ¢ | D | 25

41 | E | MEMORY ACCESS
42 | |

43 | |

44 | I

45 | I

46 | P |

47 | € 1D | 27

48 } C | DISPATCH ON ROM
49 | DI 28

50 | ¢ | DI 29

51 EICI| DI 30

52 ] lE| C | LATE JUMP CONDITION
53 I | | E| DI 31

54 | I | ¢ 1 DI 32

55 J [ Il CI DI 33

56 ' EI| C | JUMP DELAY
11D |21 E| 1 get list Al
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27
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20

oo

LATE JUMP CONDITION
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14
16

16

17
i8
19

get list Al

MEMORY ACCESS

LATE JUMP CONDITION

copy_var X4
copy_var X1
get list A3

unify val X4
S REG DEP

MEMORY ACCESS

DISPATCH VIA ROM

MEMORY ACCESS

DISPATCH VIA ROM

LATE JUMP CONDITION
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44 I 1 1EI
45 I ! !
48 [ I
47
48
A9

HOO
oo
mao
ao

20
21
LATE JUMP CONDITION
22
23 unify var A3
JUMP DELAY

50
b1
52
53
b4
55

| E |
I
Pl
I
I
| P I

D |

<next>

The trace executes in 165 cycles, giving 8.7 cycles per instruction and 55 CPLI (assuming

each iteration corresponds to 3 logical inferences). The pipe breaks are summarized as

follows.

# occurrences  penalty % total
(cycles)

memory Tread 8 38 49
microcontrol

late branch condition 14 14 19

dispatch via ROM b b 7
macrocontrol

procedure call 2 2 3

stack tests 10 14

register dependency 3 6 8

73 100

ROM dispatches are used by unification gcode for quick n-way branches dependent on

the tags of the two terms unified. The procedure call delay assumes the prefetching

mechanism hid most of the penalty. Stack lests refer to stack bounds checks when

reading and writing a choice point. In this example, the choice point was always found

in the stack bufler by virtue of tail recursion optimization.

3.3 Analysis

Assuming a 100ns cycle time for the model, which seems feasible using -circuit

technology equivalent to the Symbolics 3600, determinate concatenate rums at 450 K

LIPS and nondeterminate concatenate runs at 180 K LIPS. To put these results in

perspective,
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o A firmware implementation of the Prolog instruction set on the Symbolics
3600 is estimated to run determinate concatenate at 110 K LIPS.

o Dcterminate concatenate compiled by DEC-10 Prolog compiler [6], runs on
DIEC-2060 at 40 K LIPS.

o PSI performance is predicted to be 30 K LIPS [3].

o On the basis of a prototype implementation it is estimated that a macrocode
emulation of the Prolog instruction set on the VAX/780 would run
determinate concatenate at 15 K LIPS.

For determinate concatenate with the heap referenced through a one cycle cache with
bypass (and 100% hit ratio}, 4 cycles are saved. Compiler optimization can prevent the
interlock on S, saving 2 cycles. These modifications combined give the performance of

2.0 cyeles/instruction and 16 CPLI, a 27% speed improvement.

For nondeterminate concatenate, a cached heap would, at best, save 24 cycles.
Removing S interlocks saves 6 cycles. These modifications combined give the

performance of 7.1 cycles/instruction and 45 CPLI, an 18% speed improvement.
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4, Conclusions and Future Work

The work completed to date indicates that a sequential Prolog machine with significant
performance can be built using conventional design principles for pipelined processors.
Assuming reasonable technology, the timing results show the model runs significantly
faster than all current or near-future implementations of Prolog. Far more importantly,
it is felt the sequential pipelined machine will provide the best cost/performance ratio in
the just now emerging high-end environment of logical inference processors and this

cost/performance advantage will extend to implementations with multiple E-Units.

There appear to be several reasons why the pipelined Prolog processor can significantly
out-perform a Symbolics 3600 pcode implementation. The lean cycle of the Prolog
processor permits greater overlapping than the partially ovérlapped 3600 "fat® cycle.
Given an equivalent technology, the model has a cycle time of less than half the 3600.
Compared to the 3600, memory accesses are more highly overlapped, allowing a slow
memory with less performance degradation. In addition, the specialized hardware
support for procedure call, indexing and unification dispatching enhances Prolog
performance. It should be borne in mind, however, that the present processor design is

probably substantially more complex (and costly} than the 3600.

