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FRACTAL-BASED DESCRIPTION OF NATURAL SCENES

Alex P. Pentland
Artificial Intelligence Center, SRI International
333 RRavenswood Ave., Menlo Park, Californta 94025

ABSTRACT

This paper addresses the problems of (1} representing natural shapes such as moun-
tains, trees and clouds, and (2) computing their description from image data. To solve
these problems, we must be able to relate natural surfaces to their images; this requires a
good model of natural surface shapes. Fractal functions are a good choice for modeling 3-D
natural surfaces because (1) many physical processes produce a fractal surface shape, (2)
fractals are widely used as a graphics tool for generating natural-looking shapes, and (3)
a survcy of natural imagery has shown that the 3-D fractal surface model, transformed by
the image formation process, furnishes ap accurate description of both textured and shaded
imnge regions.

The 3-D fractal model provides a characterization of 3-D surfaces and their images for -
which the appropriateness of the model is verifiable. Furthermore, this characterization is
stable over transformations of scale and linear transforms of intensity.

The 3-D fractal model has been successfully applied to the problems of (1) texture seg-
mentation and classification, (2) estimation of 3-D shape information, and (3) distinguishing
between perceptually “smooth” and perceptually “textured” surfaces in the scene.

The research reported herein was supported by the Defense Advanced Research Projects
Agency under Contract No. MDA 903-83-C-0027 (monitored by the U. S. Army Engincer
Topographic Laboratory) and by National Science Foundation Grant No. DCR-83-12766.
Approved for public release, distributiorn unlimited.



Figure 1. Fractal-Based Modeis of Natural Shapes {by Mandelbrot and Voss [10]}.

I. INTRODUCTION

The world that surrounds us, except for man-made environments, is typically formed
of complex, rough and jumbled surfaces (e.g., Figure 1). If we are to develop machines
competent to deal with the natural world, therefore, we need a representational framework
that is able to describe such shapes succinctly. The problem, then, is how shall we describe
the shape of a crumpled newspaper? A clump of leaves? A jagged mountain?

Current representational schemes employ Plato’s notion of Ideal Forms — e.g., spheres,
cylinders and cubes — to describe three-dimensional shapes. Such shape-primitive repre-
sentations function well in man-made, carpentered environments. When we attempt to
describe the crenulated, crumpled surfaces typical of natural objects, however, the result
is usually implausibly complex. Such awkwardness makes these shape-primitive repre-
sentations difficult to envisage as the basis for human-performance-level capabilities.

Furthermore, how can we expect to extract 3-D information from the image of a rough
or crumpled surface when all of our models refer to smooth surfaces only? We have no models
that describe either the shape of such complex surfaces or how they evidence themselves
in an image. The lack of a 3-D model for such naturally occurring surfaces has generally
restricted image-understanding efforts to a world populated exclusively by smooth objects,
a sort of “play-doh” world [1] that is not much more general than the blocks world.

Shape-from-shading [2,3] and surface interpolation methods [4], for ins.ance, all employ




the hicuristic of “smoothness” to relate neighboring points on a surface. Such heuristics are
applicable to many mav-made surfaces, of course, but are demonstrably uutrue of most
natural! surfaces. Texture descriptors, similarly, have dealt only with patterns assumed
to lie on a smooth surface [5,6], or have discarded 3-D notions entirely and worked only
with ad hoe statistical measures of the image intensity surface. Before we can cuiploy sucl
techniques in the natural world, we must be able to determine which surfaces are smooth and
which are not. — or clse generalize our techniques to include the rough, crumpled surfaces
typically found in nature.

In cither case, we must have recourse to a 3-D model competent to describe naturaily
occurring surfaces. A good model of natural surfaccs, together with the physies of image
formation, would provide the analytical tools necessary for relating natural surfaces to their
images. A formulation able to relate image to surface can provide the necessary leverage
for usefully representing natural surfaces, as well as the computation of such descriptions
from the image data' .

This paper, therefore, addresses two related problems: (1) finding a representation of
shape capable of describing succinctly the surfaces of such natural objects as mouuntains,
trees, and clouds, and (2) determining how such a description might be computed, given
only raw image data. The first step towards solving these problems, of course, is to obtain
a model of natural surface shapes.

[ractal functions appear to provide such a model, in part because many basic physi-
cal processes produce fractal surfaces (and thus fractals are quite common in nature), but
perhaps even more importantly because fractals Jook like natural surfaces. This natural ap-
peurance has spurred recent computer graphics research to focus on using fractal processes®
for simulating natural shapes and textures (as in Figure 1). Mountains, clouds, water, plants,
trees, and even primitive animals [7-13] are all among the objects that have been realistically
portrayed by use of fractal functions. This is important information for workers in computer
vision, because the natural appearance of fractals is strong cvidence that they capture all
of the perceptually relevant shape structure of natural surfaces.

Additional support for the fractal model comes from a recently conducied survey of
natural imagery [14]. This survey found that the fractal model of imaged 3-D surfaces
furnishes an accurate description of most textured and shaded image regions, thereby further
validating this physics-derived model for both image texture and shading.

H. FRACTALS AND THE FRACTAL MODEL

During the last twenty years, Benoit B. Mandelbrot has developed and popularized a
relatively novel class of mathematical functions known as fractals [7,10]. Fractals are found
extensively in nature [7,8,10]. Mandelbrot, for instance, shows that fractal surfaces are
produced by a number of basic physical processes, ranging from the aggregation of galaxies
to the curdling of cheese.

1'The word representation will be used to refer to the formal language in which descriptions of particular
ohjects are couched.

2Must computer graphics techniques actually employ a stochastic approximation of true fractal functions
|9} however, this distinction is not important for our purposes.
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Figure 2. Surfsces of Increasing Fractal Dimensiony the fractal dimension cor-
responds closely to our intultive notlon of roughness.

The defining characteristic of a fractal is that it has a fractional dimension, from
which we get the word “fractal.” Technically, a fractal is defincd as a set for which the
Hausdor{l-Besicovich dimension is strictly larger than the topological dimension, i.e.. a set
for which the only consistent description of its metric propertics requires a “dimension”
value larger than our standard, intuitive definition of the set’s “dimension.”

