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ABSTRACT

Commonsense reasoning 1s "nonmonotonle” in the sense that we often
draw, on the ©basis of partlal information, conclusions that we later
retract when we are given more complete information. Some of the most
interesting products of recent attempts to formalize nonmonotonilc
reasoning are the nonmonotonle logles of McDermott and Doyle [McDermott
and Doyle, 1980; McDermott, 1982]. These logics, however, all have
pecullarities that suggest they do not quite succeed I1n capturing the
Intuitions that prompted their development. In this paper we
reconstruct nonmonotonile loglc as a model of an ideally rational agent”s
reasoning about his own beliefs. For the resulting system, called

autoeplstemic logic, we define an intuitively based semantics for which

we can show autoepistemlc logic to be both sound and complete. We then
compare autoepistemic logic with the approach of McDermott and Doyle,

showing how 1t avoids the peculiarities of their nonmonotoniec logic.
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I INTRODUCTION

It has been generally acknowledged in recent years that one
important feature of ordinary commonsense reasoning that standard logics

fail to capture is its nonmonotonicity. An example frequently given to

illustrate the point 1is the following. If we know that Tweety is a
bird, we will normally assume, in the absence of evidence to the
contrary, that Tweety can fly. If, however, we later learn that Tweety
is a penguin, we will withdraw our prior assumption. If we try to model
this in a formal system, we seem to have a situation in which a theorem
P is derivable from a set of axioms S, but is not derivable from some
set 5° that is a superset of S. The set of theorems, therefore, does
not increase monotonically with the set of axioms; hence this sort of
reasoning 1is said to be "nonmonotonic.” As Minsky [1974] has pointed
out, standard logics are alwéys monotonic, because their inference rules
make every axiom permissive. That is, the inference rules are always of
the form "P is a theorem if Q;,...,Q, are theorems,” so that new axioms
can only make more thecorems derivable; they can never invalidate a

previous theorem.

Recently there have been a number of attempts to formalize this
type of nonmonotonic reasoning. The general idea is to allow axioms to
be restrictive as well as permissive, by employing inference rules of
the form "P is a theorem if Q;,...,Q, are not theorems.” The inference
that birds can fly 1s handled by having, 1in effect, a rule that says
that, for any X, "X can fly" is a theorem if "X is a bird"” is a theorem
and "X cannot fly" is not a theorem. If all we are told about Tweety 1s
that he 1is a bird, we will not be able to derive "Tweety cannot fly";
consequently, "Tweety can fly"” will be inferable. If we are told that
Tweety is a penguin and we already know that no penquin can fly, we will
be able to derive the fact that Tweety cannot fly, and so the inference

that Tweety can fly will be blocked.




ne of the most interesting embodiments of this approach to
nonmonotonic reasoning 1s McDermott and Doyle”s “nonmonotonic logic”
[McDermott and Doyle, 1980; McDermott, 1982]. McDermott and Doyle
modify a standard first—order logic by introducing a sentential operator
"M," whose 1nformal interpretation i1s "is consistent.” Nonmonotonie
inferences about birds being able to fly would be sanctioned in their
system by the axiom [McDermott, 1982, p. 33]

(ALL X)(BIRD(X) /\ M(CAN~FLY(X)) -> CAN-FLY(X)).

This formula can be read informally as "for all ¥, i1f X is a bird and it
is consistent to assert that X can fly, then X can fly."” McDermott and
Doyle can then have a single general nonmonotonic inference rule, whose

intuitive content is "MP i1s derivable if “P is not derivable.”

vicbermott and Doyle”s approach to nonmonotonic reasoning seems more
interesting and ambitious than some other approaches in two respects.
First, since the principles that lead to nommonotonic inferences are
explicitly represented in the 1logic, those very principles can be
reasoned about. That 1s, if P is such a principle, we could start out
believing Q -> P or even MP -> P, and come to hold P by drawing
inferences, either monotonic or nonmonotonic. So, 1f we use McDermott
and Doyle”s representation of the belief that birds can fiy, we could
also represent various inferences that would lead us to adopt that
belief. Second, since they use only general inference rules, they are
able to provide a formal semantic interpretation with soundness and
completeness proofs for each of the logics they define. In formalisms
that use content-specific nonmonotonic inference rules dealing with
contingent aspects of the world (i.e., it might have been the case that
birds could not fly), it is difficult to see how this could be done.
Tre effect 1s that nonmonotonic inferences in McDermott and Doyle”s

logics are justified by the meaning of the premises of the inferences.

There are a number of problems with McDermott and Doyle”s
nonmonotonic logics, however. The first logic they define [McDermott

and Doyle, 1980] gives such a weak notion of consistency that, as they



point out, MP 15 not Inconsistent with “P. That 1s, it 1s possible for
a theory to assert simultaneously that P 1s consistent with the theory
and that P 1s false. McDermott subsequently [1982] tried basing
nonmonotonic logics on the standard modal logics T, $4, and $5. He
discovered, however, that the most plausible candidate for formalizing
the notion of consistency that he wanted, nonmonotonic 85, collapses to
ordinary 55 and is therefore monotonic. 1In the rest of this paper we
develop an alternative formalization of nonmonotonic 1logic that shows
why these problems ariée in McDermott and Doyle”s logics and how they

can be avoilded.




11 NONMONOTONIC LOGIC AND AUTOEPISTEMIC REASONING

The first step in analyzing nonmonotonic logiec i1s to determine what
sort of nonmonotonic reasoning it 1s meant to model. After all,
nonmonotonicity is a rather abstract syntactic property of an inference
system, and there is no a priori reason to believe that all forms of
nommonotonic reasoning should have the same logical basis. In fact,
McDermott and Doyle seem to confuse two quite distinet forms of

nommonotonic reasoning, which we will call default reasoning and

autoepistemic reasoning. They talk as though their systems were

intended to model the former, but they actually seem much better suited

~

to modeling the latter.