Justifying any advantage over reduced instruction set machines is more difficult. The
microarchitecture of the Prolog processor is primitive and permits more parallelism, on
the datapath level, than a conventional machine. The object code is more compact,
making memory caching more effective. There are no conditional branches in the
machine instruction set, only on the ginstruction level, permitting branch target prefetch
and "late select.® The Prolog macroinstruction prefetch unit is expected to be more
efficient than a conventional prefetch umnit, which must change context more frequently.
Were the instruction set compiled into primitive instructions, meny conditional branches
and subroutine calls would be generated (if only to keep the object program to a
reasonable length). Although the dynamic translation of machine instructions into
psequences has a large latency, it is usually hidden when calling procedures by executing
certain procedural instructions in the I-Unit concurrently with E-Unit operation.
Disadvantages of the Prolog machine include the effectiveness of a directly accessible
stack buffer, which is unproved. In addition, the impact of a large uinstruction on

hardware cost (and speed) has not been assessed.
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Related design problems concern designing a better stack buffer and defining multiple

E-Unit operation.

The fundamental problem with nondeterminate computation is the burden of saving
the comiplete program history at each choice point. Currently, the stack holds both
active environments and backtrack information, consisting of choice points and inactive
environments. The creation of a choice point "freezes™ all objects below it on the stack
because resumption of that choice point must reinstate the machine exactly. This lessens
the locality of the stack, i.e., current environments may lie deep within the stack,
resulting in degraded stack performance. A primary concern is to increase the stack
locality of the computation. This is currently achieved by copjring the current

environment to the top of stack. Two other ideas are being entertained:

e Split the stack into a choice-point stack and environment stack.

e Split the stack into two windows, holding the current choice point and the
current environment. Note that one of these objects must be at the top of
the stack.

Additional E-Unit pipes introduce new problems as well as aggravating old ones. Most
critical is the instruction bandwidth produced by the -Unit. This will limit the number
of pipes, beyond which performance is no longer cost effective. In addition, memory
requests from different pipes can cause races. These must be prevented either by careful
compiler scheduling of the pipes or dynamic synchronization in hardware. An efficient
set of interlocks and hardware locking mechanisms is needed. The combination of these

considerations appear to limit the number of pipes from 2-4.
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I. Appendix: Instruction Set Microcode

The following pcode descriptions are approximate in nature. Sequences for common
instructions and abstract operations are given. Instructions not given can often be
inferred from similar instructions. Control instructions are not given. Some complex
portions of sequences are also missing, replaced with a *?*, e.g., stack-buffer

management operations.

The descriptions are given in an informal register transfer language, to indicate the

pipe stages necessary for each. An example of a pginstruction description follows:

Loop: C T = A3
jump = islist(A3)
E R=T+Ti
MAR = T,X5
P Y4 =R : jump (LOOP)

This imaginary instruction loads register A3 into the T register. A flag bit is set from
A3’s tag (other tags are tested with isref, istret and isvar). It assumes that a previous
pinstruction has loaded the T1 register. During the execution stage, the T and Ti
registers are added and the sum is latched into the R register. A memory read is
initiated by loading the virtual address in T and the put-away target, register X4, into
the MAR (a memory write is indicated by loading the MDR). During the put-away stage,
the R register is stored into register Y4. When the memory read completes, another put-

away is performed.

The label and jump indicate control flow. There are two pre-defined labels:
DISPATCH, which indicates the first pinstruction of the next macroinstruction and
RETURN, which indicates the pginstruction pointed to by the top of the micromachine
push down list. There are several methods of transferring control within the gcode:
unconditional branch, conditional branch, dispatch next macroinstruction, dispatch on

unification table, call and return.

Certain stages can be "doing nothing.* This is noted by a "nil® argument. All stages
*doing nothing® after the last stage to "do something® are absent in the notation. For

example, the following two pinstructions are equivalent:
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C nil

E R=T+T1

P nil : (DISPATCH)
C nil

E R=T+T1 : (DISPATCH)

There are often alternative choices of gcode for implementing the same operation. Time
is traded for space, or time (for frequent operations) for time (for infrequent operations).
Alternative datapaths introduce different pcode - here the trade-off is time for cost.
Optimizing for speed is tricky because minimizing pcode paths (reducing number of
cycles) often adversely effects cycle time by complicating the hardware (increasing the
length of critical paths). Relevant alternatives are given so that final design decisions

can be made for a given technology.

