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FROM IMAGE IRRADIANCE TO SURFACE ORIENTATION.

Grahame B. Smith

Artificial Intelligence Center, SRI International
Menlo Park, Californta 94025

ABSTRACT

The image irradiance equation constrains the relationship between surface orientation
in a scene and the irradiance of its image. This equation requires detailed knowledge of
both the scene illumination and the reflectance of the surface material. For this equation
to be used to recover surface orientation from image irradiance, additional constraints are
necessary. The constraints usually employed require that the recovered surface be smooth.
We demonstrate that smoothness is not sufficient for this task.

A new formulation of shape from shading is presented in which surface orientation is
related to image irradiance without requiring detailed knowledge of the scene illumination, or
of the albedo of the surface material. This formulation, which assumes isotropic scattering,
provides some interesting performance parallels to those exhibited by the human visual
system.

1 INTRODUCTION

Most. previous work [1-8] on the problem of recovering surface shape from image shading
has been based on solving the image irradiance equation, which relates the radiance of a
scene to the irradiance of its image [1,2].! This formulation of the relationship between
scene radiance and image irradiance is embodied in a first-order partial differential equation
expressing scene depth as a function of image coordinates. Such a formulation requires
specific knowledge of not only the reflectance characteristics of the surfaces in the scene,
but also the position and strength of illumination sources. The approaches to solving
this differential equation have generally been either by direct integration [i| or through
an iterative algorithm that attempts to reduce the difference between the predicted image
irradiance and the measured value [5-7]. Our interest is in the iterative approach because
the alternative to it — direct integration — requires specific boundary conditions that are
generally unknown (in natural scenes), and its behavior when applied to noisy pictures, is
uncertain.

As the image irradiance equation is a single equation relating image irradiance and two
independent variables {specifying surface orientation), it does not uniquely determine the
two independent variables for a given value of image irradiance. Consequently, when this
cquation is used to recover surface shape additional constraints are necessary. These may

Image irradiance is the light Aux per unit area falling on the image, i.e., incident flux density. Scene
radiance is the light flux per unit projected area per unit solid angle emitted from the scene, i.e., emitted

flux density per unit solid angle.



be imposed by boundary conditions, by restrictions on the type of surface to be recovered,
or by a combination of the two. For some images, when we can determine important
features (such as the fact that an edge is an occlusion boundary caused by a surface turning
smoothly away from the viewing direction), we can use houndary conditions to constrain the
solution; in large portions of the image, however, we can say something only ahout the type
of surface we would like to recover. To date surface smoothness is the weakest additional
assumption that has allowed surface shape to be recovered. Smoothness normally signifies
that the surface is continuous and that it is once or twice differentiable. Smoothness, as the
additional assumption, has had to play the role of propagator of boundary conditions and
sclector of the surface to be recovered. Is smoothness capable of these tasks in general or is
its uscfulness limited to special cases?

In the first part of this paper we describe the various formulations that have employed
staoothness, including a relaxation procedure of our own that resembles its counterpart
in engincering; we then present results of our experiments with these iterative procedures.
Asscssing the uscfulness of smoothness in this context, we conjecture as to its utility in other
shupe-from-shading formulations.

Not all authors have used smoothness as their additional constraint; some have
cmployed assumptions about surface shape instead. The assumption that the surface is
locally spherical, i.e., that its curvature is independent of directiom, is strong enough to
allow but a single interpretation for the surface orientation, and at the same time, it is also
one that enables recovery of the surface orientation by purely local computation [8]. In
addition, this shape constraint climinates the need to know such parameters as illuminant
direction and surface albedo.? Assumptions about shape are being traded for assumptions
ahout reflectance behavior. Can we formulate the shape-from-shading problem without
having to know the details of the surface reflectance and without making any assumptions
about the shape of the surface we wish to recover?

