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Abstract

A new time representation is described that allows a continuously changing world to
be represented, so that queries about the truth of a proposition at a instant or over an interval
can be answered. The deduction mechanism used to answer the common queries necessary in
planning is the same as that employed for deducing all other information, thereby avoiding
the need for a specialized time expert. The representation allows any time information to be
represented without forcing an over specification. The implementation of this representation
requires mechanisms to detect the effects of world changes on previous deductions (truth
maintenance).

§1 Introduction

Since plans operate over time, the importance of an appropriate representation of
time is clear. Any such representation should include the following characteristics:

(1) The representation must be expressive, i.e., be able to represent any time relation-
ship used in planning.

(2) 1t should not force the over specification of time relationships that are only partially
known.

(3) It should allow both relative and absolute (i.e., chronological or calendar) time
information.

(4) The representation should allow efficient (fast) computation of the most commonly
needed time relationships.

Earlier planners represented time by instantaneous “snapshots” of the state of the
world at particular times (e.g., STRIPS—Fikes et al. [1972]). This method is clearly insufficient
for representing continuous changes, as well as conditions that are required to be true over
different time intervals. More recent attempts to model time have concentrated on developing
temporal-expert modules for use by other systems. These temporal experts use time information
relating events to one another or to an absolute time scale.

A new method of time representation suited to planning is described in this paper.
This representation allows integration of reasoning ahout time with all other reasoning per-
formed by the planner. [t associates time intervals with individual propositions and reduces
considerably the computation required to deduce the truth value of any proposition in time.
The propositional world representation does not explicitly include events—all events are cap-
tured through their effects on the world description.

The inference method {and notation) assumed for this representation is backward
chaining, similar to that of PROLOG (Warren et al., [1977]). However, this method must
be modified to maintain a consistent world representation, using methods such as “if-added
demons” to monitor and respond to changes in the world representation. The deduction of time
relationships between different propositions can involve searching through a partially ordered
time network, which in the worst case may require searching through a large fraction of this
network.



2. Previous Methods of Time Representation in Planning g

The following section reviews previous time representations used in planning, while
the subsequent section introduces a new representation. The final section reviews other time
representations discussed in the literature.

§2 Previous Methods of Time Representation in Planning

A representative early planner is the STRIPS system (Fikes et al. 1972), in which
time is represented implicitly. In this system, the planner keeps a “snapshot” of the state of
the world after the application of an operator (an event that changes the world). A sequence
of snapshots provides an implicit representation of a particular time sequence investigated by
the planner. For efficiency, these snapshots record only the changes caused by the preceding
operator and inherit everything else that was true before it was applied. For example, in blocks
world, after the application of the PUT-ON(a b) operator, the world is in a new state in which
everything is the same except that ON(a b) is true, and CLEAR(b) is false. This change is
dictated by the operator’s add/delete list.

The inherent contradiction in the fact that the proposition ON(a b) is true and false
at different times can be removed explicitly by using a “situational calculus” (McCarthy and
Hayes, [1969]). In this representation, every proposition has an extra constant added to it to
indicate the situation (state, snapshot) in which it is being asserted. For example, there is no
contradiction in asserting both NOT(ON(a b s21)) and ON(a b s32), as the propositions are
being asserted in different states. These situational markers can he explicitly time-ordered [e.g.
(332 > s21)], thus ordering the corresponding states. If these time orderings are combined
with the persistence assumption (i.e., that the truth value of a proposition remains unaltered
unless explicitly negated at some latter time), then the truth value of a proposition at any time
can be deduced. The inheritance implied by the persistence assumption is an efficient way of
representing the world at any time provided that the operators change only a small portion of
the world description in a single application.

The situational calculus approach allows any ordering information to be asserted
between states, including partial time ordering as well as a strict sequential ordering. This
freedom is utilized in parallel (non linear) planners in which a partial time order is imposed
only to remove any inconsistencies in the corresponding world. This method has the advantage
of producing plans that are as parallel as possible (allowing parallel execution) and do not make
any premature commitment to a particular ordering (which may have to be undone as the plan
unfolds).