Basic Operations

Fail
This operation is performed when a failure occurs during unification. It causes
backtracking to the most recent choice point. The pointers saved in the choice point are

restored in following order:

B-=—=-- >BP current program pointer
H current heap pointer
TR current trail pointer
B current backtrack pointer (to last choice point)
BCP continmation pointer
BCE current environment pointer
n number of arguments

{A1,A2, ... ,An} all of the valid A registers

The choice point is essentially discarded by restoring B to the previous value saved in the
choice point. The trail is "unwound® as far as the choice point trail pointer, by popping

references off the trail and resetting the variables they address to unbound.

FAIL: C ? <check if choice point

is in buffer or not>
MISS: C ? <purge buffer and reload>
HIT: <pop stack to B>

o @ Q
|
W
oo
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-3
it

B2

TiL = TR
done = TIi<T

nil
jump = dome

T1
TR
MAR
MDR

top of trail
TR + 1

T1

T1i| |unbound tag

(=B B |
[
nn
|
]
[4}]

&~
e

%W-—l
[y

I
s
e

W
e

H

o2

[+1]

- ]

1

T1 = Bi
i=1+1
done = T<(n+7)
R=T

Ai =R

nil
jump = done

nil

<get old program pointer>

<get old heap pointer>

<get old trail pointer>

<detrail bindings>

: jump (NEXT)

: (LOOP)

<get old backtrack pointer>

<get old continuation pointer>

<get old enviromment pointer>

<get # of goal arguments>

<restore A registers>

: jump (LOOP)

: (DISPATCH)
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This operation is performed when a variable reference (in T) is bound. If the variable is

in the heap and is before the heap backtrack point BB, or the variable is in the stack and

is before the stack backtrack point B, the reference in T is pushed onto the trail

Otherwise, no action is taken.

The code, assuming 2 trail stack, follows:

1 C
E
2 C
E
3 C
E
4 c
E
P
& LOCAL: C
E
6 c
E
7 c
E
P
NEXT:

Without a trail stack, the trailing action is done as follows:

Detrailing

Ti = H

local =T > Ti
Ti = KB

trailHB =T > Ti
jump = local

nil

jump = traillB

nil

R=T

top of trail = R
TR=TR ~ 1

TL =38
trailB=T > T1
nil

jump = trailB

nil

R=T

top of trail = R
TR=TR -1

E -]
[
I =
]
n o

'-!'-!g
[

428
o

: jump (LOCAL)

: j ump (NEXT)

: (NEXT)

: jump (NEXT)
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This operation is performed during backtracking. The trail is "unwound® as far as the
choice point trail pointer (in T), by popping references off the trail and resetting the

variables they address to unbound. The following code assumes 2 trail stack.

1 1O0P: c T1 = TR
E done = T1 < T
2 c nil
E jump = done : j ump (NEXT)
3 C T1 = top of trail
TR=TR + 1
E MAR = T1
MDR = T1||unbound tag :(LOOP)
NEXT:
Unification

This operation is performed while popping the arguments of a procedure from the stack.
The pinstructions for unify constitute a groutine. The code assumes a unification
dispatch table for calculating the unification case in ome cycle. This is a 256 entry

paddress ROM, entered as follows:

[ ROM address
microaddr | TefT refT1 listT 1istT1 strctT strctTl varT varTl

|

|
2REF | 1 i X X X X X X
TREF [ 1 0 X X X X X X
T1REF | 0 1 X X X X X X
TVAR ] 0 0 X X X X 1 0
TiVAR [ 0 0 X X X X 0 1
OBOUND | 0 0 X X X X 1 1
2L.ISTS | 0 0 1 1 X X 0 0
25TRUC | 0 0 X X 1 1 0 0
FAIL | 0 0 1 0 X X 0 0
FAIL | 0 0 0 1 X X 0 0
FAIL | 0 0 X X 1 0 0 0
FAIL | 0 0 X X 0 1 0 0
EQUAL | 0 0 0 0 0 0 0 0

The following code assumes the two terms to be unified are in T and T1.