By default reasoning we mean the drawing of plausible inferences
from less—than-conclusive evidence in the absence of information to the
contrary. The examples about birds being able to fly are of this type.
If we know that Tweety 1s a bird, that gives us some evidence that
Tweety can f£ly, but it is not conclusive. In the absence of information
to the contrary, however, we are wllling to go ahead and tentatively
conclude that Tweety can fly. Now even before we do any detailed
analysis of nonmonotonic logic, we can see that there will be problems
in interpreting it as a model of default reasoning: In the formal
semantics McDermott and Doyle provide for nonmonotonic logie, all the
nonmonotonle Inferences are valid. Default reasoning, however, 1is

clearly not a form of valid inference.l

Consider the belief that lies behind our willingness to infer that
Tweety can fly from the fact that Tweety is a bird. It is probably
something 1like most birds can fly, or almost all birds can £fly, or a
typlcal bird can fly. To model this kind of reasoning, 1in a theory
whose only axioms are "Tweety is a bird” and "Most birds can fly," we

ought to be able to iInfer {(nonmonotonically) "Tweety can fly." Now 1f



this were a form of valid inference, we would be guaranteed that the
conclusion is true if the premises are true. This is manifestly not the
case. The premlses of this inference give us a good reason to draw the

conclusion, but not the ironclad guarantee that validity demands.

Now reconsider McDermott”s formula that yields nonmonotonic

inferences about birds belng able to fly:
(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) —> CAN-FLY(X))

McDermott suggests as a gloss of this formula "Most birds can fly,"
which would indicate that he thinks of the Inferences it sanctions as
default inferences. But 1f we read M as "is consistent” as MeDermott
and Doyle repeatedly tell us to do elsewhere, the formula actually says
something quite different: "For all X, if X is a bird and it 1is
consistent to assert that X can fly, then X can fly." Since the
inference rule for M is intended to convey "MP is derivable if "P is not
derivable,” the notion of consistency McDermott and Doyle have in mind
seems to be that it is consistent to assert P if ~P 1s not derivable.
McDermott”s formula, then, says that the only birds that cannot fly are
the ones that can be inferred not to fly. If we have a theory whose
only axioms are this one and an assertion to the effect that Tweety is a
bird, then the coneclusion that Tweety can fly would be a valid
inference. That 1s, 1f it 1s true that Tweety is a bird, and it is true
that only birds inferred not to fly are in fact unable to fly, and
Tweety is not inferred not to fly, then it must be true that Tweety can
fly.

This type of reasoning 1s not a form of default reasoning at all;
it rather seems to be more like reasoning about one”s own knowledge or

belief. Hence, we will refer to it as autoepistemic reasoning.

Autoepistemic reasoning, while different from default reasoning, is an
important form of commonsense reasoning in its own right. Conslder my
reason for believing that I do not have an older brother. It is surely
not that one of my parents once casually remarked, "You know, you don”t

have any older brothers,” nor have I pleced it together by carefully



sifting other evidence. I simply believe that if I did have an older
brother I would know about 1it; therefore, since I don”"t know of any
older brothers, I must not have any. This is quite different from a
default inference based on the belief, say, that most MIT graduates are
eldest sons, and that, since I am an MIT graduate, I am probably an

eldest son.

Default reasoning and autoepistemic reasoning are both
nonmonotonic, but for different reasons. Default reasoning is
nonmonotonic because, to use a term from philosophy, it is defeasible:
its conclusions are tentative, so, given better information, they may be
withdrawn. Purely autoepistemic reasoning, however, is not defeasible.
If you really believe that you already know all the instances of birds
that cannot fly, you cannot consistently hold to that belief and at the

gsame time accept new instances of birds that cannot fly.2

As Stalnaker [1980] has observed, autoepistemic reasoning 1s
nonmonotonic because the meaning of an autoepistemic statement 1is
context-sensitive; 1t depends on the theory in which the statement is

embedded .3 If we have a theory whose only two axioms are

BIRD(TWEETY)
(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)),

then MP does not merely mean that P is consistent——it means that P 1is
consistent with the nonmonotonic theory that contains only those two
axioms. We would expect CAN-FLY(TWEETY) to be a theorem of this theory.
If we change the theory by adding “CAN-FLY(TWEETY) as an axiom, we then
change the meaning of MP to be that P 1s consistent with the

nonmonotonic theory that contains only the axioms

~CAN-FLY(TWEETY)
BIRD(TWEETY)
(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)),

and we would not expect CAN-FLY(TWEETY) to be a theorem. The operator M

changes 1ts meaning with context just as do Indexical words in natural

language, such as "I,” “here,' and "now.” The nonmonotonicity



associated with autoepistemic statements should therefore be no more
puzzling than the fact that "I am hungry" can be true when uttered by a
particular speaker at a particular time, but false when uttered by a
different speaker at the same time or the same speaker at a different
time. So we might say that, whereas default reasoning is nonmonotonic
because it 1is defeasible, autoepistemic reasoning 1is nonmonotonic

because it is indexical.




IIT THE FORMALIZATION OF AUTOEPISTEMIC LOGIC

Rather than try directly to analyze McDermott and Doyle”s
nonmonotonic loglic as a model of autoepistemic reasoning, we will first
define a logic that demonstrably does model certain aspects of
autoeplstemic reasoning and then compare nonmonotonic logic with that.

We will call our 1logic, naturally enough, autoepistemic logic. The

language will be much 1like McDermott and Doyle”s, an ordinary logical
language augmented by autoepistemic modal operators. McDermott and
Doyle treat consistency as their fundamental notion, so they take M as
the basic modal operator and define its dual L to be "M™. OQur logic,
however, will be based on the notion of belief, so we will take L to

mean "1s belileved,” treat it as primitive, and define M as "L™~. In any
case, this gives us the same notlon of consistency as theirs: a formula
is consistent 1f its negation i1s not believed. Since there are some
problems with regard to the meaning of quantifying into the scope of an
autoepistemic operator that are not relevant to the main point of this

paper, we will limit our attention to propositional autoeplstemic logic.

Autoepilstemic 1logic 1s intended to model the beliefs of an agent
reflecting upon his own bellefs. The primary objects of Interest are
sets of autoepistemic logic formulas that are interpreted as the total
beliefs of such agents. We will call such a set of formulas an

autoeplstemic theory. The truth of an agent”s bellefs, expressed as a

propositional autoepistemic theory, will be determined by (1) which
propositional constants are true in the external world and (2) which
formulas the agent believes. A formula of the form LP will be true with
respect to an agent if and only if P is in his set of beliefs. To
formalize this, we define notions of interpretation and model as

follows:



We proceed in two stages. First we define a propositional

interpretation of an autoeplstemic theory T to be an assignment of

truth-values to the formulas of the language of T that is consistent
with the wusual truth recursion for propositional logic and with any
arbitrary assignment of truth—-values to propositional constants and

formulas of the form LP. A propositional model of an autoepistemic

theory T 1s a propositional interpretation of T in which all the
formulas of T are true. The propositional interpretations and models of
an autcepilstemic theory are, therefore, precisely those we would get in
ordinary propositional logic by treating all formulas of the form LP as
propositional constants. We therefore inherit the soundness and
completeness theorems of propositional logic; 1.e., a formula P is true
in all the propositional models of an autoeplistemic theory T if and only
if it is a tautoleogical consequence of T (i.e., derivable from T by the

usual rules of propositional logic).