This avoidance of premature orderings of operators (or corresponding states) can be
taken a step further. For example, if it is discovered that situation sl is incompatible with s2,
then either (sl > s2) or (s2 > sl) may resolve the incompatibility. However, there may be
insufficient information at this stage to choose between the possible orderings. Rather than
make an arbitrary choice, Eder (1976) suggested imposing the constraint ORDERED(s1 s2),
which means that sl comes before s2 or vice versa. The presence of such constraints makes the
deduction of what is true in any given state more difficult, as all possible orderings must be
considered. Even without such constraints, the deduction of the truth value of a proposition
in a partially ordered time network can be computationally expensive.

The limitations of the situational-calculus approach come from the built-in assump-
tions of the representation. Because situations are just instants in time, it 15 impossible to



represent quantities that change continuously, such as location or density. Moreover, because
this is a state-based representation it is impossible to represent what is happening during an
operator application (when the world is changing), since only the initial and final states are
given.

§3 A New Time Representation

In this representation, a world (which extends through time), is described by a set
of propositions stating the intervals for which other propositions are true. For example, the
propositions:

DURING(ON(a b) t1t2) and DURING(NOT(ON(a b)) t3 t4)

assert that a is on b for the entire time between t1 and t2, and a is not on b between t3 and t4.
Additional assertions, such as (t2 > t1) and (t3 > t2), etc., give the relationship (if known)
between intervals. When there is more than one interval assertion for the same proposition
(or its negation), overlapping intervals of the same truth value should be merged, while those
of opposite truth value must be disjoint (otherwise the proposition would be true and false at
the same time). A consistent sequence of such intervals is referred to as the time line of the
proposition. A time line may have gaps in it, corresponding to intervals in which the truth
value of the proposition is unknown.

This representation follows the example of other authors (e.g. Allen 1981) in making
intervals the principal time relation, as this is the one most commonly used in planning.
An alternative axiomatization based on adding a time moment or time variable as an extra
argument to every proposition has been investigated by the author, but this was found less
convenient than the interval representation presented here.

The interval representation makes it more difficult to reason about instants in time.
In the interval representation, a moment is represented as a degenerate interval. For example,

to assert that the robot is holding a screw at moment t5, the form is
DURING(HOLDING(robot screw) t5 t5)

Quantities that change continuously in time can be represented as explicit functions
of universally quantified time variables, possibly constrained to a specific interval. For example,
the position of a robot over the interval t1 to t2 can be represented by the rule:

DURING(AT(robotl location(T1)) T1 T1) « (T1 > t1), (t2 > T1).

In other words, the location of robotl (e.g. as an x-y coordinate pair) is given as a function
of time (T1) over the interval t1 to t2. If such functions of time are not given explicitly,
they may be constrained by asserting such properties as continuous, monotonically increasing,
etc. Although, in general, such constraints on functions do not allow precise prediction of the
robot's position at any given time, they can constrain the possible values to a useful range.
Since such constraints are applied only to specific functions, this reasoning about functions is
still within first-order predicate calculus.

The representation proposed above describes the world over all time for any planning
stage. Operators map the current world representation to a new one according to the add/delete
lists of the operator. Thus, operators (events) do not appear explicitly in the world description,
and so cannot be time-ordered within it. The evolving plan (a partial time ordering of operator
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applications) is stored separately by the planner and is finished when the corresponding world
description satisfies the given goal criteria.

Since a world representation consists of a set of interval assertions (DURING rela-
tions), the following rule can be used to decide if a proposition (P) is true over interval T1 to
T2:

DURING(P T1 T2) «— DURING(P T3 T4), (T1 > T3), (T4 > T2).
Other possible relationships (e.g., BEFORE, OVERLAPPING etc.) between two intervals can
be deduced by using similar rules.

The use of propositions as terms in DURING propositions causes some difficulties,
since they are not allowed as terms in other propositions in first-order predicate calculus.
Similar difficulties occur in the use of such predicates as “KNOW”" and “BELIEVES” (see

Moore 1980 for example).