The fractal dimension of a surface corresponds quite closely to our intuitive notion
of roughness. Thus, if we were to generate a scries of scenes with the same 3-D relief but
with increasing fractal dimension D, we would obtain a sequence of surfaces with lincarly
increasing perceptual roughness, as is shown in Figure 2: {a) shows a flat plane (D == 2),
{(b) rolling countryside (D == 2.1), {c) an old, worn mountain range (D == 2.3), (d) a young,
rugged mountain range (D == 2.5), and, finally {e), a stalagmite-covered plane (D = 2.8).

One general characterization of fractals is that they are the end result of physical
processes that modify shape through local action. Such processes will, after innumerable
repetitions, typically produce a fractal surface shape. Examples are erosion, aggregation
{e.g., galaxy formation, meteorite accretion, and snowflake growth) and turbulent flow (e.g.,
of rivers or lava).

EXPERIMENTAL NOTE: Ten naive subjects (natural-language researchers) were

shown sets of fifteen 1-D curves and 2-D surfaces with varying fractal dimension but

constant range (e.g., see Figure 2), and asked to estimate roughness on a scale of one
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(smoothest) to ten {roughest). The mean of the subject’s estimates of roughness had a
nearly perfect 0.98 correlation (p < 0.001) with the curve’s fractal dimension — i.e.,
fractal dimension accounted for 96% of the variance in the roughness estimates. The
fractal measure of perceptual roughness is therefore almost twice as accurate as any
other reported to date, e.g., [29]

An Illustration of Fractal Dimension. One familiar example of naturally occurring
fractal curves is coastlines. When we examine a coastline (as in Figure 1), we see a familiar
scalloped curve formed by innumerable bays and peninsulas. If we then examine a finer-scale
map of the same region, we shall again see the same type of curve. {t turns out that this
characteristic scalloping is present at almost all scales of examination [8], i.e., the statistics
of the curve are invariant with respect to transformations of scale.

To illustrate the importance of fractal dimension, let us suppose that we wish to
measure the area of an island or the length of its coastline. Metric properties are, in general,
estimated by taking a measuring instrument of size A, determining that n such instruments
will “cover” the curve or area to be measured, and applying the formula

M=n)\? |

where Af is the metric property to be measured (e.g., length, area), and D the topological
dimension of the measuring instrument.

The fact that the coastline is scalloped at all scales causes a problem when we attempt
to measure it because all of the curve's features that are smaller than the size of the
measuring tool will be missed, whatever the size of the measuring tool selected. When
we attempt to estimate the length of such a curve, therefore, the measurement we obtain
depends not only on the coastline but also on the length of the measurement tool itself [8]!

Mandelbrot pointed out that, in order to obtaln a consistent measurcment of the
coastline's length, we must generalize the notion of dimension to include fractional dimen-
sions. The use of a fractional power. in our mensuration formula compensates, in effect, for
the length or area lost because of details smaller than \. The unique fractional power that
yields consistent estimates of a set’s metric properties is called that set’s fractal dimension.
Because it provides the correct adjustment factor for all those details smaller than X, it may
also be viewed as a measurement of the shape's roughness.

One of the more important lessons such examples teach us is the following: standard
notions of length and area do NOT produce consistent measurements for many natural
shapes. The basic metric properties of these shapes vary as a function of their fractal
dimension. Fractal dimension, therefore, is a necessary part of any consistent description of
the metric properties of such shapes, for any description that lacks it will not be correct at
more than one scale of examination.

Fractal Brownian Functions. Virtually all fractals encountered in physical models have
two additional properties: (1) each segment is statistically similar to all others; (2) they are
statistically invariant over wide transformations of scale. The path of a particle exhibiting
Brownian motion is the canonical example of this type of fractal; the discussion that
follows, therefore, will be devoted exclusively to fractal Brownian functions, a mathematical
generalization of Brownian motion.
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A random function I(z) is a fractal Brownian lunction if for all z and Axr

Ilz+ Az)~ I(z) )
pof (2482 =1a) ) gy (n
( T

where F'{y) is a cumulative distribution function [7]. Note that z and /{z) can be interpreted
as vector quantities, thus providing extension to two or more topological dimensions. If [{r)
is scalar, then the fractal dimension D of the graph described by f{z) is

D=2-H (2)

If 7T = 1/2 and F(y) comes from a zero-mean Gaussian with unit variance, then f{r) is the
classical Brownian function.

The fractal dimension of these functions can be measured either directly from /{z) by
use® of [iquation 1, or from I(z)'s Fourier power spectrum P(f), as the spectral density of
a fractal Drownian function is proportional? to f=2/—1,

A. Fractals And The Imaging Process

Before we can use a fractal model of natural surfaces to help us understand images
we must determine how the imaging process maps a fractal surface shape into an image
intensity surface.

The first step is to define our terms carefully. Reul images and surfaces can not, of
course, be true mathematical fractals, because the latter are defined to exist at alf scales.
Physical surfaces, in contrast, have an overall size that places an upper limit on the range
of applicable scales. A lower limit is set by the size of the surfaces' constituent particles.
Fractals, in common with all mathematical abstractions, can only approximate physical -
objects over a range of physical parameters.

Because it is unreasonable to expect a physical surface to be fractal over all scales,
the only physically reasonable definition of a “fractal surface” is a surface that may be
accuralely approximated by a single fractal function over a range of scales. We shall say,
therefore, that a surface is fractal if the fractal dimension is stable over a wide range of
scales, the implication being that it can be accurately approximated over that range of scales
by a single fractal lunction.

These considerations prompt the following two definitions, the first applicable to a
two-dimensional function such as the image intensity surface, the second applicable to a
topologically two-dimensional surface embedded in three dimensions, such as the surface of
a mountain.

DEFINITION: A fractal Brownian surface is a continuous function that obeys the
statistical description given by Equation (1) with z as a two-dimensional vector at all scales
(i.e., values of Az) between some smallest {Az.in) and largest (AZ,mqz) scales.

DEFINITION: A spatially isotropic fractal Brownian surface is a surface in which
the components of the surface normal N = (N_, Ny, N;) are themselves fractal Brownian
surfaces of identical fractal dimension.