Next we define an autoepistemic interpretation of an autoepistemic

theory T to be a propositiocnal interpretation of T in which, for every
formula P, LP 1s true if and only if P is in T. It should be noted that
the theory T itself completely determines the truth of any formula of
the form LP in all the autoepistemic interpretations of T, independently
of the truth assignment to the propositional constants. Hence, for
every truth assignment to the propositional constants of T, there is
exactly one corresponding autoepistemic interpretation of T. Finally,

an autoepistemic model of T 1s an autoepistemic interpretation of T in

which all the formulas of T are true. So the autoepistemic
interpretations and models of T are just the propositional
interpretations and models of T that conform to the intended meaning of

the modal operator L.

This gives us a formal semantics for autoepistemic logic that
matches 1ts intultive interpretation. Suppose that the belliefs of an
agent situated in a particular world are characterized by the
autcepistemic theory T. The world in question will provide an

assignment of truth-values for the propositional constants of T, and any




formula of the form LP will be true relative to the agent just in case
he believes P. In this way, the agent and the world in which he is
sltuated directly determine an autoepistemic interpretation of T. That
interpretation will be an autoepistemic model of T, just 1In case all the

agent”s beliefs are true in his world.

Given this semantics for autoeplstemic logic, what do we want from
a notlon of inference for the logic? From an eplstemological
perspective, the problem of inference 1s the problem of what set of
beliefs {(theorems) an ideally rational agent would adopt on the basis of
his initial premises {axioms). Since we are trying to model the beliefs
of a rational agent, the beliefs should be sound with respect the
premises; we want a guarantee that the beliefs are true provided that
the premises are true. Moreover, since we assume that the agent is
ideally rational, the beliefs should be semantically complete; we want
them to contaln everything that the agent would be semantically
justified 1in concluding from his bellefs and from the knowledge that
they are his beliefs. An autoepistemic logic that meets these
conditions can be viewed as a competence model of reflection upon one”s
own beliefs. Like competence models generally, 1t assumes unbounded
resources of time and memory, and 1s therefore not a plausible model of
any finite agent. It 1s, however, the model upon which the behavior of
rational agents ought to converge as thelr time and memory resources

increase.

Formally, we will say an autoepistemic theory T is sound with
respect to an 1nitial set of premises A i1f and only 1f every
autoepisfemic interpretation of T 1in which all the formulas of A are
true 1s an autoeplstemic model of T. This notion of soundness 1s the
weakest condition that guarantees that all of the agent’s bellefs are
true whenever all his premises are true. Let I be the autoepistemic
interpretation of T that 1s determined by what 1s true 1in the actual
world (including what the agent actually believes). If all the formulas
of T are true In every autoepistemle interpretation of T in which all

the formulas of A are true, then all the formulas of T will be true in I
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i1f all the formulas of A are true in I; hence, all the agent”s belilefs
will be true in the world 1f all the agent”s premises are true in the
world. However, if there 1s an autoepistemic Interpretation of T in
which all the formulas of A are true but some formulas of T are false,
then it 1s possible that I is that interpretation, and that all the
agent”s premises will be true in the world, but some of his beliefs will

not.

Our formal notion of completeness 1s that an autoepistemic theory T

1s semantically complete if and only if T contains every formula that is

true In every autoeplstemic model of T. If a formula P is true in every
autoeplstemic model of an agent”s beliefs, then it wmust be true if all
the agent”s beliefs are true, and an ideally rational agent should be-
able to recognize that and infer P. On the other hand, 1f P is false in
some autoeplstemlc model of the agent”s beliefs, then that model, for
all he can tell, might be the way the world actually is; he is therefore

justified in not believing P.

The next problem is to give a syntactic characterlization of the
autoepistemic theories that satisfy these conditions. With a monotonic
logic, the usual procedure is to define a collection of inference rules
to apply to the axloms. For a nonmonotonic logic this is a nontrivial
matter. Much of the technical ingenuity of McDermott and Doyle”s
systems lies simply in their formulation of a coherent notion of
nonmonotonic derivability. The problem is that nonmonotonic inference
rules do not yield a simple iterative notion of derivability the way
monotonic Inference rules do. We can view a monotonic inference process
as applying the iInference rules im all possible ways to the axioms,
generating additional formulas to which the Inference rules are applied
in all possible ways, and so forth. Since monotoniec inference rules are
monotonic, once a formula has been generated at a gilven stage, it
remains in the generated set of formulas at every subsequent stage.
Thus the theorems of a theory 1n a monotonlic system can be defined
simply as all the formulas that are generated at any stage. The problem

with attempting to follow this pattern with nonmonotonic inference rules
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is that we cannot draw nonmonotoniec inferences reliably at any
particular stage, since something inferred at a 1later stage may
invalidate them. Lacking such an iterative structure, nonmonotonic
systems often use nonconstructive "fixed point” definitions, which do
not directly yield algorithms for enumerating the "derivable” formulas,
but do define sets of formulas that respect the Intent of the
nonmonotoniec inference rules (e.g., 1n McDermott and Doyle”s fixed

points, MP is included whenever ~P 1is not included.)

For our logic, it 1s easiest to proceed by first specifying the
closure conditions that we would expect the beliefs of an ideally
rational agent to possess. Viewed Iinformally, the beliefs should
include whatever the agent could infer either by ordinary 1logic or by
reflecting on what he believes. Stalnaker [1980] has put this formally
by suggesting that a set of formulas T that represents the beliefs of an
ideally rational agent should satisfy the following conditions:

l. If Py, ...,P, are in T, and P1,...,P5 = Q, thern Q is in T
{where "|-" means ordinary tautological consequence).

