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Abstract

Current graphics database tools give the user a view of
drawing that is too constrained by the low-level machine
operations uscd to implement the tools. A new approach
{o graphies databases is proposed, based on the

description of objects and their relationships in the

restricted form of logic embedied in the programming
language Prolog.
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1. What'’s in a Drawing?

The problems discussed in this paper and the solutions
proposed arose from trying to simplify the writing of
compuler-aided design applications by delining design
databases in logical rather than physical terms. From this
new point of view, a design database is just a collection of
logical stalements about the objects being designed.

Apart from the basic relationships between parts of the
design, a design database must contain statements that
specily the wiews relevant to different aspects of the
design aclivity. Drawings are an essential elernent of the
design activity. Therefore, a design database must include

stalements that specify a visual representation for the
objects described by the database. Furthermore, it is
generally the case that the most convenient form of user
access to a design database is through drawings of its
contents.

A graphieal interface to a database must provide means
for viewing the contents of the database and Tor
building objects through graphical operations. These two
classes of operations correspond directly to the usual
database operations of query and update. It seems to be
tbe case that, with current implementation techniques for
graphical interfaces, the computation of the graphical
view of the database is related only in an “‘ad hoe” way
to the translation of graphical input inte changes to the
database.

The main objective of this paper is to show how to give
nonprocedural, logical descriptions of the structural
mapping belween objeets and their graphical
representations that can he used both for graphical output
and for graphical input. In other words, the same
description is used {o view graphically the contents of the
database and to identify what objects are meant in user
cornmands given in graphical terms. We will see that the
logical statements descrihing the structural mapping are
runnable programs in the logic programming language
Prolog [6, 18, 14|.

For a single representation to be used both for viewing
the contents of a database and for identifying which
objects in the database correspond to featurcs of the
drawing, the representation must be invertible. With an
invertible representation, we can both go [rom objects to
their images and from images to those parts of of the
database that correspond to the images. Invertibility
imposes heavy constraints on the representation method.
For example, a representation method based on a general-
purpese programming language with graphics primitives
(procedural representation) will not be invertible,
because it manifestly impossible to derive from features of
a drawing the parts of the program that produced those
features. In contrast, a structural representation with
a one-to-one  correspondence between  graphics
primitives in the drawing and data structures in the
database is ¢lear]y invertible,



CMU's Glide language for 3D geometric modeling [7]
and the Sticks & Stones functional notation for VLSI
design {4, 5] arc extreme examples of procedural
representation languages. Geometric modeling systems
based on instantiation of prototypes [3] and graphics
systems based on the same idea [17] stand at a halfway
position. A graphics system with a simple display file is a
straightforward example of a pure structural
represcntation.

The natore of the two representation methods just
described has eritical practical consequences. As [ noted
before, some form of invertibility, the ability to go from a
drawing to its representation, is essential for interactive
editing.  Structural representations are invertible, and
therefore allow interactive editing but do not support
general operations for putting pictures together from
other pictures, deriving pictures from prototypes, or
specifyving classes of objects to be edited. In contrast,
procedural representations support general languages for
specifying complex pictures but do not support [acilities
for recovering the constituents of & picture from the
finished picture.

The examples in the two sections that follw show that
logic programming can indeed help us to combine
advantages of structural and procedural representation
methods. This is due to the fact that suitably constructed
Prolog programs are multi-purpose |18), that is, the
procedures in the program can be used hoth to compute
some results from some inputs or to compute which inputs
would generate given results. In other words, suitably
constructed logic programs are invertible.

2. A Logic of Pictures
The discussion in this section builds on two empirical
observations about physical assemblies {and pictures):

1. Complex objects are made of simpler objects

2. New objects {or pictures) are often made by
replicating, with some transformation, some
existing object {picture}.

1 will give now a logical description of the *“‘arch” of
Figure 2-15.

The structure of the arch can be represeated by the
following statements or clauses:

LAll the examples are 2D for simplicity.

beam arch

Figure 2-1: Arech

part{leftcolumn,arch).
part(rightcolumn,arch).
part (croesbeam, arch) .

ingtance(leftcolumn, beam, id). (1)

instance (rightcolumn,beam,tranelate (2°0)).

ingtance (crossbeam,beam,rotate (-50,070):
tranelate(0°4)).

primitive(beam)

graphics (beam, 1ine (0°0,170)).
graphics (beam, 1ine (1°0,1%3)) .,
graphics (beam, 1ine (1°3,0°3)).
graphics (beam,1ine(0°3,070)).