1 UNIFY: C nil :rom
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2REF: C nil
E MAR = T.T
C jump = isref (T) : jump (2REF)
TiREF: C nil
E MAR = T1,T1
C jump = isref(T1) : jump (T1REF)
c nil :rom
TREF : C nil
E MAR = T,T
c jump = isref(T) : j ump (TREF)
C nil :Tom
EQUAL: C nil
E jump = T=T1 : jump (RETURN)
C nil : (FAIL)
25TRUC: C nil
E jump = not(both structures of same functor)
: jump (FAIL)
C top of PDL = M
R=Q+1
E R=T-7
P M=R
c top of PDL = §
Q=Q+1
E R=T-7°
)2 S=R
c top of PDL = S1
Q=Q+1
E R=T1-7
)2 51 =R
LOOP1: C T=M
E R=T-1
P M=R
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C T=8
S§=8+1
E MAR = T,T
C TL =81
E MAR = T1,T1
R=T1+1
P 51 =R :call (UNIFY)
c T=M
E jump = T<>0 : (LOOP1)
c nil
E R = top of PDL
QR=Q-1
P 51 =R
C nil
E R = top of PDL
Q=Q-1
P S=R
C nil
E R = top of PDL
Q=Q-1
P M=R : (RETURN)
2LISTS: C top of PDL = M
Q=Q+1 <Q is top of PDL pointer>
E R=2
P M=R
C top of PDL = §
R=Q+1
E R=T-2
P S=R
c top of PDL = 51
Q=Q+1
E R=T1 -2
P 51 =R
LOocoP2: C T=M
E R=T-1
P M=R

Q
-3
[t}
7]
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S=85+1
E MAR = T, T
c T1 = 51
E MAR = T1,T1
R=T1+1
P 51 =R : call (UNIFY)
c T=M
E jump = T<>0 : jump (L.OOP2)
c nil
E R = top of PDL
QR=Q-1
P 51 =R
C nil
E R = top of PDL
Q=Q-1
P 5 =R
c nil
E R = top of PDL
QR=9Q9-1
P M=R : (RETURN)
OBOUND: C nil
E local = TI1>T
c nil
E jump = local : jump (TVAR)
TIVAR: C nil
E MAR = T1
MDR = T
c T=H
E local = Ti>T
c T=1HB
E traillB = TI>T
jump = local : jump (LOCAL2)
c nil
E jump = traillB : jump (RETURN)
c nil
E R=T1
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P top of trail = R
TR=TR -1 : (RETURN)
LOCAL2: C T=2B8B
E trailB = T1>T
c nil
E jump = trailB : jump (RETURN)
C nil
E R=T1
P top of trail = R
TR=TR -1 : (RETURN)
TVAR: € nil
E MAR =T
MDR = T1
C TL = H
E local = T>T1
C Ti1 = HB
E trailHB = T>T1
jump = local : jump (LOCAL1)
C nil
E jump = traillB : jump (RETURN)
C nil
E R=T
P top of trail = R
TR=TR ~ 1 : (RETURN)
LOCAL1: C T1 =B
E trailB = T>T1
C nil
E jump = trailB : jump (RETURN)
c nil
E R=T
P top of trail = R
TR=TR -1 : (RETURN)



Indexing Instructions

try me else n
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This operation is performed when entering a Prolog procedure for which there is more

than one potentially matching clause. The following values are put into a choice point

object:

{A1,A2, ... ,An}

1
BCE
BCP
B
TR
H
BP

all of the valid A registers

number of arguments

current enviromment pointer

continuation pointer

current backtrack pointer (to last choice point)

current trail pointer
current heap pointer
current program pointer

First, the top of stack register, A, is incremented by n+7 (computed by compiler). B is

saved, and reset to the top of stack. The current program pointer is the last item to be

pushed onto the choice point, because it must be popped as early as possible during the

failure sequence to allow prefetching of the code. HB is set to the current heap pointer,

and B is set to point to the current top of stack. The implementation of pushing a

variable number of A registers onto the stack is rather tricky. A counter, initially

specifying the number of valid A registers, is decremented each C cycle and used to

access the register bank. The jump condition is set by the counter.