2. If P 1is in T, then LP 1s in T.

3. If P is not in T, then "LP is in T.

Stalknaker [1980, p. 6] describes the state of belief characterized by
such a theory as stable "in the sense that no further conclusions could
be drawn by an ideally rational agent In such a state.” We will

therefore describe the theories themselves as stable autoepistemic

theories.

There are a number of interesting observations we can make about
stable autoepistemic theories. First we note that, 1f a stable
autoeplstemic theory T 1is consistent, i1t will satisfy two more
intuitively sound conditions:

4, If LP 1is in T, then P is in T.

5. If "LP is in T, then P is not in T.

12



Condition 4 holds because, if LP were 1in T and P were not, ~LP would be
in T (by Condition 3) and T would be _inconsistent.4 Condition 5 holds
because, 1f "LP and P were both in T, LP would be in T (by Condition 2)

and T would be inconsistent.

Conditions 2-5 1imply that any consistent stable autoepistemic
theory will be both sound and semantically complete with respect to
formulas of the form LP and "LP: If T 1s such a theory, then LP will be
in T if and only 1f P 1s in T, and "LP will be in T if and only 1f P 1is
not in T. Thus, all the propositional models of a stable autcepistemic
theory are autoepistemic models. Stability i1implies a soundness result
even stronger than this, however. We can show that the truth of any
formula of a stable autoepistemic theory depends only on the truth of
the formulas of the theory that contain no autoepistemic operators. (We
will call these formulas "objective.™)

Theorem 1. If T is a stable autoepistemic theory, then any

autoepistemic interpretation of T that is a propositional

model of the objective formulas of T is an autoepistemic model
of T.

(The proofs of all theorems are given in the appendix.)

In other words, if all the objective formulas in an autocepistemic
theory are true, then all the formulas in that theory are true. Given
that the objective formulas of a stable autoepistemic theory determine
whether the theory 1is true, it 1is not surprising that they also
determine what all the formulas of the theory are.

Theorem 2. If two stable autoepistemic theories contain the

same objective formulas, then they contain exactly the same

formulas.”

Finally, with these characterization theorems, we can prove that
the syntactic property of stability is equivalent the semantic property
of completeness.

Theorem 3. An autoepistemic theory T is semantically complete
if and only if T is stable.

13




By Theorem 3, we know that stability of an agent”s beliefs
guarantees that they are semantically complete, but stability alone does
not tell us whether they are sound with respect to his Initial premises.
That is because the stability conditions say nothing about what an agent
should not believe. They leave open the possibility of an agent”s
believing propositions that are not in any way grounded in his initial
premises. What we need to add is a constraint specifying that the only
propositions the agent believes are his initial premises and those
required by the stability conditions. To satisfy the stabllity
conditions and include a set of premises A, an autoepistemic theory T
must include all the tautological consequences of AU {LP | P is in T} U
fLP | P is not in T}. Conversely, we will say that an autoepistemic
theory T is grounded in a set of premises A if and only if every formula
of T is included in the tautological consequences of A U {LP | P is in
T} U {LP | Pis not in T}. The following theorem shows that this
syntactic constraint on T and A captures the semantic notion of
soundness.

Theorem 4. An autoepistemic theory T is sound with respect to

an initial set of premises A if and only if T is grounded in

A.

From Theorems 3 and 4, we can see that the possible sets of beliefs
that an ideally rational agent might hold, given A as his premises,
ought to be just the extensions of A that are grounded in A and stable.

We will call these the stable expansions of A. Note that we say "sets”,

because there may be more than one stable expansion of a given set of
premises. For example, consider {"LP -> Q, "LQ ~> P} as an initial set
of premises.® The first formula asserts that, if P is not believed, then
Q 1s true; the second asserts that, if Q is not believed, then P is
true. In any stable autoepistemic theory that includes these premises,
if P is not in the theory, Q will be, and vice versa. But if the theory
is grounded in these premises, if P is in the theory there will be no
basis for including Q, and vice versa. Consequently, a stable expansion

of {"LP -> @, "LQ -> P} will contain either P or @, but not both.

14




It can also happen that there are no stable expansions of a given
set of premises. Consider, for instance, {"LP -> P}.7 If T is a stable
autoeplstemic theory that contains "LP -> P, it must also contain P. If
P were not in T, “LP would have to be in the T, but then P would be in
T--a contradiction. On the other hand, if P 1s in T, then T is not
grounded in {"LP ~> P}. Therefore no stable autocepistemic theory can be
grounded in {"LP -> P}.

This seemingly strange behavior results from the indexicality of
the autoepistemic operator L. Since L 1s interpreted relative to an
entire set of beliefs, its interpretation will change with the various
ways of completing a set of beliefs. In each acceptable completion of a
set of beliefs, the interpretation of L will change to make that set
stable and grounded in the premises. Sometimes, though, no matter how
we try to form a complete a set of beliefs, the result never coincildes
with the interpretation of L in a way that gives us a stable set of

beliefs grounded in the premises.

This raises the question of how to view autocepistemic logic as a
logic. If we consider a set of premlses A as axloms, what do we
conslider the theorems of A to be? If there is a unique stable expansion
of A, 1t seems «c¢lear that we want this expansion to be the set of
theorems of A. But what if there are several stable expansions of A--or
none at all? If we take the point of view of the agent, we have to say
that there can be alternative sets of theorems, or no set of theorems of
A. This may be a strange property for a logic to possess, but, given
our semanties, it is clear why this happens. An alternative (adopted by
McDermott and Doyle with regard to their fixed points) 1s to take the
theorems of A to be the intersection of the set of all formulas of the
language with all the stable expansions of A. This ylelds the formulas
that are in all stable expansions of A 1f there is more than one, and it
makes the theory inconsistent i1f there Is no stable expansion of A.
This too 1is reasonable, but 1t has a different interpretation. It
represents what an outside observer would know, given only knowledge of

the agent”s premises and that he is ideally rational.
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IV ANALYSIS OF NONMONOTONIC LOGIC

Now we are in a position to provide an analysis of nonmonotonic
logic that will explain its peculiarities in terms of autoepistemic
logic. Briefly, our conclusions will be that the original nonmonotonic
logic of McDermott and Doyle [1980] 1s simply too weak to capture the
notions they wanted, and that McDermott”s [1982] attempt to strengthen

the loglc does so in the wrong way.