These statements are the application of a predicate
{such as part to arguments (such as arch or
1ine(0°0,1°0)). The arguments of a predicate are
written after it in parenthesis, separated by commas.
Each argument is a term, representing some object.
Clause (1), for example, has the reading ““lefteolumn is
an iostance of beam transformed by the identity
transformation id."

A term may be:

e A constant, naming a specific ohject:

beam 1linel 3

e A compound term, which is a functor (the
principal functor of the term) applied to a
list of arguments, representing an entity
huiit in the way named by the functor from
the entities named by the arguments?:

3°6 translate(1“1) line(i*1,2*2)
with principal functors “, translate and line
respectively.

o

“For easier reading, a functor of two arguments (bloary) may Le
writien between its arguments instead of before the parenthesized list
of arguments.



The notation 1 have just introduced is a fragment of the
logical language of definite clauses [11]. Through the
programming language Prolog, such definite clause
programs can be run to check that objects satisfy given
relationships or to compute which objects are in a given
relationsbip with others.

Tle example program I have just given might seem no
different from a program in some object definition
language, such as Glide |7]. However, in such a language,
names such as line or translate have a fixed
interpretation. In conmlrast, in definite clauses a name, ke
it a predicate name, a functor name, or an atom name,
has no predefined meaning. Thus, the clauses that were
proposed to describe Figure 2-1 would have the same
effect if part were replaced everywhere by detail. The
names used in the example, bowever, are there for some
reason: they were chosen to indicate the intended
meaning of the clauses. That is, part is meant to
represent tbe part-whole relationship, instance to
represeni the “transformed instance ol relationship,
translate 1o represent a translation operator, : to
represent composition of spatial transformations, and so
on. But this intended meaning can only be made concrete
il we add two ingredients:

¢ The viewing mapping between chjects without
parts (atomic  objects) and  graphie
representations.

e The struetural rules that determine the
representation of complex objects from those
of their components.

1 will now discuss how to give structural rules, which are
most important from the point of view of this paper. The
question of the mechanisms for viewing the atomic objects
will not be discussed further.

Structural rules are themselves definite clauses but are
more complex than those shown above. The ones below
are sufficient to complete the example.

in(Part,0bj) < bagic_part (Part,0bj).
in(Part@Trans,0bj) <

instance (Obj,Proto, Trans),

in(Part ,Proteo).

basic part(0bj.0bj) ¢ primivive(Obj).
basic_part(SubPart,0bj) = (2)
part (Part,0bj),
baaic_part (SubPart,Part).

A clause of the form "P < Q, R, 8" has the meaning that
P is true if each of the condltions Q, R and § is true.
Names slarting with a capital letter are variables,

standing for arbitrary entities. Thus, clause (2) above can
be read as *“‘for any SubPart, Part and Obj, SubPart is a
basic part of Obj if Part is a part of Obj and SubPart is a
basic part of Part.” The relation in(Part,0bj) is
intended Lo hold between an object Obj and any virtual
primitive Part that is indivisible and coantributes to the
structure of Obj. A virtual primitive is either a
primitive, satislying the predicate ‘primitive’, or an
object derived through the application of geometric
transformations to a primitive.

To derive actual graphical representations we needboth
structural rules and rules that relate the graphics of an
object to the graphies of its parts. The relationship
vipible, defined hy the rules below, holds between an
object and a graphic primitive if the primitive belongs to
the graphics of one of the parts of the object.

vigsible (Obj.Prim) «= (3)
in(Part,0bj},
vigible(Part,Prim).

viaible (ObjaTranse,Prim) ¢ (4)

vigible (Obj ,Prim0),
apply(Trans,Prim0,Prim).
vigible (Obj,Prim) ¢ graphics(Obj,Prim). (5)

The rules for the visible relationship can he understood
as follows. Rule {3) states that Qhj has graphies Prim if
Part is in Obj and Part has graphics Prim. Rule
(4) states that an objeet Obj transformed by Trans
{written as ObjQTrans) has graphics Prim if Obj has
graphics Prim0 and Trans applied to Prim0 gives Prim.
The  predicate  apply just applies geometric
transformations, and therefore we do not need to examine
it further. However, for what follows, it is important that
apply be invertible in the limited sense of being able to
compute one of its arguments, given the other two. This is
not problematic, because a reasonahle set of geometrieal
transformations will satisfy that property, being
mathematically a group.