The main reasons for this ban are as follows. Firstly there is a need to translate
expressions involving the DURING predicate applied to a logical compound expression into a
compound of DURING propositions (or vice versa). Consider the following examples:

{a) DURING((P and Q) t1t2) becomes
DURING(P t1 t2) and DURING(Q tl t2)

(b) DURING((P or Q) t1 t2) becomes
DURING(P t1 t2) or DURING(Q tl t2) etc.

This difficulty can be largely avoided by insisting that the above transformation rules
always be used to create a normal form consisting of a logical combination of DURING relations
that do not contain logical compounds (except negation).

Secondly if the proposition within a DURING relation is itself a DURING relation—
i.e., DURING relations nested to any level-—then there is considerable ambiguity in their
interpretation. This difficulty can be avoided by insisting that the predicates within a DURING
proposition not include other DURING predicates. This is not an important restriction in
planning, but could cause problems if used in a wider context.

One possible method of avoiding such complications is to eliminate the cuter DURING
relation by adding the interval's beginning and end times to every world proposition as argu-
ments. For example:

DURING(ON(a b) t1 t2) becomes ON(a btl t2)

The main difficulty with this method is that, instead of a single rule for deducing the relation-
ship between different intervals (e.g., the last rule mentioned above), a separate rule must be
written for each predicate. This option seems impractical for planning.

§4 An Example

Since the above representation makes assertions about the truth value of propositions
over intervals, operators can dictate how the world will evolve after they are applied, what
conditions must be true before they are applied and any conditions that must be preserved
during their application. For example, consider the followmg well-known blocks world problem,
shown in Figure 1.
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Figure 1

In this problem, the goal can be represented by the description
DURING(ON(a b) t-end t-end) and DURING(ON(b ¢) t-end t-end),

where t-end is a moment in the future. Similarly, the initial world can be represented by the
description

DURING(ON(c a) t-past t-future), DURING(ON(a table) t-past t-future) and
DURING(ON(b table) t-past t-future),

where the first assertion, for example, means that ¢ is on a for all times between t-past and
t-future (i.e., two special instants that come before and after any other moment, respectively).
A suitable axiomatization of operators for this domain is the following:

PUT-ON(X,Y,T1,T2)—i.e., put X on Y between times T1 and T2.
CONDITIONS:
DURING(NOT(ON(X Y)) T3 T4), T1 > T3, T4 > T2,
DURING(CLEAR(Y) T1 T1)
DURING(CLEAR(X) T1 T2)
DURING(HOLDING(X) T1 T2)
EFFECT:
ADD: DURING(ON(X Y) T2 T5), T5 > T2, T2 > TL
DURING(NOT(ON(X Y)) T3 T1).
DELETE: DURING(NOT(ON(X Y)) T3 T4).

LET-GO(X T1 T2)—i.e., let go of X between times T1 and T2,
CONDITIONS:
DURING(HOLDING(X) T3 T4), Tl > T3, T4 > T2.
EFFECT:
ADD: DURING(NOT(HOLDING(X)) T2 T5), T5 > T2, T2 > TI.
DURING(HOLDING(X) T3 T1)
DELETE:
DURING(HOLDING(X) T3 T4).

PICK-UP(X,Y,T1,T2)—i.e., pick up X off Y between the times T1 and T2.
CONDITIONS:
DURING(ON(X Y) T3 T4)), T1 = T3, T4 = T2,
DURING(CLEAR(X) T1 T2),
DURING(HOLDING(X) T1 T2).



4. An Example 7

EFFECT:
ADD: DURING(NOT(ON(X Y) T2 T5)), T5 > T2, T2 > TL.
DURING(ON(X Y) T3 T2)

DELETE: DURING(ON(X Y) T3 T4).

GRASP(X T1 T2)
CONDITIONS:
DURING(NOT(HOLDING(X)) T3 T4), T1 > T3, T4 > T2.
EFFECT:
ADD: DURING(HOLDING(X) T2 T5), T5 > T2, T2 > Tl,
DURING(NOT(HOLDING(X)) T3 T1).
DELETE: DURING(NOT(HOLDING(X)) T3 T4).