3See the beginning portions of Section I, and IVe.

1Discussion of the rather technical proof of this proportionality may be found in [10}.
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In the next section { will present evidence showing that mauny natural surfaces arc
spatially isotropic fractals, with Azpin and Azgmgz being the size of the projecied pixel and
the size of the examined surface patch, respectively. [urther, it is interesting to note that
practical fraclal-gencration techniques, such as those used in computer graphies, have had
to constrain the fractal generating function to produce spatially isotropic fractal Brownian
surfaces in order to obtain realistic imagery [9). Thus it appears that many real 3-D surfaces
arc spatially isotropic fractals, at least over a wide range of scales.

With these definitions in hand, we can now address the problem of how 3-D fractal
surfaces appear in the 2-D image.

Proposition 1. A 3-D surface with a spatially isotropic fractal Brownian shape produces
an image whose intensity surface is fractal Brownian and whose fractal dimension is identical
to that of the components of the surface normal, given a Lambcrtlan surface reflectance
function and constant illumination and alhedo.

Proof. Under the Lambertian and constancy assumptions, the image intensity I at a point.
P i3 a function of the surface normal IN at the surface point that projects to FP:

I = pA(N-L) (3)

where p is the albedo of the surface, X is the illuminant intensity, and L = ({;,{,, ;) is the
illuminant direction. Variations in 7, therefore, are dependent only upon variations in IN.
The proposition claims that the image intensity I will obey the rule

[ I(z,y) Iz + Bz, y) — (s
P TR <) =

To show this, we let N| be the normal at point (z,y) and N2 be the normal at point
(x+ Ax,y). Then we expand Equation {3), yielding

Expanding the dot products, we obtain

MNzl + Nigly, + Ni2l) — pA(Nogly + Nayl, + Na.l.
Pr (P ( 1z 1yty Iz")Az“F;f( 2 oyly 22 ‘.) <y)=F'(y)

As Nz, N, and N, are all fractal Brownian functions, by virtue of the surface being assumed
a spatially isotropic fractal Brownian function and, as p, A and L are constant, then pAN_{.,
pANyly and pAN_.l; are also fractal Brownian (see Proposition 2 in the following section);
thus

I = pA(N-L) = pMN.L, + N, L, + N.l,)

must also be. Note that this proof may be generalized to include all cases in which the
reflectance function is an affine transformation of N. The dimension of I is the same as
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that of the components of N, since multiplication does not aflect fractal dimension (see
Proposition 2) s.

This proposition demonstrates that the fractal dimension of the surface normal dic-
tates the fractal dimension of the image intensity surface and, of course, the dimcasion of
the physical surface® Simulation of the imaging process with a variety of imaging gcometries
and reflectance functions indicates that this proposition will hold quite generally; the
“roughness” of the surface seems to dictate the “roughness” of the image. If we know
that the surface is homogeneous® , therefore, we can estimate the fractal dimension of the
surface by measuring the fractal dimension of the image data.

What we have developed, then, is a method for inferring a basic property of the 3-D
surface — its fractal dimension — from the image data. That fractal dimension i3 required
to obtain a scale-invariant description of a surface’s metric properties is an indication of
its usefulness. That fractal dimension has also been shown to correspond closely to our
intuitive notion of roughness shows the fundamental importance of the measurement: we
can now discover from the image data whether the 3-D surface is rough or smooth, isotropic
or anisotropic. We can know, in effect, from what kind of cloth the surface was cut.

EXPERIMENTAL NOTE:Fifteen naive subjects (mostly language researchers)

were shown digitized images of eight natural textured surfaces drawn from Brodatz

{15]. These are shown in Figure 8. They were asked “if you were to draw your finger

horizontally along the surface pictured here, how rough or smooth would the surface

feel?,” ie., they were asked to estimate the 3-D roughness/smoothness of the viewed
surfaces. This procedure was then repeated for the vertical direction, yielding a total
of sixteen roughness estimates for each subject. A scale of one (smoothest) to ten

(roughest) was used to indicate 3-D roughness/smoothness. The fractal diniension

of the 2-D image was then computed along the horizontal and vertical directions

by the use of [Equation (5), as described in the following section, and the viewed
surface’s 3-D fractal dimension was estimated by the use of Proposition 1. The mean
of the subject's estimates of 3-D roughness had an excellent 0.91 correlation (p <

0.001) with roughnesses predicted by use of the image’s 2-D fractal dimension and

Proposition 1, i.e., the 3-D fractal dimension predicted by use of the measured 2-D

image's fractal dimension accounted for 83%% of the variance in the subject's estimates

of 3-D roughness. This result, therefore, supports the general validity of Proposition
L

Properties of Fractal Brownian Functions. Fractal functions must be stable over
common transformations if they are to be useful as a descriptive tool. The following
propositions prove that the fractal dimension of a surface is invariant with respect to linear
transformations of the data and to transformation of scale. Estimates of fractal dimension,
therefore, may be expected to remain stable over smooth, monotonic transformations of the
image data and over changes of scale.

5The surface normal is a function of the first derivative of depth; thus, we can construct an integration
procedure that converts surface normals into surface shape (as a depth map).

8Rubin and Richards [28] describe a scheme whereby the homogeneity of a surface may be determined
from its imaged color.
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Proposition 2. A lincar transformation of a fractal Brownian function is a fractal
Brownian function with the same fractal dimension.

Proof. The proposition claims that if I{z) is a fractal Brownian function, i.e., obeys
Equation (1) then

, (,rlI(:E)+B)—(A[(:c+A:c)+B) .
G <v)=rw)

will be true of Al{x) + B. This sccond expression may be rewritten as

Hz)—Iz+Az) _ v\ _
”'( [Az] <Z)‘”“’

or

I(z)~ I(z + Az) ) \
P = F(yA
(a2 <) = Floa)
thus proving the proposition; linear transforms merely scale the distribution F(y) e.

Proposition 3. The fractal dimension of a fractal Brownian function is invariant over
transformations of scale.

Proof. The proposition claims that, if I(z) is a fractal Brownian function, i.e., it obeys
[Squation (1), then

Pr( I(z)— I{z + kAz)

B ") = fy)

will be true of /(z). This is trivially true; we necd only set Az' = kAz, and then the second
expression may be rewritten as

L Hz)—I(z+ Az") )_ »

thus proving the proposition .