LCOP:

C

T=38
Ti = A
i=7
R =T1 + (n+7)
B=R
A=R

Iy

TL = Xi
R=T1
Bi =R
i=41+1

jump = i<(a+7?)

TL =H

<gave old B>

compare A to Z in hardware
if too close, copy-back
buffer page.

: jump (LOOP)
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Put Instructions

Put var Y n,m

This instruction represents a goal argument that is an unbound variable.

instruction puts a reference to permanent variable Yn into register Am and initializes Yn

with the same reference.

c
E
P

put_val Vn,m

This instruction represents a goal argument that is 2 bound variable. The instruction

395

ool

w3

oo
i n
—d

w3

T

R
R

BE

puts the value of register Vn into register Am.

c
E
P

TL =Vn
R=T1
Am = R

El In| |unbound tag

<old B>

: (DISPATCH)

: (DISPATCH)



36

put comst C.m
This instruction represents a goal argument that is a constant. The instruction puts the

constant C into register Am.

A -
i

- Q

c
E
P

5

: (DISPATCH)

put struct N,.m
This instruction marks the beginning of a structure without substructures occurring as a
goal argument. The instruction pushes the functor N for the structure onto the heap,

and puts a corresponding structure pointer into register Am.

1 c T=N
TL = B
H=H~+1
E MAR =Tt
MDR =T
R=T1
P Am = R : {(DISPATCH)

Get Instructions
get var V n,m
This instruction represents a head argument that is an unbound variable. The

instruction gets the value of register Am and stores it in register Va.

1 c Ti = Am
E R=T1
P Vn =R ' : (DISPATCH)

get val X n.m
This instruction represents a head argument that is a bound variable. The instruction
gets the value in register Am and unifies it with the contents of register Xn. The final

result is left in register Xn.

1 c T = Am
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2 C TL = Xn :call (UNIFY)
3 C nil

E R=T1

P Xn =R : (DISPATCH)

get val Y n.m

This instruction represents a head argument that is a bound variable. The instruction
gets the value in register Am and uni fies it with the contents of register Yn.

= Am

1=TYn :call (UNIFY)

1 c T
T

2 c nil : (DISPATCH)

get const C,m

This instruction represents a head argument that is a constant. The instruction gets the
value of register Am and dereferences it. If the result is a reference to a variable, that
variable is bound to the constant C, and the binding is trailed if necessary. Otherwise,
the result is compared with the constant C, and if the two values are not identical,

backtracking occurs.

The following code assumes a TO register.

1 C T = An
1listT = islist (Am)
jump = not isref (Am) : jump (NOTREF)
2 LOOP: C To =B
E MAR = T,T1
trailB = T>TO
3 c jump = isvar(T1)
TO = HB
E trailiB = T>TO : jump (VAR)
4 c jump = isref (T1)
1listT = islist(T1)
E R=T1
P T=R : jump (LOOP)
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b NOTREF: C TL1 =C
E jump = T=T1 : jump (DISPATCH)
6 c nil : (FAIL)
7 VAR: c T=C
E jump = not trailHB and not trailB
MAR = T1
MDR = T : jump (DISPATCH)
8 c nil <assume trail stack>
E R=T1 :
P top of trail = R
TR =TR - 1 : (DISPATCH)
The following code assumes no TO register.
1 c T=Am
listT = islist (Am)
jump = not isref (Am) : jump (NOTREF)
2 Logp: C nil
E MAR = T,T1
3 C jump = isvar(T1) : jump (VAR)
4 C jump = isref(T1)
listT = isliet(T1)
E R=T1
P T=R : jump (LOOP)
B NOTREF: C TL1 =C
E jump = T=T1 : jump (DISPATCH)
6 C nil : (FAIL)
7 VAR: C T=1B
E trailB = T>T1
8 C T =HB
E trailHB = T>T1
9 C T=C
E jump = not trailHB and not trailB
MAR = T1
MDR =T - :jump(DISPATCH)

10 C nil <assume trail stack>
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E R=T1
P top of trail = R
TR=TR -1 : (DISPATCH)

get list m

This instruction marks the beginning of a list without substructures occurring as a head
argument. The instruction gets the value of register Am and dereferences it. If the result
is a reference to a variable, then that variable is bound to a new list pointer pointing at
the top of the heap and execution proceeds in *write®™ mode. Otherwise, if the result is a
list, then the pointer § is set to point to the arguments of the list and execution proceeds

in "read* mode. Otherwise, backtracking occurs.