3. Pointing at Things

Pointing at a drawing with some pointing device® is the
natural means of referring to the objects we want to
operate on. In general, pointing operalions are ambiguous,
that is, several different objects could be meant by the
operation. Whereas the identification of which objects
arc meant is, in general, a very difficult question, we will
see later that, in the present framework, it is possible to

ln GKS terms, a plck or locator device [10], which is used to
point at graphics or locations on the screen. I will leave aside the
computer graphics issues of bow the bottom-level graphics machinery
derives from this input 3 hil set of atomic graphic objects (segments
in GIS parlance).



derive reasonable guesses.

The usual situation in 2 complex drawing will he that a
pointing operation will unambigucusly identify a hit set
of atomic graphical entities, and the identification task
will be to go from those atomic objects to a set of objects
in the database whose graphics include those graphical
entities,

For power and generality, a pointing operation may be a
combination of actual physical pointing with a
spccification of constraints (the hit elass) to help identify
the objects being referred to.

In conventional picture editors, identification is
conceptually simple because of the limited repertoire of
objects that may he built and referred to. Objects are
either primilives {lines, text strings, elc.]) or complex
objects made of simpler objects, but in which the simpler
objects have lost their individuality [10, 2]. Therelore,
from the point of view of identification, we have a single
level of atomic objects without any internal structure. In
the same way, primitive text editors have commands to
identify a particular character or a particular line in the
text but cannot identify lines with a given internal
structure. In picture or text editors of this kind, the
pointing expressions of the user language are all of the
form

<pointed positions, hit codes>

where the hit codes are used to select from all the
(atomic) objects whose views contain some graphics in the
hil sel, those in some particular predefined subclass {for
example, line segment, symbol).

Another kind of pointing, specialization, is available in
some drawing syslems [1]. The target set identified by a
specialization is the set of all occurrences of a given
subobject, where those occurrences have heen created
through instantiation of a common prototype. 1 will have
more 1o say about protntypes and instanees in Seetion 5.
For now, it is enough to note that this kind of pointing
operation may be seen as drawing an arbitrary distinction
between objects that are the same from the user's point of
view, but that do not come from the same prototype. For
example, of two apparently identical arches X and Y, X
could be an instance of an arch prototype, and Y an
assembly of three instances of the beam prototype. X
could be identified as a specialization of “arch,” whereas
Y could not. This shows particularly well how the
internal organization of the drawing system imposes “‘ad
boce"” constrainls on the user language. At the machine
level, instances of prototypes are stored in the database as
descending from the prototype. It is therefore easy to go

from the prototypes to the instances. The pointing
operation does not identify “all X's,” where X is a
deseription of the protolype, but only “all descendants of
X". The way in which the picture has heen put together
has here an incurable influence on the class of identifiable
objects.

We have seen so [ar two kinds of seemingly arbitrary
limitations in the user language for pointing:

® Loss of the substructure of cbjects

o Identilication of pointed cobjects governed by
features of the database that are invisible to
the user.

By using the methods of the last section, we are going to
see now how these problems can be solved.

4. Structural Rules and the Identification
Problem

We can now give a quite general description of the
identification problem in terms of structural rules.
Essentially, we can use the [fact that the predicate
visible as defined in Section 2 can be inverted provided
that the predicates instance, part, graphics and apply
are also invertible. The [irst three are defined exclusively
by atomic facts and therefore are trivially invertible. The
predicate apply can also be made invertible as discussed
in Section 2.