McDermott and Doyle”s first logle 1Is wvery similar to our
autoepistemic 1logic with one glaring exception; 1ts specification
includes nothing corresponding to our Condition 2 (1f P is in T, then LP

is in T). McDermott and Doyle define the nonmonotonic fixed points of a

set of premlses A, corresponding to our stable expanslons of A. In the
propositional case, thelr definition 1s equivalent to the following:
T 1s a fixed point of A just In case T 1s the set of
tautological consequences of A U {"LP | P is not in T}.
Qur definition of a stable expansion of A, on the other hand, could be
stated as
T 1s a stable expanslon of A just In case T 1s the set of
tautological consequences of AU {LP | P is in T} U {~LP | P
is not in T}.
In nonmonotonic logic, {LP | P is 1in T} is missing from the "base" of
the fixed points. This makes 1t possible for there to be nonmonotonic
theories with fixed points that contaln P but not LP. So, under an
autoepistemlc Interpretation of L, McDermott and Doyle”s agents are
omniscient as to what they do not believe, but they may know nothing as

to what they do believe.

This explains essentlally all the peculiarities of McDermott and
Doyle”s original loglc. For instance, they note [1980, p. 69] that MC
does not follow from M(C /\ D). Changing the modality to L, this is
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equivalent to saying that ~LP does not follow from ~“L(P \/ Q). The
problem 1is that, lacking the ability to infer LP f{from P, nonmonotonic
logic permits:interpretations of L that are more restricted than simple
belief. Suppose we interpret L as "inferable in n or fewer steps” for
some particular n. P might be inferable in exactly n steps, and P \/ Q
in ntl. According to this interpretation “L(P \/ Q) would be true and
“LP would be false. Since this interpretation of L is consistent with
McDermott and Doyle”s definition of a fixed point, ~LP dces not follow
from “L(P \/ Q). The other example of this kind noted by McDermott and
Doyle is that {MC, "C} has a consistent fixed point, which amounts to
saying simultaneously that P 1is consistent with everything asserted and
that P is false. But this set of premises is equivalent to {"LP, P},
which would have no consistent fixed points if LP were forced to be in

every fixed point that contains P.

On the other hand, McDermott and Doyle consider it to be a problem
that {MC -> D, "D} has no consistent fixed point in their theory.
Restated in terms of L, this set of premises is equivalent to {P -> LQ,
P}. Since a stable autoepistemic theory containing these premises will
also contain LQ, it must also contain Q to be consistent. (Otherwise it
would contain "LQ.) But Q 1is not contained in any theory grounded in
the premises {P -> LQ, P}; it is possible for P => LQ and P both to be
true with respect to an agent while Q is false. So there 1s no
consistent stable expansion of {P -> LQ, P} in autoepistemic logic;
hence, this set of premises cannot be the foundation of an appropriate
set of beliefs for an ideally rational agent. Thus, our analysis
justifies nonmonotonic logic in this case, contrary to the intuition of

McDermott and Doyle.

McDermott and Doyle recognized the weakness of the original
formulation of nonmonotonic logic, and McDermott [1982] has gone on to
develop a group of theories that are stronger because they are based on
modal rather than classical logic. McDermott”s nonmonotonic modal
theories alter the logic in two ways. First, the definition of fixed
point is changed to be equivalent to
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T 1is a fixed point of A just in case T is the set of modal
consequences of A U {"LP | P is not in T},
where "modal consequence” means that P |- LP is used as an additional
inference rule. Second, McDermott considers only theories that include
as premises the axioms of one of the standard modal logics "T,” "S4,"

and "S85."

Merely changing the definition of fixed point brings McDermott”s
logic much closer to autoepistemic logic. In particular, adding P |- LP
as an inference rule means that all modal fixed points of A are stable
expansions of A. However, adding P |- LP as an inference rule, rather
than adding {LP | P is in T} to the base of T, has as a consequence that
not all stable expansions of A are modal fixed points of A. The
difference is that, in autoepistemic logic, if P can be derived from LP,
then both can be 1in a stable expansion of the premises, whereas in
McDermott”s logic there must be a derivation of P that does not rely on
LP. Thus, although in autceplstemic logic there is a stable expansion
of {LP -> P} that includes P, in McDermott”s logic there is no modal
fixed point of {LP -> P} that includes P. It is as 1f, in autoepistemic
logic, omne can acquire the belief that P and justify it 1later by the
premise that, if P is believed, then it is true. In nonmonotonic logilc,
however, the justification of P has to precede belief in LP. This makes
the interpretation of L in nonmonotonic modal logic more like " justified

belief"” than simple belief.

Since we have already shown that autcepistemic logic requires no
specific axioms to capture a competence model of autoepistemic
reasoning, we might wonder what purpose is served by McDermott”s second
modification of nonmonotonic logic, the addition of the axioms of
various modal logics. The most plausible answer is. .that, besides
behaving in accordance with the principles of autoepistemic logic, an
ideally rational agent might well be expected to know what some of those
principles are. ¥For instance, the modal logic T has all instances of
the schema L{P -> Q) -> (LP -> LQ) as axioms. This says that the

agent”s beliefs are closed under modus ponens—-which is true for an
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ideally rational agent, so he might as well believe 1it. S84 adds the
schema LP -> LLP, which means that, i1f the agent believes P, he believes
that he believes it (Condition 2). S5 adds the schema “LP -> L7LP,
which means that, 1f the agent does not believe P, he believes that he
does not believe it (Condition 3). Since all these formulas are always
true with respect to any ideally rational agent, it seems plausible to
expect him to adopt them as premises. Thus, S5 seems to be the most
plausible candidate of the nonmonctonic logics as a model of

autoepistemic reasoning.

The problem is that all of these logics alse contain the schema
LP =-> P, which means that, if the agent believes P, then P is true-—but
this is not generally true, even for ideally ratiomnal agents.8 It turns
out that LP -> P will always be contained in any stable autoepistemic
theory (that 41is, dideally rational agents always believe that their
beliefs are true), but making it a2 premise allows beliefs to be grounded
that otherwise would not be. As a premise the schema LP -> P can itself
be justification for believing P, while as a "theorem” it must be
derived from "LP, in which case P 1s not believed, or from P, in which
case P must be independently justified, or from some other grounded
formulas. In any case, as a premise schema, LP -> P can sanction any
belief whatsoever in autoepistemic logic. This is not generally true in
modal nonmonotonic logic, as we have also seen, but it is true in
nonmenotonic 55. The S5 axiom schema "LP -> L™LP embodies enough of the
model theory of autoepistemic logic to allow LP to be "self grounding™:
The schema “LP -> L"LP is equivalent to the schema "L~LP -> LP, which
allows LP to be justified by the fact that its negation is not believed.
This inference is never in danger of being falsified, But, from this and

LP -> P, we obtain an unwarranted justification for believing P.