The following code assumes a TO register.

1 C T =Am
T1 = Am
mode = read
list = islist(Am)
jump = not isref (Am) : jump (NOTREF)
2 LOOP: C mode = write
TO =B
E MAR = T,T1
trailB = T>TO
3 Cc TO = HB
E traillHB = T>TO
jump = isvar(T1) : jump (VAR)
4 c jump = isref(T1)
list = islist(T1)
E R=T1
P T=R : jump (LOOP)
5 NOTREF: C mode = read
jump = list
E R=T1
P S=R : jump (DISPATCH)
6 c nil D(FAIL)
7 VAR: C T =
E jump = not trailHB and not trailB
MAR = T1
MDR =T : jump (DISPATCH)
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nil <assume trail stack>
R=T1

top of trail = R

TR=TR - 1 : (DISPATCH)

The following code assumes no TO register.

10

LOOP:

NOTREF:

VAR:

c

O

T=Amn

Tl = Am

mods = read

list = islist (Am)

jump = not isref (Am) : jump (NOTREF)
nil

MAR = T,T1

jump = isvar(T1) : jump (VAR)
jump = isref(T1)

list = islist(T1)

R=T1

T=R : jump (LOOP)
jump = list

R=T1

S=R : jump (DISPATCH)
nil : : (FAIL)

T=8B

mode = write
notrailB = T>T1

T =HB
notraillHB = T>T1

T=H

jump = notrailHB and notrailB

MAR = T1

MDR =T : jump (DISPATCH)

nil <agsume trail stack>
R=T1
top of trail = R

TR =TR - 1 : (DISPATCH)
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Unify Instructions
unify var Vo
This instruction represents a head structure argument that is an unbound variable. It

gets the next argument from S and stores it in register Va.

-+
Ti,Vn : (DISPATCH)

copy var V n
This instruction represents a head structure argument that is an unbound variable. It

pushes a new unbound variable onto the heap, and stores a reference to it in register Vn.

i c T=H
H=H+1
E MAR = T
MDR = T|lunbound tag
R = T||reference tag
P Vn =R : (DISPATCH)

unify val X n
This instruction represents a head structure argument that is a variable bound to some
global value. It gets the next argument from 8, and uni fies it with the value in register

X, leaving the result in register Xn.

1 c T=Xo
TL =8
S=8+1
E MAR = T1,Ti :¢all (UNIFY)
c ni
E R=T .
P Xa =R : (DISPATCH)

unify val Y n

This instruction represents a head structure argument that is a variable bound to some
global value. It gets the next argument from S, and uni fies it with the value in register
Yn.



uwnify local val V n
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T=TYn

TL =8
§s=85§+1
MAR = T1,T1
nil

See code for unify val V n.

copy_local val V n

:call (UNIFY)

: (DISPATCH)

This instruction represents a head structure argument that is a variable bound to a value

that is not necessarily global. It dereferences the value of register ¥n. If the result is not

a reference to a variable on the stack, then it pushes the result onto the heap. If the

result 1s a reference to a variable on the stack, a new unbound variable is pushed onto

the heap, the variable on the stack is bound to a reference to the new variable, the

binding is trailed if necessary, and register Vn is set to point to the new variable.

1 c
2 c
E
3 LOOP: C
4 c
E
b c
6 VAR: c
E
7 c
E

Ti =Vn
T=H
H=H+1

ref = isref(Vn)
var = isvar(Vn)

jump = var or ref

nil
MAR =T
MDR = T1

jump = var
nil
MAR = T1,T1

var = isvar(T1)
jump = isref(T1)

nil

local = TI>T

nil

jump = local & var

: jump (LOOP)
<simplest case>

: (DISPATCH)

:jump (VAR)

: jump (LOOP)

: jump (LOCAL)




8 C
E
9 LOCAL: C
E
P
10 c
E
11 C
E
i2 C
E
13 C
E
P
copx_yaL_Y n

nil
T
T1

MDR

nil
MAR
MDR
Vo =T

T

nil
MAR
MDR

T1
T

T =
local = Ti<T

td

nil :
jump = local
nil

R=T1

top of trail = R

TR=TR -1

Push value of variable Vn onto the heap.