B. Contours And The Imaging Process

We have described a method whereby the fractal dimension of the surface can he
inferred for homogencous, uniformly lit surfaces. Even if the surface is not homogcneous
or uniformly illuminated, however, we can still hope to infer the fractal dimension of the
surface from imaged surface contours and bounding contours.

Contour shape is often primarily a function of surface shape; this is especially true for
contours that lie mostly within a plane intersecting the surface. Common examples of such
approximately-planar contours are bounding contours and contours that are “drawn” oun
the surface, e.g., cast shadows. The imaged projection of such platar contours is simply a
linear transform of the 3-D contour; recalling that linear transforms do not, alter the fractal
dimension of a function, we see that the fractal dimension of these imaged contours is the
same as that of the 3-D contour.



Thus we may use the fractal dimension of imaged contours to directly infer that
of the 3-D surface {the surfaces’ dimension is simply one plus the contours’ dimension).
Cousequently, the estimate of fractal dimension obtained from contours can be used to
corroborate the one derived from image intensities.

III. Applicability Of The Fractal Model

Proposition 1 proved that a fractal surface implies that the image intensity surface
is itself fractal. The reverse is also true, as is proved in the following proposition. This
proposition, therefore, gives us a method of evaluating the usefulness of the fractal surface
model for particular image data: to determine whether or not a 3-D surface is fractal, all we
nced Lo do is to determine whether its image is fractal {given that we have first determined
that the surface is homogencous, perhaps by use of color information [28]).

Proposition 4. If an image intensity surface is a two-dimensional fractal Brownian then
the imaged 3-D surface must be spatially-isotropic fractal Brownian, given that the surface
is Lambertian and the illumination and albedo are constant.

Proof. For a l.ambertian surface, the image intensity [ is a linear function of the com-
penents of the surface normal Nz, Ny, and N, c.g.,

I = pMN-L) = pA(N, L, + N, L, + N,1,) (4)

To prove that the a fractal Brownian image intensity surface necessarily entails a 3-D surface
that is spatially-isotropic fractal Brownian, it suffices (by definition) to prove that a fractal
image implies that the components of the surface normal are fractal.

We first note that Proposition 2 proves that linear transforms do not affect the fractal
nature of a function nor its dimension. Thus Equation {4} shows that the fractal nature
(and dimension) of the image intensity surface is determined by the sum of N, Ny, and
N.. As the finite sum of non-fractal functions is non-fractal, we see that if the image
intensity surface is fractal Brownian then so must at least one of the components of the
surface normal. If the image is two-dimenstonally fractal (e.g., fractal in both the x and
y tinage directions), then at least two independent components of the surface normal must
be fractal. Thus, as the surface normal has only two degrees of freedom by virtue of being
cousirained to have unit magnitude, a two-dimensionally fractal Brownian image intensity
surface implies that all of the surface normals’ components must be fractal Brownian and
the surface is therefore spatially-isotropic fractal Brownian. e

To evaluate the applicability of the fractal model for a particular surface and its image
data, then, we need only verify the homogeneity of the surface and the fractal nature of the
image intensity surface. It appears that verification of surface homogeneity can be done by
use of color information [28]; in order to verify the fractalness of the image we first rewrite
Equation {1) to obtain the following description of the manner in which the second-order
statistics of the image change with scale:

E(|aLa: )| Az]|™7 = E(|ATaz=1l) ()
10
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Figure 3. Results For a Typical Textured Patch.

where E(|Alaz|) is the expected value of the change in intensity over distance Az. Equation
(5) is a hypothesized relation among the image intensities; a hypothesis that we may test
statistically. If we find that Equation (5) is true of the image intensity surface within a
Lomogencous image region’ , then Proposition 4 tells us that the viewed surface must be a
3-D fractal Brownian surface, and thus the fractal model is appropriate. [t is an important
characteristic of the fractal model that we can determine its appropriatencss for particular
image data because it means that we can know when {and when not) to use the model.

To evaluate the suitability. of the fractal model for natural surfaces, the homogencous
regions from cack of six images of natural scenes were densely sampled. In addition, detailed
images of twelve textured surfaces (see Brodatz [15]) were digitized and examined (see Figure
8). The intenstty values within each of these regions were then approximated by a fractal
Brownian function and the approximation error observed.

Figure 3 shows the results for a typical textured patch. The graphs (a) to (¢) show the
distribution of iutensity differcnces (i.e., the second-order difference statistics) at one, two,
three, five and ten pixel distances; the distributions are approximately Gaussian. Figure
3{f) shows a plot of the standard deviation of these distributions as a function of scale {i.c.,
E(}ATaz]) as a function of Az in pixels). Overlaid on this graph is a least-squares fit of a

l.e., we calculate the quantities E{|ATaz|) for various Az, use a least-squares regression (using the log of
Equation (5)) to estimate H, and examine the residuals.
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fractal rule. As can be seen, the fit is quite good — implying that the intensity surfacc in
this region is actually a fractal Brownian function, at least over the 10 : | range of scales
measured.

For the majority of the textures examined (77%), the fit was as good or better than the
example shown. In 1556 of the cases the region was coustant except for random, zero-incan
perturbations: consequently, the fractal function correctly approximates the image data,
although the estimated fractal dimension is equal to the topological dimension® . The fit
was poor in only &%% of the regions exaimined. In some of these cases it appeared that the
image digitization had become saturated, and thus the poor fit may bave been artifactual.

The fact that the vast majority of the regions examined were quite well approximated
by a fractal Brownian function indicates that the fractal model will often provide a useful
description of natural surfaces and their images. In those cases for which the fractal
description is appropriate, the only statistical structure that remains unaccounted for by Lhe
fractal Brownian function is zero-mean unit-variance Gaussian noise -— indicating that the
fractal description cllectively exhausts all of the second-order difference information within
the image.

Following initial report of this work [14] a similar investigation was conducted by Peleg
et af [27]. In their work high-resolution images drawn from Brodatz [15] were examined over
much larger ranges of scale, und their data show that the images’ fractal dimension was not
constant over all scales but rather only over ranges of scale. This data might be naively
interpreted as indicating that these textures are not fractal, however such an interpretation
is incorrect.