The collapse of nonmonotonic S5 inte monotonic 85 follows
immediately. Since LP -> P can be used to justify belief in any formula
at all, there are no formulas that are absent from every fixed point of
theories based on nonmonotonic S5. It follows that there are no

formulas of the form "LP that are contained in every f£fixed point of
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theories based on nonmonotonic S5; hence there are no theorems of the
form "LP in any theory based on nonmonotonic 85. (Recall that the
theorems are the Intersection of all the fixed points.) Since these
formulas are Jjust the ones that would be produced by nonmonotonic
inference, nonmonctonic 55 collapses to monoteonic 35. In more informal
terms, an agent who assumes that he is infallible is liable to believe
anything, so an outside observer can conclude nothing about what he does

not believe.

The real problem with nonmonotonic S5, then, is not the S5 schema;
therefore McDermott”s rather wunmotivated suggestion to drop back to
nonmenotonic 54 [1982, p. 45] 1s not the answer. The S5 schema merely
makes explicit the consequences of adopting LP -> P as a premise schema
that are implicit in the 1logic”s natural semantics. If we want to base
nonmonotonic logic on a modal logic, the obvious solution 1is to drop
back, not to S4, but to what Stalnaker [1980] calls '"weak 55"—-85
without LP -> P. It 1is much better motivated and, moreover, has the

advantage of actually being nonmonotonic.

In autoepistemic logic, however, even this much is unneccessary.
Adopting any of the axioms of weak 55 as premises makes no difference to
what can be derived. The key fact is the following theorem:

Theorem 5. If P is true in every autoepistemic interpretation

of T, then T is grounded in A U {P} if and only if T 1is

grounded in A.

An immediate corollary of this result is that, if P is true in every
autoepistemic interpretation of T, then T is a stable expansion of

AU {P} if and only if T is a stable expansion of A.

The modal axiom schemata of weak S5,

L(P => Q) => (LP => LQ)
LP -> LLP
~LP -> L~LP,

simply state Conditions 1-3, so all their instances are true in every

autoepistemic interpretation of any stable autoepistemic theory. The
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nonmodal axioms of weak 55 are just the tautologies of propositional
logic, so they are true in every interpretation {(autoepistemic or
otherwise) of any autoepistemic theory (stable or otherwise). It
immediately follows by Theorem 5, therefore, that a set of premises
containing any of the axioms of weak 85 will have exactly the same
stable expansions as the corresponding set of premises without any weak-

S5 axioms.
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V  CONCLUSION

McDermott and Doyle recognized that their original nonmonotonic
logic was too weak; when McDermott tried to strengthen it, however, he
misdiagnosed the problem. Because he was thinking of nonmonotonic logic
as a logic of provablility rather than belief, he apparently thought the
problem was the lack of any connection between provability and truth.
At one point he says "Even though "M™P (abbreviated LP) might plausibly
be expected to mean “P is provable,” there was not actually any relation
between the truth wvalues of P and LP,"” [1982, p. 34], and later he
acknowledges the questionability of the schema LP -> P, but says that
"it is difficult to visualize any other way of relating provability and
truth,” [1982, p. 35]. 1If one interprets nonmonotonic logic as a logic
of belief, however, there is no reason to expect any connection between
the truth of LP and the truth of P. And, as we have seen, the real
problem with the original nonmonotonic logic was that the "if" half of
the semantic definition of L——that LP is true 1f and only if P is

believed--was not expressed in the logic.
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NOTES

l 1n their informal exposition, McDermott and Doyle [1980, pp. 44-46]
emphasize that their notion of nonmonontonic inference is not to be
taken as a form of valid inference. If this 4is the case, their formal
semantics cannot be regarded as the “real" semantics of their
nonmonotonic logic. At best, it would provide the conditions that would
have to hold for the inferences to be valid, but this leaves unanswered

the question of what formulas of nonmonotonic logic actually mean.

2 of course, autoepistemic reasoning can be combined with default
reasoning; we might believe that we know about most of the birds that
cannot fly. This could lead to defeasible autcepistemic inferences, but
their defeasibility would be the result of their also being default

inferences.

3 Stalnaker”s note, which to my knowledge remains unpublished, grew out
of his comments as &a respondent to McDermott at a Conference on
Artificial Intelligence and Fhilosophy, held in March 1980 at the Center
for Advanced Study in the Behavioral Sciences. N.B., the term

"autoepistemic reasoning” is ours, not his.

4 Condition 4 will, of course, also be satisfied by an inconsistent
stable autoepistemic theory, since such a theory would include all

formulas of autoepistemic logic.

5 This theorem implies that our autoepistemic logic does not contain any
"nongrounded” self-referential formulas, such as one finds in what are
usually called "syntactical” treatments of belief. If, instead of a
belief operator, we had a belief predicate, Bel, there might be a term p
that denotes the formula Bel(p). Whether Bel(p) is believed or not is
clearly independent of any objective beliefs. The lack of such formulas
constitutes a characteristic difference between sentence-operator and

predicate treatments of propositional attitudes and modalities.
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6 McDermott and Doyle [1980, p. 51] present this example as {MC -> °D,
MD => ~C}.

7 McDermott and Doyle [1980, p. 51] present this example as {MC -> “C}.

8 LP -> P would be an appropriate axiom schema if the interpretation of

LP were "P is known" rather than "P is believed,” but that notion is not
nonmonotonic. An agent cannot, in general, know when he does not know
P, because he might believe P-—leading him to believe that he knows P—
while P 1s in fact false. Since agents are unable to reflect directly
on what they do not know (only on what they do not believe), an
autoepistemic logic of knowledge would not be a nonmonotonic logic;

rather, the appropriate logic would seem to be monotonlc S5.

24



REFERENCES

McDermott, D. and J. Doyle [1980] "Non—Monotonic Logic I," Artificial
Intelligence, Vol. 13, Nos. 1, 2, pp. 41-72 (April 1980).