1 c

E:ﬂ*—!*—l
[y
il
Il<
= H
[y

= ]

non o

-~ +
[

T| |lunbound tag

: (DISPATCH)

<create unbound heap object>

<bind local variable to object>

: jump (DISPATCH)

<assuming a trail stack>

: (DISPATCH)

: (DISPATCH)
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II. Appendix: Determinate Concatenate Trace

The determinate concatenate ucode trace follows. The second get list switches to

write mode. The dereferencing of the argument requires one indirection because, in the

steady state, the argument is a reference to a list whose first element is a variable. The

prefetch and jump instructions are executed in I-Unit. No TO register was assumed.

1 C T=A <get list Al>
Ti = Al
mode = read
list = islist(Al)
jump = not isref (A1) : jump (NOTREF)
2 NOTREF: C jump = list
E R=T
P 8§ =R : jump (DISPATCH)
3 Cc T1 =8 <unify var X4>
S=8+1
E MAR = T1,X4 : (DISPATCH)
4 c TL =8 <unify var Al>
S=868+1
E MAR = T1,Al : (DISPATCH)
5 Cc T = A3 <get _list A3>
T1 = A3
modes = read
list = islist(A3)
jump = not isref (A3) : jump (NOTREF)
6 LOGP: Cc nil
E MAR = T,T1
7 c jump = isvar(T1) : jump (VAR)
8 VAR: C T=08
mode = write
E notrailB = T>T1
9 Cc T = HB
E notraillkB = T>T1
10 Cc T=H
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jump = notrailHB and notrailB

MAR = T1

MDR = T : jump (DISPATCH)
11 T = Vo <copy_val X4>

T1 =H

H=H+1

MAR = T1

MDR = T : (DISPATCH)
12 T=H <copy var A3>

H=H+1

MAR = T

MDR = T|{unbound tag

R = Tl|reference tag

A3 =R : (DISPATCH)
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III. Appendix: Nondeterminate Concatenate

Trace

The nondeterminate concatenate pcode trace follows. No TO register was assumed.

3 LOOP:

5 LOCP:

7 LOOP:

C

O Q

7
TL + (n+7)
R
R

totoumn

i=1i+1
test = j<(n+7)

Ti = Aj
R=T1
jump = test
Bi =R

j=1
i=3i+1
test = j<(n+7)

T1 = A}
R=T1
jump = test
Bj =R
Ti = H
R=T1
Bl =R
HB = R

<try _me else Ci>

compare A to Z,
if too close, copy-back.

: jump (LOOP)

: jump (LOOP)

: jump (LOOP)
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10 c nil
E R=T
P B2 =R
11 c TL = TR
E R=T1
P B3 = R
12 c T=E
E R=T
P B4 =R
13 c T=CP
E R=T
P B6 =R
14 C T=P
E R=T
P B8 =R : (DISPATCH)
15 c T=A1 <get_mnil Al>
1istT = islist (A1)
- jump = not isref(Al) : jump (NOTREF)
16 Loop: C nil
E MAR = T, Tl
17 C jump = isvar(T1) ~ :jump (VAR)
18 VAR: c T=B
E notrailB = T>T1
19 c T=HB
E notrailiB = T>T1
20 c T = nil
E jump = notrailHB and notrailB
MAR = T1
MDR = T : jump (DISPATCH)
21 ¢ nil <agsume trail stack>
E R=T1
P top of trail = R
TR=TR -1 : (DISPATCH)
22 c TL = A2 <get val A2,A3>