In the new formulation presented in the second part of the paper, we assume that scene
materials scatter light isotropically. We make no assumptions about surface shape and we
do not need to know the parameters specifying illuminant direction, illuminant strength,
and surface albedo. Qur assumptions are about the properties of reflection in the world;
these alone are sufficient to relate surface orientation to image irradiance. In situations
in which the assumption of isotropic scattering is invalid, the formulation provides some
interesting parallels to human vision.

2 ITERATIVE FORMULATIONS FOR SURFACE RECOVERY
The image irradiance equation as presented by Horn [2], is
I(Iry) = R(P,Q) ’

where I(z,y) is the image irradiance as a function of the image coordinates z and y, and
R(p,q) is the surface radiance as a function of p and g, the derivatives of depth with respect

2GSurface albedo is the material reflectance, i.e., the ratio of scene radiance to scene irradiance.
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to the image coordinates. To derive this equation orthographic projection is assumed; while
orthographic projection is inadequate to describe image formation it is a good approximation
when the scene objects are small compared to the viewing distance. In the shape-from-
shading approach, it is generally assumed that R(p,q) is known for all p and ¢ (that is, the
reflectance map is specified). The iterative approach applies this equation on a pixel-by-pixel
basis, that is, for pixel (s, 7)

Lij = R(pij: 9.5) »

where I; ; is the immage irradiance for (4, 7)th pixel and p; ;, g, is the surface orientation of
the surface patch that is imaged at pixel (i, 7). For convenience we use the notation

Ri; = Rlp: ;,¢i.;)

If, at some stage of the iterative procedure, we have assigned particular p; ;,¢; ; as the
surface orientation of the (s, 7)th pixel, then the residual expression

&i;% = (Li;— Rij)?

specifies the error caused by our assignment of surface arientation.® If this were our only
constraint, we could select p;;, q;; so that E,-'_,-R = 0. This would guarantee that the
image irradiance equation is satisfied pixel by pixel, but, because there are infinitely many
solutions, we need further constraints to reduce the number of possible solutions.

Smoothness is usually introduced by specifying a relationship that we would like to
have hold between the surface orientation of the (f, 7)th pixel and its neighbors. The various
iterative approaches [5-7] differ in the way this relationship is specified. Of course, at a
particular stage of ihe iterative process this relationship between a pixel and its neighbors
will not be exact. Once again we can specify a residual equation for the error in the
smoothness rclation.

fz‘.js = [f(Pi,jqu‘.j-P-‘—l.j: Qi—1,5s Pit 1,5 Qi+ 1,5 Pii— 1,90, 5— 15 Pi g+ 1, 9i 5+ 1, ---)]2 ,

where f is the relationship between the surface orientation at (f,7) and its neighbors. An
example of the type of relationship is the difference between the surface orientation of pixel
(¢, 7) and the mean value of the surface orientations of its four-neighbors.

We have two constraints that need to be satisfied simultaneously, — one from image
irradiance and one from surface smoothness. At each stage of the iterative process, the total
residual error for pixel (¢, ) can be described by

€ij=Ni;" +&5°

where N is a weighting factor that can adjust the influence of the error in image irradiance
to the error in smoothness.* For the image, the total residual error is

= ZE.’,_«,‘

"lj

3The form of the error need not be quadratic — the goals of such a choice include simple final expressions.

1Since the error in image irradiance is not necessarily commensurate with that in surface smoothness, some
form of normalization is required.
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The allocation of surface orientations to all pixels should minimize this total error, that is,

% _, |
dpi,;

% _,
2¢i,;

Differentiating £ with respect to p;; and also with respect to g; ; gives two equations for
each pixel in the image. While complicated forms of the relationship between p; ;,¢:; and
their neighboring pixels will generally occur, we choose our smoothness relation so that we
can arrange the equations in open form

pi; = Fi(pij, qij,and p's and q’s o f neighboring pizels)
gi,; = Falp: j, qij,and p's and ¢’a o f neighboring pizels)

where F, and Fo are functions.