McDermott, D. [1982] "Nonmonotonliec Logic II: Nonmonotonic Modal
Theories,” Journal of the Association for <Computing Machinery,
Vol. 29, No. 1, pp. 33-57 (January 1982).

Minsky, M. [1974] "A Framework for Representing Knowledge," MIT
Artificial Intelligence Laboratory, AIM-306, Massachusetts
Institute of Technology, Cambridge, Massachusetts (June 1974).

Stalnaker, R. [1980] "A Note on Non-monotonic Modal Logic,” Dept. of
Philosophy, Cornell University, unpublished manuscript.

25




APPENDIX: PROOFS OF THECREMS

Theorem 1. If T is a stable autoepistemic theory, then any

autoepistemic interpretation of T that 1s a propositional

model of the objective formulas of T is an autoepistemic model

of T. .
Proof. Suppose that T is a stable autoepistemic theory and I is an
autoepistemic interpretation of T that is a propositional model of the
objective formulas of T. All the objective formulas of T are true in I.
T must be consistent because an inconsistent stable autoepistemic theory
would contain all formulas of the 1language, which would include many
objective formulas that are not true in I. Let P be an arbitrary
formula in T. Since stable autoepistemic theories are closed under
tautological consequence, T must alse contain a set of formulas
Py,...,Py that taken together entail P, where, for each i between 1 and
k, there exist n and m such that P; is of the form

Pj_’]_ \/ LPi,Z \/-.-\/ LPi,n \/ ~LP1,I1+1 \/--.\/ ~LP1,I]1

and Pi,l is an objective formula. (Any formula is interderivable with a
set of such formulas by propositional logic alone.) There are two cases

to be considered:

(1) Suppose at least one of LPi,Z""’LPi,n’ ~LPi’n_I_l,...,"LPi’m is
in T. By Conditions 4 and 5, we know that, if any such formula is in T,
it must be true in I, since T is consistent and I is an autoepistemic

interpretation of T. But, since each of these formulas entails Pi’ it

follows that P; is also true in I.

(2) Suppose the first case does not hold. Conditions 2 and 3
guarantee that in every stable autoepistemic theory, for every formula
P, either LP or "LP will be in the theory. Hence, if T does not contain
any of LPy 5,...,LP5 y, “LPj n41,-++, LPj p, it must contain all of
LBy 2,--+,7LPy 5, LPg p41,--+5LPj g But Py 1 is a tautological

consequence of P; and these formulas (imagine repeated applications of
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the resolution principle); so P; 1 must be in T. But Py 1 is objective,
and so, by hypothesis, must be true in I. Since P; ; entails Py, it
L

must be the case that Pi is true in I.

In either case, P; will be true in I. All the P; taken together

entail P, so P must also be true In I. Since P was chosen arbitrarily,
every formula of T must be true in I; hence I 1s an autoeplstemic model

of T.

Theorem 2. 1If two stable autoeplstemlic theories contain the
same objective formulas, then they contain exactly the same
formulas.

EEEEE' Suppose that T; and Tp contain the same objective formulas and
T, contains P. We prove by iInduction on the depth of nesting of
autoeplstemic operators in P (the "L-depth” of P) that Ty also contains
P. If the L-depth of P is 0, the theorem 1s trivially true, since P
will be an objective formula. Now suppose that P has an L-depth of d
greater than 0O, and that, if two stable autoepistemic theorlies contaln
the same objective formulas, then they contain exactly the same formulas

whose L—depth 1s less than d.

Since stable autoeplstemic theories are closed under tautological
consequence, Ty must also contaln a set of formulas Py,...,P that are
Interderivable with P by propositional logic, where, for each i between
1 and k, there exist n and m such that P; is of the form

Pi,0 /LBy 9 N/ew N/ LPy o N/ "LPs npg V.eeoN/ TLPg o

and Pi,l is an objective formula. Note that, since propositional logic
will treat all the formulas of the form LP]._’j as propositional
constants, it is Impossible to increase the L-depth of a formula by
propositional inference, so each of these formulas will have an L-depth

of not more than d.

We can also assume that Ty and Ty are consistent. If one of these

theories were inconsistent, 1t would contain all formulas of the

language. Since, by hypothesis, the two theorles contain the same
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objective formulas, the other theory would contain all the objective
formulas of the language and, since these formulas are inconsistent, it
would also contain all the formulas of the language. For each Pi! there

are three cases to be considered:

(1) Ty contains LPy for some j between 2 and n. Since T; is
consistent, by Condition 4 it must also contailn Py j+ Since the L-depth
]

of Py 5 1s one less than that of LP; j, it must be less than d; so, by

»J
hypothesis, T, must contain Py j and, by Condition 2, it must contain
LPi,j' But Py 1s a tautological consequence of LPi,js so T, contains

Py.

(2) Ty contains ~LP; j for some j between n+l and m. Since Ty is
consistent, by Condition 5 it wmust not contain Pi,j“ Since the L-depth
of Pi,j is one less than that of *LPi’j, it must be less than d;
therefore, by hypothesis, T, must not contain Pi,j and, by Condition 3,
it must contain ~LPi,j. But Py is a tautological consequence of "LPy 4,

so Ty contains Py.

(3) Suppose neither of the first two cases holds. Conditions 2 and
3 guarantee that in every stable autoepistemic thecory, for every formula
P, either LP or ~“LP will be in the theory. Hence, if T; does not
contain any of LPi,Zs"'sLPi,n: “LPy n#lse++> LPy g, it must contain all
of ~LP1,2""!~LPi,n» LPy ntls+-+>LPy po But Py ;) is a tautological
consequence of P; and these formulas; so Pi,l must be in Ty. Pyl is
objective, however, so Pi,l must also be in Ty. Since Py is a

tautological consequence of Pi,ls Ty contains Py.

Thus, all of Pl,...,Pk are 1in Tjp. Since P is a tautological
consequence of these formulas, P is also in T;. Since P was chosen
arbitrarily, every formula in T; is also in Ty. The same argument can
be wused to show that every formula in Ty is also in Tj;, so Ty and Tp

contain exactly the same formulas.

Theorem 3. An autoepistemic theory T is semantically complete
if and only 1f T is stable.
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Proof. "If" direction: we show that, 1f T is a stable autoeplstemic
theory, then T contalns every formula that is true 1In every
autoepistemic model of T. Let T be a stable autoepistemic theory and
let P be an arbitrary formula that 1s not in T. We show that there is

an autoeplstemlic model of T in which P is false.