23 c T = A3 :call (UNIFY)
24 UNIFY: C nil :rom
25 TREF: C nil
E MAR = T,T
26 C jump = isref(T) : jump (TREF)
27 c nil :rom
28 TVAR: c nil
E MAR = T
MDR = T1
29 c Ti =H
E local = T>Ti
30 c Ti = HB
E trailHB = T>T1
jump = local : jump (LOCAL1)
31 C jump = trailHB : jump (RETURN)
32 c nil
E R=T
P top of trail = R
TR=TR -1 : (RETURN)
33 c nil
E R=T1
P A2 =R : (DISPATCH)
1 c T = A1 <get list Al>
TLI = Al
mode = read
list = islist (A1)
jump = not isref (A1) : j ump (NOTREF)
2 NOTREF: C jump = list
E R=T1
P S=R : jump (DISPATCH)
3 c TL =58 <unify var X4>
5=8+1
E MAR = T1,X4 : (DISPATCH)
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c TL =8 <unify var A1>
S=85+1
E MAR = T1,Al : (DISPATCH)
C T = A3 <get list A3>
T1 = A3 '
mode = read
list = islist(A3)
jump = not isref(A3) : jump (NOTREF)
NOTREF: C jump = list
E R=T1
P §=R : jump (DISPATCH)
c T = X4 <unify val X4>
T1 =8
S=8+1
E MAR = T1,T1 :call (UNIFY)
UNIFY: C nil , " :rom
EQUAL: C jump = T=T1 : jump (RETURN)
C nil : (FAIL)
FAIL: C ? check if choice point is
in buffer
HIT: C T=218 <pop stack to B>
E R=T
P A=R
C Tl = BQ <get old program pointer>
E R=T1
P P=R
c T1 = Bl ‘ ‘ <get old heap pointer>
E R=T1
P R

C T = B2 ' <get old trail pointer>



10

11

12

13

14

16

16

17

ig

LOOP:

LOOP:

LOOP:

LOOP:

oI5l Q o ma = (o]

OO
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T1 = TR

done = T1 < T

nil

jump = done

Tl = top of trail

TR =TR + 1

MAR = T1

MDR = T1||unbound tag
Tl = TR

done = T1 < T

nil
jump = done

T1
TR
MAR
MDR

top of trail
TR + 1
T1
T1| |unbound tag

T1 = TR
done = T1 < T

nil
jump = done

Tl = B3
T1
R

<detrail birndings>

: jump (NEXT)

: (LOOP)

<detrail bindings>

: jump (NEXT)

: (LOOP)

<detrail bindings>

: jump (NEXT)

<get old backtrack pointer>

<get old continuation pointer>

<get old enviromment pointer>

<get # of goal arguments>

<restore A registers>
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20

21

22

23

LOOP:

1.00P:

ol

Aj =R : {ump (LOOP)

—
Inon
e

T1 = Bj <restore A registers>

jump = test
Aj =R : jump (LOOP)

—
1nn
|

i

T1 = Bj <restore A registers>

Aj = : jump (LOOP)

nil : (DISPATCH)

[ )

L.0oP:

VAR:

T=A1 <get list A1>
T1 = Al -

mode
list
jump

read
islist (A1)
not isref (A1) : jump (NOTREF)

nil
MAR = T,T1

jump = isvar(T1) : jump (VAR)

T=18
mode = write
notrailB = T>T1

T = HB
notrailliB = T>T1

T=H

jump = notrailHB and notrailB

MAR = T1

MDR = T : jump (DISPATCH)

nil <agsume trail stack>
R=T1
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P top of trail = R
TR=TR -1 : (DISPATCH)
8 c T=H <{copy_var X4>
H=H+1
E MAR =T
MDR = T||unbound tag
R = Tlireference tag
P X1 =R : (DISPATCH)
9 C T=H <copy var Xi>
H=H+1
E MAR = T
MDR = T||umbound tag
R = T||reference tag
P X4 =R : (DISPATCH)
10 c T = A3 <get list A3>
Tl = A3
mode = read
list = islist (A3)
jump = not isref (A3) : jump (NOTREF)
11 NOTREF: C jump = list
E R=T
P S=R : jump (DISPATCH)
12 C T = X4 <unify val X4>
TL =8
S=8+1
E MAR = T1,T1 :call (UNIFY)
13 UNIFY: C nil :rom
14 TREF: C nil
E MAR = T,T
16 o} jump = isref (T} : jump (TREF)
16 c nil :rom
17 TVAR: C nil
E MAR =T
MDR = T1
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18 c T1 =H
E local = T>T1
19 c T1 = HB
E traillHB = T>T1
jump = local : jump (LOCAL1)
20 LOCALL: C T1 =B
E trailB = T>T1
21 C nil
E jump = trailB : jump (RETURN)
22 c nil
E R =
P X4 = , : (DISPATCH)
23 C T1 =8 <unify var A3>
5=8+1
E MAR = T1,A3 : (DISPATCH)
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