We therefore have an iterative scheme that, given some initial solution, we improve by
reducing the residual error in image irradiance and surface smoothness. We need to ask the
following questions of such a scheme: Under what conditions will it converge to a solution?
Is that solution unique? Does smoothness, as defined by our relation, give us the type of
surface we want?

3 SURFACE ORIENTATION

There are many equivalent parameterizations of surface orientation. Mentioned pre-
viously were the parameters p and g, the derivatives of depth with respect to image coor-
dinates. Some authors prefer using slant and tilt to specify surface orientation. Slant is the
angle between the surface normal and the viewing direction, while tilt is the angle between
the image z axis and the projection of the surface normal onto the image plane. Other
parameterizations [7] have been used when particular properties of the parameterization
are to be exploited. The parameters we use are / and m:®

[=sinecost ,

m=sinesinr ,

where o is the surface slant and r its tilt, [ is the component of the surface normal in the
direction of the z axis, and m is the component in the y direction. We select this particular
paramcterization, as ! and m are bounded

0<P+m?<1

For surfaces that we can see,
13
0<L ¢ < E ’

S and m arerelatedtopand g, = —L— ,m= =

—
VideT4gd Vi4pd4gl



0<r<2nr

Consequently { and m specify the surface normal of an imaged surface without ambiguity.

4 FORMULATIONS USED FOR SURFACE RECOVERY

To explore the issues of convergence, propagation of boundary conditions, and the
type of surface promoted by smoothness, we formulate the problem in two ways: one
that parallells the technique previously described and, alternatively, one that resembles the
relaxation method used to solve structural engineering problems.

The function for scene radiance, used to create synthetic images for the experiment and
employed by the shape recovery algorithms, is

14+ V1—012—-m?
2

R{l,m) = 0.1569( )+ Maz[0.4437V/ 1 — 2 — m? + 0.3137] 4+ 0.3137m, 0].

This function is appropriate for a scene that exhibits Lambertian reflectance and is il-
luminated by both a collimated source and a uniform hemispherical source. This illumina-
tion was selected because it is typical of the illumination of outdoor scenes. The particular
numerica! constants specify the light direction and intensity, and the surface albedo.

The first formulation is similar to that described previously; we shall call this the
‘conventional’ formulation. From the image irradiance equation we have the error term

€ = (Ii; — Ri )

The smoothness constraint is the requirement that I; ; be the average of its four-
neighbors, and that m; ; be the average of its four-neighbors. The error term for smoothness
is

| PRI ATy TRy
+(mi i — My, + Mig1 7+ M1 +M; 54 2

4

Note that this constraint is exact for a surface that is spherical.
Mipimizing £ = zi‘j.\f,-‘,—‘q + E,-,J-S by differentiating with respect to [; ;, and with
respect to 1; j, and then setting each result equal to zero, we obtain the expressions

Ly= 04{liyj+ i1+l + i) —

0.1(ki—y jo1 + gy 41 Hlicyj41 + ligr,5-1) —
0.05(!,‘_2'5 + !','+2|J' +1; 2+ l,"j+2) +

JR
0.8}\{1,'“.,' - R,"j) E!— g '
mi; = 0d(mi_y;+ mupy;+mij_ +mije)—

0.1(mi—1,j—1 + Mgy 41 + Micp i1 T Mip1,j—1) —
0.05(mji—2,; + Mmip2; + Myij—2 + mj 42} +

dR
0.8MIij = Rij) 5

s 2

‘IJ



We use these (together with the expression for R({,m)) as our iterative scheme to improve
on an intial solution.

The other formulation we use, the ‘engineering’ formulation, creates error terms from
the image irradiance equation and the smoothness constraints, but does not combine these

into one term.

&~ =(L;—Rij) .