Some important differences distinguishing the above operators from previous state
based operators. In the PUT-ON operator, for example, the last condition requires that the
robot be holding X throughout the interval of the operator (Tl to T2), while the second
condition requires only that Y be clear at the beginning of the action. Such a requirement
cannot be expressed by a single state-based operator. In addition, the eflects of the operator
are asserted to be true in the world from the end of the operator’s application (T2) to some
indefinite time in the future (T5). The first condition is a context condition that is usually
satisfied and, in the process, finds the interval into which the new eflects will be inserted.
This interval is assumed to be unique and exist directly in the data base (i.e. not deduced);
otherwise the delete list would not update the world description correctly. This assumption
can be guaranteed, for example, by ensuring that the time line for every primitive predicate
will be minimally described, by joining adjacent intervals of the same truth value.

Operators are rules for changing from one (implicit) world description to another
(which is hopefully nearer the goal state). In addition, rules are usually necessary for deducing
information within a world description. Some deductive rules for this problem are the following;

DURING(CLEAR(tahle) T1 T2)—i.e. The table is always clear.
DURING(CLEAR(X) T1 T2) «— DURING(NOT(ON(Y X) T1 T2)—i.e. X is clear at
time T if there is nothing on X at this time.

(T1 > T2) «—(T1 > T2)

(T1 > T2) « (T1 = T2)

(T1 > T3) + (T1 > T2)(T2 > T3)

DURING(P T1 T2) ~ DURING(P T3 T4), T1 > T3, T4 > T2—where P is any
proposition.

The first two rules allow the deduction of the truth value of 2 CLEAR predicate over apy time
interval. It is because CLEAR is a deduced predicate that it is not included in the ADD list
of the PICK-UP operator, since its truth value over any time interval can be deduced when
needed.

As an example of this representation, consider the case in which the operator PICK-
UP(c a t1 t2) is applied to modify the world representation from

DURING(ON(c a) t-past t-future)
to (t2 > t1), DURING(ON(c a) t-past t1), DURING(NOT(ON(c a)) t2 T5), (T5 >
t2).

The proposed world representation makes it possible to answer any queries about the



state of the world by means of normal PROLOG-style backward chaining. If, for example,
it has been asserted that (t1 > t21) in the above, then ~DURING{ON(c a) t21 t21) will
evaluate to true. However, if no ordering of t1 and t21 is given, the proof will fail. If the closed-
world assumption is made for the ON predicate, this proof failure means that this predicate is
false. Note that the truth value of DURING(ON{c¢ a) T T) is undefined if T is between t1 and
t2, since the truth value changes during this interval.

The freedom to constrain time instants such as t1, t2, etc., in a world representation
can be used to express commonly used time information. For example, if the PICK-UP operator
is known to take 10 time units, t2 can be replaced by (t1 + 10); thus, the end time of this
operator will always be 10 time units after it begins. Uncertainty ahout such time intervals
can also be represented by constraining t2 with such constraints as {t2 > tmin) and {tmax
> t2). The time instants can also be assigned to particular clock times by assertions such
as occurs-at{t] 10:15:43), occurs-at(t2 10:19:21) and the like. This absolute time information
allows deduction of such relationships as (t2 > t1), provided that built-in predicates to decide
the order of chronological or calendar times are available.

Although the time line of a particular proposition must be totally ordered {otherwise
the world is incompletely specified and possibly inconsistent) and reduced (e.g., adjacent time
intervals merged), the relationship between instants from different propositions do not have to
be specified. The result of this freedom is that inter propositional time relationships can range
from completely unspecified to totally ordered, with partial ordering being the most common.

A variant of the above representation is to add an extra constant to every DURING
proposition to indicate in which world the proposition is being asserted. This method, similar
to the use of situational markers in state-based representations, makes all previously examined
worlds explicit. In the implicit representation above, only the current world is stored. All
previous worlds have been over written, and can be reconstituted only by undoing the sequence
of operators that has been applied.