I assume the user input provides a hit set of atomic
graphic ohjects as those geperated by the visible
predicate. The hit classes also derived from the user
input are seen as names for conditions that an object
must specify to be the target of the pointing operation.
Then, the identification problem for a pair

<graphic cbject, hit class>
can be simply described by the rule:

target (Craphics.HitClasa,Object) & (8)
visible {Object, Graphics),
satisfies{Object, HitClass).

where satisfisa delines whether an object satisfies the
conditions named by a bit class.

The hit classes allowed by the user language could range
from the names of primitives to eomplex conditions
expressed in the same language as the structural rules.
For example, the following clauses partially define an
arch hit class:

satisfies(Object,arch) « arch(Object).



arch(Object) & inetance(Object,arch,Trans).

arch(Object) = ¢)]
setof (Part, basic part(Part,Cbject),Set),
arch shape(Set).

Arches oceur by this definition in two ways: as instances
of an arch prototype, and as ‘‘ad hoc" arches made of
independent parts partially defined by clause (7). This
clause conlains a new kind of condition, of the form

eetof (thing, conditions, set)

which is satisfied when set is the set of things satisfying
the conditions. Clause (7) can therefore be read as “‘an
arch may be an object such that its (hasic) parts form an
arch.” The definition of arch shape is not very
interesting at this point, and is therefore omitted.

In a more realistic setting, rule (6} would be replaced by
a rule that takes into account the context-dependent
focus of the interaction. We can formalize focus as a
predicate that takes a context and an object and checks
that the object is *in focus® in that context. The revised
rule is as follows:

target(Graphice ,HitClass,Object,Context)
vigible (Object,Graphice).
satisfies (Object HitClass),
focus (Context,Object) .

In our arch example, we could have the following
definition for focus:

focus(archeg,Arch) < arch(Arch).
focts(beams,Beam) < beam(Beam}.

where the arch and beam predicates identify arches and
beams, respectively. In a building application, pointing at
a linc segment might identify a wall if we are working at
the floor plan level, but might identify a house if we are
working at the site plan level.

This notion of focus will also be useful in viewing the
database to avoid the presentation of irrelevant detail.

5. New From Old

In the examples of the last seetion, we have encountered
a very simple mechanism for defining objects from others
through transformations. The term “prototype’ was used
above to refer to objects that are transformed in this way.
However, wlereas the prototypes of the last section were
fully defined, in general 2 prototype will only describe an
aspeet of an object, leaving undefined {uninstantiated)
other aspects. Prolog programming gives us an effective
means for dealing with partly defined or parameterized

objects. For example, the [ollowing clauses define two
paramcterized prototypes bean(Length) and
arch(Width,Height) leaving unspecified the length of
beams of width 1 and the width and height of arches.

prototype (arch(Width,Height)) .

part(leftcolumn (Height),
arch(Width, Height)).

part(rightcolumn(Width, Height),
arch(Width,Height)).

part(crossbean(Width,Height),
arch(¥idth, Height)).

instance (leftcolumn(Length),
beam(Length) ,id) .

inptance (rightcolumn (Width,Height),
beam(Height),
transiate ((¥idth-1)-0)).

instance (crossbeam(Width, Height),
beam(Width),
rotate(-90,00) :
transiate (0° (Height+1))).

prototype (beam(Length)) .

graphics (beam(Length),
line (0°0,0"Length)) .
graphics (beam(Length),
line(070,1°0)).
graphics(beam(Length),
1ine (10,1 Length)).
graphice (bean(Length),
line(0°Length,1 Length)).

These clauses correspond directly to their counterparts in
Section 2, except thal now object names are not atomic,
but instead have arguments for the unspecified

dimensions.  Figure 51 shows some instances of the
prolotypes.
4
1 i beam(4)
bean(2) o
2 2
bean(2)
bean{2) 1 arch(4,2) 1

Figure 5-1: Parameterized Arches



Besides prototyping, other combinating operations
hetween objects are easily defined. For instance, a union
relationship to make a new object containing ali the parts
of two other objecis can be interpreted by the following
additional clauses for inm:

in(Part,0bj} =
union(Obji,0bj2,0bj),
in(Part,0bjl).

in(Part,C0bj) <
union(Obji,0bj2,0bj),
in(Part,0bj2).

The specific union objects will be defined by ¢lauses for
mniont . The two clauses for in state that a part is in a
union object if it is in one of the two objects in the union.