As observed carlier, physical processes do not typically act at all possible scales but
rather only over a range of scales. Thus we should expect that a physical surface (and thus its
image} will chauge its fractal chuaracteristics when we pass from a range of scales dominated
by one formative process to a range of scales that was shaped in a different manner. It is
this realization that real surfaces will be fractal over ranges of scale, rather than fractal
over all scales, that prompted the careful inclusion of fimited ranges of scale in this papers’
definition of 2-D and 3-D fractal surfaces. The ranges of constant fractal dimnension observed
in the Peleg et al data, therefore, are consistent with (and provide independent confirmation
of) the fractal surface model.

A. The Relationship Between Fractals and Regular Patterns

Fractal Brownian functions do not, of course, describe regular or large-scale spatial
structures such as are seen in the image of a brick wall or a tiled floor. Such structures
must be accounted for by other means. It is important to realize, however, that while fractal
Brownian surfaces are required to have particular second-order statistics, this does not mean
that they cannot be regularly patterned.

To understand this, consider that the probability of a random number gencrator
producing the string “1010..." is exactly the same as the probability of any other particular
string with half 1's, half 0’s. Both strings have the same statistics, and thus the same prob-
ability of occurrence, although one is regularly patterned and the other isn’t. Similarly, a

BIn these cases the data's dimensionality is technically not “[fractional,” but this distinction need not
concern us here.
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surface such as a brick wall ecan be a perfectly good Brownian fractal: the overall distribution
of second-order statistics is correct; it simply contains position-dependent patterns.

The fact that fractal Brownian functions can exhibit regularities allows us to smoothly
pass from random, chaotic surfaces to regular, patterned ones within the same conceptual
framework [16]. Regnlar surfaces, for instance, can be generated by adding constraints
{patterning) to the random-number generator used in conjunction with computer graphics
techniques for recursively generating fractal Brownian functions [9].

B. Detection Of Edge Points

It is an important characteristic of the fractal model that we can determine its ap-
propriateness for particular image data, because this allows us to know when, and when
pot, to use the model. If we discover an image region that does not fit the fractal model,
Proposition 4 allows us to infer that we are not viewing a homogencous fractal surface.

Boundarics between homogencous reginns are one example of a physical configuration
that does not fit well into the fractal model. Thus, when we examine points that lie on the
boundary between two image regions we find that the fit between the fractal model andl the
image data is pormally poor. The fact that boundaries seem to be the most common event
giving rize to a nonfractal intensity surface provides a method of detecting image points
that are likely to be edges.

One simple way to find such points is examination of the computed fractal dimension.
It turns out that when we compute the fractal dimension of a region covering a houndary
between two homogencous arcas, by using the regions's Fourier power spectrum? , we
normally calculate a fractal dimension that is less than the topological dimension. As this
is a physical impossibility, the implication is that the assumptions of the fractal model are
inappropriate for that specific image data. When we observe a measured fractal dimension
that is less than the topological dimension, therefore, we can reasonably expect that we have
found a texture edge. Examples of this will be shown in the following sections.

IV. INFERRING SURFACE PROPERTIES

Fractal functions appear to provide a good description of natural surface textures and
their images; thus, it is natural to use the fractal model for image segmentation, texture
classification, shape-from-texture and the estimation of 3-D roughness from image data. It
1s also natural to inquire into the relationship hetween the fractal surface model and the
various cther models of shape and texture that have previously been reported. This section,
consequently, describes the research performed in these areas.

A. Examples of Image Segmentation

Proposition 1 tells us that, within a homogeneous region, the fractal dimension in

2That is, since the power spectrum P(f)is proportional to f ~2¥—1 we may use a linear regression on the log
of the observed power spectrum as a function of f (e.g., a regression using log{P(f)} = —(2H + 1) log(f)+ &
for various values of f) to determine the power A and thus the fractal dimension.
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Figure 4. San Francisco Bey, and Its Segmentations.

the image is dependent upon that of the 3-D surface, thus giving us a technique for
inferring a 3-D property of the viewed surface that closely corresponds to people’s concept
of roughness/smoothness. This suggests that measurement of the fractal dimension in the
image will be useful in segmenting natural imagery.

Figure 4(a) shows an aerial view of San Francisco Bay. This image was digitized and the
fractal dimension computed for each 8 X 8 block of pixels by means of the Fourier technique
— i.e., the parameter /{ was estimnated by a least-squares regression of the Fourier-domain
fractal d=finition onto the power spectrum of the block of pixels. Orientational inforniation
was not incorporated into measurcment of the local fractal dimension — i.e., differences
in dimension among various image directions at a point were collapsed into one average
measurement. Figure 4(b) shows a histogram of the fractal dimensions computed over the
whole imagel? .

This histogram of fractal dimension was then broken at the “valleys” between the
modes of the histogram, and the image segmented into pixel neighborhoods belonging to
one mode or another. Figure 4(c) shows the segmentation obtained by thresholding at the
breakpoint indicated by the arrow under (b); each pixel in (¢) corresponds to an 8 X 8 block
of pixels in the original image. As can be seen, a good segmentation into water and land
19The values to the left of the large spike in (b} have a computed fractal dimension that is less than the

topological dimension; thus, these points are likely caused by patches that eross distinet regional boundaries;
in fact, they all occur along the water-land boundary and delineate that boundary.
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Figure 5. Mount Dawn, and Its Segmentatlions.

was achieved ~— one that cannot be obtained by thresholding on image intensity.

Proposition 3 indicates that this segmentation should be stable over traunsformations
of scale. To test this prediction, the image was averaged down, from 512 X 512 pixels to
256 X 250 and 128 X 128 pixel images, and the fractal dimension recomputed for each of
the reduced images. Figures 4{d) and (e) illustrate the segmentations produced by using the
same breakpoint as had been employed ir the original full-resolutior segmentation. These
results, therefore, demenstrate the stability of the fractal dimension measure across wide
(4:1) variations in scale, as predicted by Proposition 3.