§5 Deducing Time Relationships in the New Representation

A planper usually works by repeating the following cycle. The simplified version given
here, however, ignores such problems as the bookkeeping necessary for backup, what to do if
a goal evaluates to unknown, and methods of assessing progress on different OR branches.

Step 1—Evaluate all new goals in the context of the current world description, adding
any that are not true to the list of unsolved goals.

Step 2—From the list of unsolved goals, select one as the next target goal. If this list
is empty, the problem has been solved.

Step 3—Select an operator to achieve this goal (with other possible side effects).
Alternative choices are stored as possible backup points. Delete the selected goal from the list
of unsolved goals. If there are no remaining operators for this goal, and it is one of the given
goals, then the problem is unsolvable {since further backup is impossible). Otherwise, undo
the operator that generated the current goal and go to Step 2.

Step 4—Insert the effects of the chosen operator into the previous world deseription
and check as to whether this generates any inconsistencies. Attempt to remove any such
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inconsistencies by imposing a minimal time ordering. If any inconsistencies cannot be removed,
undo this operator application and go to Step 2. :

Step 5—Add the preconditions of the operator to the new goal list, and go to Step 1.

The new representation proposed in the preceding section creates some problems when
used in the above planning cycle. One problem is that a goal (which has been deduced to be false
in the current world), is sometimes best replaced by its logically equivalent form. For example,
an initial goal in the blocks-world problem is DURING{ON(a b) t-end t-end). This goal is
achievable by the PUT-ON(a b T1 t-end) operator (i.e., the goal becomes true immediately the
operator is applied), but greater planning flexibility is available if the goal is first replaced by
its logical equivalent: :

DURING(ON(a b) T3 T4), t-end > T3, T4 > t-end.

The result of this substitution is that when the PUT-ON operator is unified with a new goal,
the start and end times of PUT-ON are free variables, which can be bound to any pariicular
moment. This freedom to pin down floating instants is very useful in resolving time conflicts.

A more serious problem arises when we seek the reasons a particular goal cannot be
established in a particular context, so that the abortive proof attempt can suggest additional
time orderings that would enable the proof to succeed. For example, the world representation
given in the previous section can be depicted by the time lines in Figure 2. If the goal
DURING(CLEAR(a) t3 t-future) {(shown in Figure 2) is evaluated in this context, the proof
attempt will fail because no relationship between t3 and the previous time line has been given.
However, it is obvious from the figure that the additional assertion (t3 > t2) will let the proof
succeed. Methods of proof failure analysis {enabling proofs to succeed) have yet to be fully
investigated.
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A fundamental problem in planning is that of truth maintenance (see Dayle [1979]),
which is part of the difficulty in using a non-monotonic logic—i.e., a logic in which the addition
of new axioms affects previous proofs. For example (from the preceding section), the goal
DURING(CLEAR(b) t1 t1}—which is generated by a precondition of the operator PUT-ON(a
b t1 t-end)—is deduced to be true, because at this stage PUT-ON(b ¢ t2 t3) has not been
applied. However, when this operator is applied, the previous proof is rendered incorrect;
consequently, methods must be provided for detecting when previously true propositions are
affected by new information inserted into the world representation. One solution is to provide
“If-added demons”—i.e., rules that instruct the planner to re-evaluate specific propositions if
new information matching the pattern of the rule is added to the world representation. Such
rules should be generated whenever vulnerable facts are used in the proof of any proposition,
so that such facts can be monitored for future violations.
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§6 Comparison with Other Time Representations

Many authors have recognized the deficiencies in the STRIPS-style time representation
and have proposed new representations (and associated inference procedures) to provide a
more complete time representation. In particular, most representations are concerned with
the relative time orderings of events, including their relationship to the special moment “now”.
However, the representation proposed above, is designed to maintain a consistent world descrip-
tion (model) in which events (roughly equivalent to operator applications) appear only when a
world model is being changed, and so are not represented explicitly.