Work is being done on even more powerful methods of
object  definition in definite-clause logic for graphics
databases. Of particular interest are definition operators
analogous to those provided in regular expressions and
contexi-free grammars [, 4] that can be used to define
generic objects containing arbitrary numhers of parts
where the location and dimensions of each part are
defined relatively to those of the other parts and the
overall assemblage is defined by further constraints. Such
operators can be applied for example to fill & region with
instances of a given prolotype.

6. Updating the Database

The method of representation deseribed in the preceding
scctions is very closely related to that provided by
relational databases.  All the basic object definition
predicates (part, instance. primitive, graphics and
prototype) can be identified with relations in a relational
dalabase. The predicate inslance is the only one that has
an implicit fuctional dependency, from its first argument
to each of its other arguments. The techniques for
updating Prolog databases descrihed by Parsaye [12| may
therefore be applied here.

Because, in our databases, objects are described in a
piecemeal fashion, it is perfectly acceptahle to modifly
only part of the deseription of an object, or to modify all
ohjects that use a prototype by modifying the prototype.
The easiest way to visualize what happens to the objects
described by the database when the database is updated is

to see an update as a mapping of an extensional version of .

the predicate in (the set of tuples in in) to another such
set of tuples. The correspondence between updates of the

union is a predicate rather than a functor that combines two
objert names inlo a asw object name to guaranlee thal spurious
union ohjects are not generated when the delinition of in is used for
identilication of objects rather than for viewing.

base relations and changes in the extension of the in
relation is deflined by the structural rules.

Because objects containing instances of prototypes may
change if the prototypes are changed, we need to be able
to copy an object by ¢realing a new object containing the
parts of another directly without relying on the prototype
instances contained in the old object, The old and new
objecls will be exactly the same from the point of view of
the in predicate but their internal structure will be
different, with the new object being a one-level assembly
of atomic parts. The copy operation can be delined as a
global database update operation along the lines

copy{01ld, New} =
for_all(Part,
in(Part,01d),add {part (Part,New))}.

where for_all and add are extralogical operators® that
iterate over the tuples of a relation and add new tuples to
the database, respectively.

In a related paper |16], a2 method for updating and
maintaining the integrity of Prolog design databases is
discussed.

7. Implementation

Seel.og, a graphics front end for Prolog databases based
on an early version of the methods described here has
been implemented by combining a Prolog interpreter with
the GiGo window graphies manager [13] on a VAX
11/750 under 4.1 Berkeley Unix6.

SecLog allows the user to give a declarative description
not only of drawings but also of the screen layout in
which the drawings are to be displayed. SeeLog manages
the relationship between primitive objects and their
graphical representations so that the display is
automatically updated when the Prolog database changes
and graphies input is efficiently related to primitive
ohjects in the database, SeeLog is being reimplemented
and extended to add a more flexible screen mode! and to
improve the speed of redisplaying and ioput
interpretation. SeeLog is being used to demobstrate
Prolog programming techniques for computer-aided
architectural design 13, 8].

Although the definitions of in and visible fully
describe the graphical content of a database, in 2 large
database it is oot practical to rely solely on those

5The theory of giving nonprue: 2ural meaning to such operators is
discussed by Kowalski [11].

Bl’nix is a trademark of Bell ©. - -atories.



delinitions to interpret user input. Some form of
“backwards indexing™” [rom paris to the objects that
conlain them is ¢learly desirable. It is possible to provide
such information in the form of additicnal redundant
clanses in the database. Of course, a specification of the
functional dependeney of the indexing clauses on the base
clauses will be required to ensure correct updating.

8. Conclusion

A method for relating objects in a design database to
their graphical representations has been presented. The
foundation of the method is the use of definite-clause logic
both as a description language and, in the form of Prolog,
as a programming language for representing objects and
the reilations between objects and between objects and
their graphical representations. For the point of view of
graphical operations, the main advantage of the method is
that the same logical statements can be used to compute
the images of objects and to interpret graphical input in
terms of the objects in the database. The method also
makes the definition of parameterized objects as easy as
that of constant objects. There is potential for extending
this work to encompass more powerful object combination
operations such as indefinite iteration and space filling.
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