Figure 5(a) shows a view of Mount Dawn. This image was digitized into 512 X 512
pixels and the fractal dimension computed as before; (h) shows a histogram of the computed
fractal dimension. Arrows at the bottom of (b) show where the distribution of fractal
dimension was broken to produce a segmentation of the image. Figure 5(¢) shows the image
segmented into two classes (land; snow-and-sky) at the first histogram breakpoint. Figure
5(d) shows the sky separated from the land and snow by the second histogram breakpoint.

15
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Figure 8. A Picture Of a Mug, and Iis Segmentation,

Taken together, (¢) and (d) demonstrate a good segmentation into mountain, snow, and sky.
Note that the distinction between snow and sky is very subtle; it is impressive that this fine
of a separation can be made by use of a simple image-wide histogram of roughnesses.

This image was also averaged down to 256 X 256, 128 XX 128 and 64 X 64 pixcl images,
and the fractal dimension recomputed for each of the reduced images. Figures 5(e) — 6(j)
illustrate the segmentations that result from using the same cut points as were employed
in the original, full-resolution segmentation; it can be seen that the segmentations in these
figures are quite similar, again demonstrating the stability of the fractal deseription across
wide (8 : 1) variations in scale.

Images of smooth, man-made surfaces can also be usefully segmented, as shown in
I'igure 6. Figure 6(a) shows a picture of a mug and, just behind it, a chairback. This image
was digitized into 256 X 256 pixels and the fractal dimension computed; (b) is a histogram
of the computed fractal dimensions with the breakpoint indicated by an arrow. Figure 6(c)
shows the image segmented into two classes at the point indicated by arrow No. 1. A good
partial scgmentation results!! . Figure 6(d) illustrates the points whose computed fractal
dimension is less than the topological dimension (the points to the left of arrow No. 2 in
{b)): as expected, these are edge points.

One final example is the desert scene shown in Figure 7(a). This scene was segmented
into three classes based on the histogram shown in (b); the segmentations are shown in (c)
(road-and-sky versus desert) and (d) (road and desert versus sky). As can be scen, there is
a good segmentation into desert, road, and sky.

Several other images have been segmented in this manner and, in each case, a good
segmentation was achieved. The computed fractal dimension (and thus the segmentation)

11 Nor can this segmentation be achieved by thresholding on-intensity values.
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Flgure 7. A Desert Scene, and ta Segmentation.

was always stable over at least 4 : 1 variations in scale; most segmentations were stable over
a range of 8 : 1.

Stability of the fractal description is to be expected because the fractal dimension
of the image is directly related to the fractal dimension of the viewed surface, which is a
property of 3-D natural surfaces that 1s typically stable with respect to transformations of
scale [8]. The fact that the fractal description is stable with respect to scale is a critically
important property. After all, let us consider: how can we hope to compute a stable, viewer-
independent representation of the world if our information about the world is not stable
with respect to scale?

B. Comparison With Established Segmentation Technriques

To obtain an objective comparison with established segmentation techniques, a2 mosaic
of eight images of natural surfaces [15] was digitized. The mosaic, shown in Figure &, was
constructed by Laws [17,18] for the purpose of comparing various texture segmentation pro-
cedures. The images that comprise this data set were chosen to be as visually similar as pos-
sible; gross statistical differences were removed by mean-value- and histogram-equalization.

Segmentation performance on these data exists for several techniques and, although
differences in digitization complicate any comparisons we might wish to make, Laws’s
performance figures nevertheless serve as a useful yardstick for assessing performance on
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Figure 8, The Brodats Textures Used For Comparison.

these data.

For this comparison, simple orientational information was incorporated into the frac-
tal description; the fractal dimension was calculated separately along the z and y image
directions. Fractal dimension was estimated, by using Equation (5), within five 18 X 18
pixel nonoverlapping subregions extracted from each of the eight regions. This data was
next used to estimate the mean and variance of fractal dimension in the z and y directions,
and theoretical classification probahilities were then computed.

The two-parameter fractal segmenter yielded a classification accuracy of 84.4%. This
performance compares quite favorably with other segmentation techniques — despite the
much larger number of texture features employed by these alternative methods. For ex-
ample, Laws [17] reports accuracies of 85% for correlation statistics [19,20], 72%% for
co-occurrence statisties [21,22], and a theoretical accuracy of 87.4% for texture energy
statistics'? . The results of this comparison, therefore, indicate that fractal-based segmen-
tation will likely prove a general and powerful technique!? .

C. Shape Estimates

There are two ways surface shape is reflected in image patterning: (1) projection
foreshortening, a function of the angle between the viewer and the surface normal, and
(2) perspective gradients, which are due to increasing distance between the viewer and the
surface. These two phenomena are independent in that they have separate causes. Thus,
they can serve to confirm each other — i.e., if projection foreshortening is used to estimate
surface tilt, that estimate is independently confirmed if there is a perspective gradieut of the
proper magnitude and same direction [25,8]. We may be confident our estimate is correct
when such independent confirmation is found.

128ee [17], Page 148.

130n a data set of 12 Brodatz textures, in which the textures were somewhat less similar, the classification
accuracy was 87.6%%. Followinginitial report of this work [14], Peleg et al. [27] investigated other techniques
for calculating fractal dimension and have reported essentially 1009 accuracy on similar Brodatz textures,
by using separate estimates of fractal dimension at many different scales. This allowed them to incorporate
information about Az,,¢n and AZgaz. the limits at which the textures behave as a single fractal, and thus
to improve their classification accuracy.
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The fractal dimension found in the image, by virtue of its independence with respect to
scale, appears to be nearly independent of the orientation of the surface. Fractal dimension,
therefore, cannot be used to measure projection foreshortening. Projection foreshortening
does, however, alfect the variance of the distribution F(y)} associated with the fractal
dimension (sce Proposition 2) in the same manner 1o which it affects the distribution of
tangent direction. Thus, to estimate surface orientation, we might assume that the surfaces’
structure is isotropic and estimate surface orientation on the basis of previously derived
shape-from-contour and shape-from-texture results [5,6].