An early attempt to design a powerful time representation is given by Kahn and
Gorry (1977), who argue for a time specialist—a program to store and answer questions on
time relationships among events given to the specialist program. This division of labor is
questionable, as the preceding section shows the advantages of integrating the reasoning about
time relationships with the basic reasoning system used by the planner. For example, the
deduction as to whether an object is clear over a given interval can also reveal what additional
time relations are necessary to make it true if the deduction fails, thus integrating the deduction
of the truth value of the proposition and its relation in time. A further limitation is Kahn
and Gorry's representation of events as instants of time, which precludes the represention of
continuous events.

The approach pioneered by Kahn and Gorry has been extended by Allen (1981).
Allen’s time specialist has changed from assuming the representation of events by time instants
to the assumption that they are represented by intervals. There are nine possible ways two
intervals can relate to each other (compared with three for instants of time}; thus the rules
(axioms) needed to deduce relationships between any two arbitrary events are more complex.
A difficulty with Allen’s computational method is that it requires that all time relations be
recomputed whenever a new time relationship is entered. This is inefficient, since many of these
relationships are never used. The computation of particular time relationships on demand, as
presented in this paper, eliminates this difficulty.

Allen’s approach has been further developed by Vilain (1982), who showed that
computing arbitrary time relationships entails computation of the transitive closure over the
set of all given time relations between event intervals. This computation can be performed
in n® time and space, where n is the number of intervals about which assertions have been
made. In large planning tasks, this computational cost can be excessive. Vilain extended the
interval-based logic to include both time instants and absolute times.

The representation presented in this paper and its associated inference procedures
exhibit a linear worst-case behavior in deciding if a particular proposition (either at an instant
or over a given interval) is true or false, where the dependence is on the number of sub intervals
on the time line of the particular proposition. Depending on the completeness of the (partial}
time orderings, it is a more complex deduction to decide if a relationship between two time
intervals (for different propositions} is say “DURING".

- Fortunately, the basic planning cycle above, rarely requires the deduction of inter-
interval relations between propositions, since the most common time deduction is deciding
the relation between a new proposition (and associated time interval) and the existing time
line for the same proposition. An example of inter propositional time deduction is shown in
Figure 2. Such deductions involve proving the existence (or otherwise} of a path in a partially
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ordered graph of binary time relations between the relevant propositions. In the worst case,
the complexity of this proof is on the order of the number of inter propositional time relations
in the graph.

McDermott (1981) has developed a complex logic for representing time. This logic can
be regarded as a state-based representation carried to a continuous limit. That is, a particular
world history (and future) is regarded as an infinite totally ordered sequence of states. In this
representation, a fact is the set of states in which that fact is true. Furthermore, the sequence
of states representing a particular world history is allowed to split into multiple futures {and
pasts).

A major motivation for McDermott’s representation is that he does not believe it
possible to capture an event (something that is happening) by representing the changes of
fact that take place. For example, the event “John ran around the track three times” is not
represented by the change of fact “John is more tired” and “John has a memory of running
around the track three times.” Because the representation presented in this paper is fact-based,
(since events [operators] are not explicitly represented in the world model, but rather at a
metalevel at which the plan is being built), it is necessary to respond to this critique.

The simplest reply is that a fact-based representation should represent the world
during the event in a way that reflects what is actually happening, not, say, the level of
fatigue and memory content after the event is over, as suggested by McDermott. A possible
representation of McDemott's example is as follows:

DURING(running(John) t23 t26}—i.e., John is in a running state between times t23
and t26. ‘

DURING(at{John location1(T2)) T2 T2) « (T2 > t23)(t24 > T2)
DURING(at(John location2(T3)) T3 T3) + (T3 > t24)(t25 > T3)
DURING(at(John location3(T4)) T4 T4) + (T4 > t25)(t26 >T4)}— i.e., John’s loca-
tion

is given as a function of time, for each lap.

DURING(tiredness(John fatigue-level[T5])T5 T5) « (T5 > t23) (t26 > T5)

i.e., John's tiredness is an explicit function of time.