€5 = (I — icig+ i tlig-s + f-'.:'+:)
3% = 4 H

s Mi—y,j + Mit 1,5 + Mij—1 + M4
i7" =(mqj — 4 )

We view the {'s as residuals and apply the relaxation approach, i.e., reduction of the largest
residuals. If & ;°* or £; ;° is selected for reduction we choose to reduce both, as each is
independent of the other. When f,-,_,-R is chosen for reduction, we do the reduction in two
stages — one stage altering !;; and the other m; ;. Of course we can scale the residuals,
reduce them from, say, the image irradiance equation to a certain level before introducing
smoothness, vary the amount of correction we apply, (e.g., we can overrelax) and the like.
In fact, we can experiment with various relaxation approaches. In this formulation major
changes in the relaxation scheme generally require minor programming changes.

5 EXPERIMENTAL RESULTS

The test image shown in Figure 1 is that of a hemisphere placed on a plane, ie., a
synthetic image generated by the reflectance function previously described. The collimated
light source is at slant § and tilt § — which means that it is at the upper right as we
view the image. We purposely avoided the case in which the collimated source is at the
same position as the viewer, since the resulting symmetric reflectance map might bias the
algoritbm to return a symmetric surface. A synthetic image of a sphere was selected as
the test image because both the image irradiance equation and the smoothness relationship
we use hold exactly.® The performance of the algorithm to recover the surface shape could
be assessed without the complications inveolved in using inexact models for reflectance and
smoot hness.

We need initial solutions to start our iterative/relaxation procedures. We used four sets
of initial conditions: (1) a plane perpendicular to the viewing direction; (2) a plane slanted %
to the viewing direction; (3) a cone with its axis along the viewing direction; (4) the correct
solution perturbed by small random errors.

Previous work bas used boundary conditions to constrain the recovered surface.
Investigating this approach, we constrained the surface in various ways: at the edge of the
hemisphere, at a closed curve lying on the sphere’s surface, or at individual points on the
sphere's surface. We also used the algorithms without any boundary conditions whatsoever.

Since we wished to investigate the extent to which smoothness could propagate bound-
ary conditions, we used various image quantizations, namely 16 X 16, 32 X 32, and 64 X 64.

®The smoothness relationship dees not hold at the edge of the hemisphere where it joins the plane.
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The findings can be characterized as follows:
e Both techniques — the enginceriug and the conventional method — gave essentially the

same results.

o The cngincering technique converged much faster than the conventional technique.
» Smoothness propagates boundary conditions by no more than a few pixels
e The initial solution largely predctermines the final one.

Figures 3-11 display examples of the results we achieved with the conventional iterative
scheme; the engineering scheme gave essentially the same results. In each of these figures
the top left picture shows the profile of the recovered surface (viewed from the bottom
left corner) , while at the top right we find an image that is the sine of the surface slant,
with black representing 0 and white 1. The bottom left is the cosine and the bottom right
the sine of the surface tilt, with black representing -1, gray 0, and white +1. The results
are presented in this manner so that the performance of the algorithms can be evaluated.
The profile car on occasion appear more accurate than the individual surface orientations
(as might be expected of an integration procedure); at other times, however, errors in the
surface orientation (sometimes just from the image quantization} of highly slanted surfaces
cause the integration routine that produces the surface shape for profiling to overstate the
error. Figure 2 shows the results that should be obtained if the shape recovery algorithms
recovered the surface exactly.

Figures 3-6 illustrate the effects of various houndary conditions. The errors at the edge
of the sphere where it joins the plane are expected, as smoothness does not hold there. Each
figure is the result of 320 iterations, this being five times the linear dimension of the picture
used. The boundary condition at a point affects an area of approximately 10 pixels in radius.
Only for Figure 8, where a random five percent of pixels were set to their correct values, is
the surface shape recovered correctly. Smoothness as a propagator affects but a small area.
Figures 4, 7, and 8 illustrate this point further. Here various image sizes are used. Observe
that, as the image size increases, the boundary conditions diminish in their effect and the
solution becomes progressively worse. Figures 4, 9, and 10 reveal the dominant influence of
the initial solution. Figure 11 is included to show the effect of smoothness when A =0 —
namely, when image irradiance does not affect the solution at all. This figure, obtained after
320 iterations, demonstrates what smoothness alone can achieve, even when the definition
of smoothness is exact for the viewed scene (a sphere).