This estimation technique often works; for instance, a vertical tilt and 45° slant was
estimated for the image in Figure 4, and a vertical tilt and 47° slant was estimated for the
upper portion of the image in Figure 7. The necessity of assuniing isotropy, however, 1s a
scrious shortcoming of this technique — for, when the assumption is wrong, the estimate
may be very much in error.

An important new result, therefore, is that we may partially cure this problem by
observing the fractal dimensions in the z and y directions. If they are unequal we have prima
facie evidence of anisotropy in the surface, because fractal dimension is largely unaffected
by projection. ‘

Regardless of how a foreshortening-derived estimate of surface orientation is produced,

we may still scek confirmation of it hy measuring the perspective gradient; if confirmation
is found, we may be confident of our cstimate. Such a gradient appears in Figure -i: the
houses dwindle in size with increasing distance from the viewer.
Figures 9(a) and 9(b) show relief plots of the fractal dimension computed from Figures
4(a) and 7(a). respectively. In both 9(a} and (b} the x and y axes correspond to the horizontal
and vertical directions in Figures 4(a) and 7(a); i.e., they are viewed as if from the left-hand
side of the original images. The z axis shows the computed fractal dimension for each 8 X 8
block of pixels.

In both of these examples there is a gradual rise in the estimated fractal dimension
with increasing dlistance. We can track this eflect of perspective foreshortening and thus
observe the perspective gradient.

It is at first somewhat puzzling to ohserve the fractal dimension changing with increas-
ing distance, for fractal dimension is stable with respect to changes in scale. What we are
in fart observing in these examples is interaction between our sampling rate and the range
of scales over which the fractal approximation valid (see section Ila}.

Real surfaces are not fractal at all scales; there are smallest and largest compouncuts
to their shape (e.g.. grain size and region size). These largest and smallest componcnts
define the limits between which the surface can be described with a single fractal function.
When the projected size of a pixel becomes comparable to either of these limits, the fractal
approximation can break down. If the pixel size large with respect to the largest shape
componcnts, we observe the familiar Nyquist sampling behavior: the surface appears to
become smoother as the pixel size is increased. When the pixel size is less than the smallest
shape components, we observe “texture” edges; i.e., inhomogecneities in the shape structure.

By observing the limits within which the fractal approximation holds!? | we measure

14By usc of Equation {5). Also see Peleg et al. [27], which describes an alternate fractal-dimension technique
for discovery of these scale limits.
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Figure 9. Relief Plots of The Compuied Fractal Dimension For Figures 4(a) and 7(a).

a property intrinsic to the surface: the range of scales over which the surface obeys the
fractal rule. Because such measurement is in terms of pixel size, it relates the size of the
projected pixel relative to the (presumably invariant} size distribution of the surfaces’ shupe
components. Measuring the largest scale at which a single fractal rule holds, therefore, gives
us the ratio between pixel size and an aspect of the surfaces’ intrinsic structure - and thus
allows us to observe the perspective gradient.

In Figure 9 we are measuring the size of the surfaces' |largest shape components by
using the fact that the apparent smoothness of the viewed surface increases with increasing
size of the projected pixel, given that the pixels’ projected size is comparable to that of the
surfaces’ largest shape components. Measurements of fractal dimension may thus be used
to measure the perspective gradient, thereby providing independent confirmation of the
foreshortening-derived estimates of surface orientation. In imagery of large, planar regions
it may also be possible to use the magnitude of the perspective gradient to estimate the
surface’s orientation.

Note, however, that in Figure 9(b) the portion of the image closest to the viewer does
not exhibit a smooth gradient, beeause the size of the region used to compute the fractal
dimension was small relative to the size of the rocks and bushes. In this near area the image
data used to compute fractal dimension are often boundaries between homogeneous areas,
and therefore do not fit the fractal model. As described previously, the appropriateness of
the fractal model may he determined for the specific image data under consideration. In
the case of the image in Figure 7(a), the fractal model is inappropriate for much of the data
in the near portion of the image. Thus, most of the apparent “perspective gradients” in the
near portion of Figure 9(b) can be identified as artifacts.
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These two new results — the ability to obtain cvidence of surface anisotropy and
the measurement of the perspective gradient — represent signilicant advances in shape
estination, because they offer a way to substantially improve the reliability of shape-from-
foreshortening [5,6] techniques.

D. Shading Into Texture

Fractal functions with A == 0 do not change their statistics as a function of scale.
Such surfaces are planar except for random variations described by the function f{y) in
Equation (1); e.g., they are stationary. Because these surfaces are judged by people'” to
be “smooth” the fractal model with small values of H is appropriate for modeling smooth,
shaded regions of the image. In contrast, fractals with /f > 0 are not perceived as smooth,
but. rather as rough or textured.

The fractal model can therefore encompass both image shading and texture, with
shading as a limiting case in the spectrum of texture granularity'® . The fractal iodel
thus allows us to make a reasonable, rigorous and perceptually plausible definition of the
categories “texture” and “shading” in terms that can be measured by using the image data.

The ability to differentiate between “smooth” and “rough” surfaces is critical to the
performance of such techniques as shape-from-shading [3,4,28], surface interpolatiou [}, and
shape-from-texture [5,6] - to mention only the obvious cases. Thus, use of the fractal model
to infer qualitative 3-D shape, i.e., smoothness/roughness, has the potential to significantly
improve the utility of many other machine vision methods.

E. Relationship To 2-D Texture Models

One of the more interesting aspects of the fractal surface model is that it relates
2-D texture measures based on co-occurrence statistics [21,22], Fourier spectra [23,24.,23],
Markoy processes [13], or autocorrelation [19,20] to cach other and to 3-D surface structure.

We have seen that fractal Brownian functions may be defined in terms of either the
way interpixel differences (second-order statistics) change with distance, or the rate at which
the Fourier power spectrum falls off with increasing frequency. Similarly, fractal functions
may be characterized by the way the autocorrelation function falls off {7,10], or by Markov
processes [1'0.13]. Because the fractal image of a 3-D fractal surface may be described in any
of these terms, it follows that for fractal images we may relate each of these texture measures
to the other and to the 3-D fractal surface model. The fractal surface model, therefore, offers
the potential of unifying and simplifying these various 2-D texture descriptions, as well as
the possibility of interpreting them in terms of the 3-D structure of the world.