This representation could be expanded to include constraints and continuity require-
ments upon the various functions given, as well as to indicate that the change in location is
caused by running, etc., but the main point in this representation is that a fact-based rep-
resentation has captured the essence of the “John ran around the track three times” event
without mentioning the latter at all.

Another major concern of McDermott is the representation of causality. The repre-
sentation described in this paper is capable of representing causality by introducing the notion
of involuntary operators. These are operators that automatically apply whenever their condi-
tions are true. For example, a gravity operator applies to a object whenever its support is
removed. When such operators are present, it is possible to use them in plans by deliberately
creating conditions in which they apply if their effects are desired. However, deciding whether
any such involuntary operators become applicable in any world representation is a computa-
tionally expensive process.

Many of the difficulties discussed by McDermott are avoided in the representation
given here. In particular, by keeping one (active) world description at any time, we ensure that
other, previously inconsistent worlds will not cause conflicts. Trying to represent the current
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and all previously considered worlds in 2 single representation, can lead to a more complex
logic.

A planner implemented by Vere (1981), has the most general time representation of
any planner known to the author. This planner is similar to NOAH (Sacerdoti, 1977), and
NONLIN (Tate, 1977), but it allows operators to have durations {which may be a function of
the operator arguments), and “windows”—i.e., an interval in absolute time. This is an event
(operator}-based time representation, in which the preconditions are assumed to remain true
until the end of the operator application. Consequently, in this representation the only way
to specify preconditions that must be true at some time during the operator application is to
split the operator into separate successive suboperators for which the persistence assumption
holds. In the examples investigated by Vere, this representation was sufficient.

Another author concerned with the representation of time, and whose ideas strongly
influenced this paper is Schubert (1976). He argues the case for making time a privileged
concept over, say, location by building time information into every predicate. Schubert also
shows that, when the truth value of a predicate is dependent on a particular context, the
context information can be represented by corresponding time information. For example “Mary
is livelier with her lovers than with her parents” in the representation of this paper becomes

DURING(liveliness(Mary levell) T1 T2) «— DURING(with(Mary lover(Mary)) T1 T2)
DURING(liveliness(Mary level2) T3 T4) «— DURING(with(Mary parents(Mary)) T3
T4)

greater{levell level2)

i.e., the first rule says that Mary has liveliness of levell if she is with one of her lovers
in the interval T1 to T2, while the last assertion states that the first level of liveliness
is greater than the second.

§7 Summary

The representation of time presented in this paper is designed to overcome the inability
of the standard planning representation to represent continuous changes and conditions over
intervals. This is achieved by asserting every world proposition to be true during a given
interval (represented by its endpoints). In this representation, an operator transforms the
previous world description into a new one as specified by the add/delete list of the operator.
A world description is over all time, not just at a moment as in former state-based planning
systems. This interval representation allows instants to be represented by degenerate intervals
of zero duration. The relationship among the intervals of diflerent propositions can be specified
to the degree to which they are known, thus allowing partial time orderings.

This representation has the advantage of integrating the reasoning about time with all
other reasoning about what is true in the world. This occurs because the same representation
and inference procedure— (PROLOG-like backward chaining)—are used for all inference, thus
saving the need for a separate time expert as advocated by other authors.

In the representation proposed in this paper, the time information is associated
with each proposition and not linked directly with events {or operator applications). Any
propositions logically dependent on others will have interpropositional constraints between
their time intervals (a partially ordered time network). Most of the cost in deciding the truth
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value of a particular proposition at a specific moment {or over a given interval) comes when
the partially ordered time network has to be searched. This search has a worst-case cost
proportional to the number of time orderings in the network, compared with an n3 cost for
event-based representations.

This new representation meets the criterion of expressiveness (i.e., any time relation-
ship {or value] can be expressed) without overconstraining the given time information. By
simply attaching chronological or calendar times to instants, absolute as well as relative time
information can be expressed and reasoned about. The proposed representation c¢an also rep-
resent intervals of uncertain length as well as those of known duration.
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