We know from propositional logic that P 1s propositionally
equivalent to (i.e., true 1n the same propositional models as) the
conjunction of a set of formulas P1,++e,Py, where, for each i between 1

and k, there exist n and m such that Py is of the form

Py 1 \/ LPy o \/eolN/ LBy o \/ LBy pg V/eooN/ TLPy o

and Pi,l is an objective formula. Since P will be a tautological
consequence of Py,...,Pp and T 1s stable, Condition 1 guarantees that,
if P 1s not in T, at least one of Pl,...,Pk must not be in T. Let P; be
such a formula. Py is a tautological consequence of each of its
disjuncts, so none of them can be in T. We show that there is an

autoepistemic model of T in which all of these disjuncts are false.

Since Py ; is not in T, it must not be a tautological consequence
of the objective formulas of T. Given this and the fact t'nat'Pi’1 is
objective, 1t follows from the completeness theorem for propositional
logic that there must be a truth assignment to the propositional
constants of T in which Pi,l is false and all the objective formulas of
T are true. But, we can extend this truth assigment (or any truth
assignment to the propositional constants of T—see Section III) to an
autoeplistemic interpretation of T. Call this interpretation I and note
that Py 1 is false in I. I will be a propositional model of the
objective formulas of T; so, by Theorem 1, I is an autoepistemic model

of T in which Pi 1 1s false.

Now consider the other disjuncts of P;y. Note that Conditions 2 and
3 require that a stable theory contain all the formulas of the form LP

or "LP that are true in the autoepistemic interpretations of the theory.
Since none of LPi,Z""’LPi,n’ “LPj p+1s-++» LPj 5 are in T, none of
LPi,Za""LPi,ns HLP1,n+1""’-LPi,m are true in any autoepistemic
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interpretation of T. In  particular, none of LPy ,,...,LPy .,
» »

QLPi,n+l=""~LPi,m are true 1in I. Therefore, I 1is an autoepistemic
model of T in which, since all of the disjuncts of P; are false, P;
itself is false. But P is propositionally equivalent to a conjunction
that includes P;, so I 1s an autoepistemic model of T in which P is

false.

"Only if" direction: we show that, 1f T is semantically complete,
then T 1is stable. Suppose T is semantically complete. For any formula
P, 1f P is true in every autoepistemic model of T, then P is in T. Let
I be an arbitrary autoepistemic model of T. If we can show that some
formula P 1is true in I, P must be true in every autoepistemic model of T
(since I 1is arbitrarily chosen) and, thus, P must be in T. We now show

that T satisfies Conditions 1-3.

(1) Suppose Py,...,P, are in T and Py,...,P, [- Q. Since I is a
model of T, Pq,...,P, will be true in I. Since Pq,...,P, will is true
a» Qwill also be

true in I. Therefore, Q will be 1in T. (2) Suppose P is in T. Since I

in I and Q is a tautological consequence of Py,...,P

is an autoepistemic model of T, LP will be true in 1. Therefore, LP
will be in T. (3) Suppose P is not in T. Since I is an autoepistemic
model of T, “LP will be true in I. Therefore, “LP will be in T.

Conditions 1-3 are all satisfied, so T is stable.

Theorem 4. An autoepistemic theory T 1s sound with respect to

an initial set of premises A if and only 1f T is grounded in

A.
Proof. "If" direction: suppose T 1is grounded in A. Every formula of T
is therefore included in the tautological consequences of A U {LP | P is
in T} U {"LP | P is not in T}. We show that T is sound with respect to
A—-i.e., that every autoepistemic interpretation of T in which all the

formulas of A are true 1s an autoepistemic model of T.

Let I be an autoepistemic Interpretation of T in which all the
formulas in A are true. We show that T is an autoepistemic model of T.

If P is in A, then, trivially, P is true in I. If P is of the form LQ
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and ¢ is in T,‘ or if P is of the form “LQ and Q 41s not in T, then P is
true 1In I because I 1s an autoepistemic Interpretation of T. We have
now shown that all the formulas in AU {(LP | P isin T} U {"LP | P 1is
not in T} are true in I, so all their tautological consequences are true
in I. But all the formulas of T are Included 1n this set, so I is an
autoeplstemic model of T. Since 1 was an arbitrarily chosen
autoepistemic 1interpretation of T 1in which all the formulas of A are
true, every autoepistemic interpretation of T in which all the formulas

of A are true 1s an autoepistemic model of T.

"Only if" direction: suppose T is sound with respect to A. Every
autoepistemic Interpretation of T in which all the formulas of A are
true 1s therefore an autoeplistemic model of T. We show that T 1s
grounded in A—-i.e., every formula of T is a tautological consequence of

AU {LP | P1is in T} U {LP | P is not in T}.

Let A =AU {LP | Pis in T} U {"LP | P is not in T}. Note that,
for all P, if P 1s in T, LP will be in A", so LP will be true in every
propositional model of A”; however, if P 1is not in T, "LP will be in A~
and LP will not be true in any propositional model of A”. Therefore, in
every propositional model of A, LP is true 1f and only 1f P is in T, so
every propositional model of A" is an autoepistemic interpretation of T.
Since every autoepistemic interpretation of T in which all the formulas
of A are true is an autoeplstemic model of T, every propositional model
of A" 1s an autoepistemic model of T. Since every formula in T is true
in 1in every autoepistemic model of T, every formula in T is true in
every propositional model of A”. By the completeness theorem for
propositional logic, every formula of T 1s therefore a tautological

consequence of A". Hence T 1s grounded in A.

Theorem 5. If P 15 true in every autoeplstemic interpretation
of T, then T i1s grounded in A U {P} 1f and only 1if T is
grounded in A.

Proof. Suppose that P is true In every autoeplstemic Interpretation of

T. For any set of premises A, the set of autoeplistemic Interpretations

of T in which every formula of A ¥ {P} is true is therefore the same as
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the set of autoeplstemic interpretations of T in which every formula of
A 1s true. Thus, every autoeplstemic interpretation of T in which every
formula of A U {P} is true is an autoepistemic model of T if and only if
every autoeplstemic interpretatlion of T in which every formula of A is
true is an autoepistemic model of T. Hence, T is sound with respect to
AU {P} if and only if T is sound with respect to A. By Theorem &,
therefore, T is grounded in A U {P} if and only if T 1s grounded in A.
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