To say that the fractal model can be described in these other terms is not to say that
the fractal model is equivalent to these other models: the fractal model is clearly a 3-D

157 he syrface may, however, have significant local fluctuations: these are usually seen as “dust” or some
other extraneous eflect modifying the underlying smooth surface. It may also be that beyond some limitiag
value of the variance of F(y) the surface is no longer perceived as smooth.

18If we assume that incident light is reflected at the angle of incidence and we make the variance of F{y)
small relative to the pixel size, the surface will be mirrorlike. If, on the other hand, the variance of F(y)
is lurge relative to the pixel size, the surface will become more isotropically reflecting. Thus, we can use
the fractal model to capture the intuitive notion that reflectance functions are due to the structure of the
microtexture.
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model, wherecas the texture models are only 2-D. Further, although it is true that a fractal
function can be characterized in terms of Fourier spectra, co-occurrence matrices, etc., it is
not true that any characterization of an iinage in these terms captures the 3-D properties of
the viewed surface, as is the case with the fractal deseription. Characterization of an tmazge
in terms of radial slices of the Fourier domain {for instance) is completely orthogonal to the
fractal description and, as a result, constrains the shape of the 3-D surfice hardly ac all'? |
As a consequence, we cannot expect the image seginentation performance of these texture
techuigues to be generally indicative of the performance of the fractal surfice model.

Oune may still ask, since we can “translate” the fractal surface model into these various
texture deseriptions, why should one employ the fractal model rather than some other? The
principal advantage of describing textures in terms of fractal surfaces, rather than o any of
these other vocabularies, is that it allows us to capturc a simple physical relationship that
undcrlies the texture structure; a relationship that allows us to interpret the 2-D texture
neasuremcents in terms of the 3-D world. The fact that this physical interpretation can be
lost. with the 2-D characterizations of texture makes it seem advantageous to characterize
texture probleins in terms of the 3-D fractal surface model.

F. Relationship To Human Texture Perception

o light of the fact that the fractal surface model has been shown to predict penples’
perception of 3-D roughness (sec section I1), it is worth examining the relationship between
the fractal surface model and models of human texture perception.

The most widely-known model of human texture perception is due to Julesz [30] who
suggested that pre-attentive texture perception is dependant upon the global second-order
statistics of the texture. Although this suggestion is now known to be wrong, Gagalowicz [31]
has presented cvidence that the problems with Julesz's conjecture are obviated by making
texture discrimination dependent upon only the local second-order statistics. Others, such
as Richards and Polit [32], have presented evidence that texture perception is mediated by
spatial-freqnuency tuned channels.

It turns out that both the second-order statistics and the Fourter models fit well with
the notion that pcople use the fractal dimension of the image (and thus of the 3-D surface)
in pre-attentive discrimination of unpatterned textures. That the fractal surface model and
these perceptual modeis complement each other is not so surprising, for we have already
described how to measure the images’ fractal dimension cither by use of the local second-
order statistics® or the Fonrier power spectrum!®.

Let us look first at Gagalowicz’ model of texture perception, and for the sake of
argwnent let us assume that discrimination between unpatterned texture is based oo the
perceived roughness of the corresponding 3-D surface. In this case the fractal surface model
agrees with Gagalowicz’ ¢claim that texture discrimination will be dependant the local second-
order statistics — as these determine the images’ roughness (i.e., its fractal dimension) and
thus the roughness of the 3-D surface.

Similarly, because the images’ fractal dimension can also be measured from its Fourier

7]llumination effects can account for most variation in such a description. In general a description in these
other terms will constrain the 3-D interpretation only to the extent that the description allows recovery of
the imiages {ractal parameters.
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power spectrum, the image and surface roughness (fractal dimension) can be determined
by usc of spatial frequency channels. Thus the suggestion that spatiul frequency channels
mediate human texture perception also agrees with the fractal surface model and the
assumuption that pre-attentive texture discrimination depends on perceived rougliness.

V. SUMMARY

Fractal functions scem to provide a good model for describing the rough, crenulated
and crumpled 3-D surfaces typical of natural scenes. The evidence in support of this
assertiion is the following:

(1) Many basic physical processes produce fractal surfaces.

{2) Fractal surfaces look like natural surfaces, and thus appear to capture all of the

shape structure relevant to human perception.

{3} We have conducted a survey of natural imagery and found that a fractal model of

imaged 3-D surfaces, when transformed by the image formation process, furnishes an

accurate description of both textured and shaded regions in most natural imagery.

Fractal functions, therefore, are useful for describing the complex 3-D surfaces typical
of natural objects. By transforming this 3-D surface model through the image formation
process we can obtain a useful model of how such surfaces appear in the image data. One
important aspect of this model is that it is easy to test its appropriateness for particular
image data.

Claracterization of image texture by means of a 3-D fractal surface model has shed
considerable light on the physical basis for several of the 2-D texture techniques currently
in use, and made it possible to describe image texture in a manner that is stable over
transformations of scale and linear transforms of intensity. These properties of the fractal
surface model allow it to serve as the basis for an accurate image segmentation procedure
that is similarly stable over a wide range of scales.

Because {ractal dimension is not affected by projection distortion, its measurement
can significantly enhance our ability to estimate shape from foreshortening. Speciflically,
measurcment of fractal dimension can provide (1) evidence of surface anisotropy, and {2) an
estimate of the perspective gradient. Both capabilities are extremely important because they
provide a way to obtain independent confirmation of the assumptions on which previously
reported techniques are based.

One further important result is that measurement of the 2-D image fractal dimension
enables cstimation of the 3-D fractal dimension. Knowledge of the 3-D fractal dimension has
been shown to be a nearly perfect predictor of people’s perception of roughness. Thus, the
3-D fractal model allows us to determine which imaged regions are perceived as smooth, and
which ones appear textured. This discrimination is of special importance to shape-from-
shading, shape-from-texture, and surface interpolation methods as their performance relies
on assumptions about the smoothness or roughness of the viewed surface.

The encouraging progress that has already been achieved in research on these problems
augers well for the fractal-based approach. It appears that the 3-D fractal model of surface
shape will constitute a significant aid in efforts to proceed from the image of a natural scene
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to its deseription.
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