Smoothness is a poor selector of surface shape and a poor propagator of boundary
information when it is used to tie the surface orientation of a particular surface point to those
of its neighbors. Generally, in engineering, problems solved with relaxation techniques are
formulations that relate a given property at one point to that same property at neighboring
points by means of differential relations. It is the derivative that propagates boundary
information and selects a particular solution to be recovered. We present such a formulation
below in an attempt to relieve smoothness of its role as propagator and selector.

6 SURFACE RADIANCE AND ISOTROPIC SCATTERING

Our formulation of the relationship between image irradiance and scene radiance is
7



I(z,y) = R(l,m) ,

where I(z,y) is the image irradiance at image point z,y and R({,m) is the scene radiance
for a surface normal we represent by I{,m. R is a function of the components of the
surface normal and they, in turn, are functions of image coordinates. R(I,m) specifies
the relationship between surface radiance and surface orientation, while {(z,y) and m(z, y)
specify the relationship between surface orientation and image coordinates. R(!, m) embodies
knowledge of the nature of surface reflection, while {z, y¥) and m(z, y) embody the surface
shape.

To provide the additional constraints we need for relating surface orientation to image
irradiance, we introduce constraints that relate properties of R(l,m), — that is, constraints
that specify the relationship between surface radiance and surface orientation. Such con-
straints are

(1— B)Ry = (1= )R
{RH - Rmm)lm = ([2 - mz)RIm ’

where Ry is the second partial derivative of R with respect to {, R, is the second partial
derivative of R with respect to m, and R, is the second partial cross-derivative of R with
respect to { and m.

These two partial differential equations embody the assumption of isotropic scattering
(Lambertian reflectance). For isotropic scattering R({, m) has the form

Rl,m)=al+bm+cy1—PF—-m2+d ,

where a,b,c, and d are constants, their values depending on illumination conditions and
surface albedo. Note that {,m, and /1 — %2 — m?® are the components of the unit surface
normal in the directions z,y, and depth. R(!,m) can be viewed as the dot product of
the surface normal vector (I, m, /1 — {2 — m?) and a vector (a,b,c) denoting illumination
conditions. As the value of a dot product is rotationally independent of the coordinate
system, the scene radiance is independent of the viewing direction — which is the definition
of isotropic scattering.

It is easily seen that R{l,m) == al+ bm+ c/1 — I? — m? + d satisfies the pair of partial
differential equations given above. In the appendix we show that R({,m) = al + bm +
¢v/1 — 12 —m? + d is the solution of the pair of partial differential equations. These partial
differential cquations are an alternative definition of isotropic scattering.

It is worthy of note that R{l,m) = al + bm + ¢v/1 —I2 — m2 + d includes radiance
functions for multiple and extended illumination sources, including that for a hemispherical
uniform source such as the sky. The assumption of isotropic scattering restricts the class
of material surfaces being considered, not the illumination conditions.

7 EQUATIONS RELATING SURFACE ORIENTATION TO IMAGE
IRRADIANCE

Differentiating
I(z,y) = R(l,m)
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with respect to z and y, we obtain

I =Rl + Rpym,

H

I, = Rily + Rmmy,

I, = Rlll::z + Rmmm=2 + 2le[=mz + Rll:::: + Rmmzz

Iy = Ruly® + Rmmy® + 2Rimlymy + Rilyy + Rumy,y

1

Ly = Ryl ly + Ryummzmy + Bym(lomy + lym.)+ Rilzy + Rnmyy

where subscripted variables denote partial differentation with respect to the subscript(s).
From the constraints for isotropic scattering, we derive the relationships

1 —m?
Ry = 7 Ry,
m
-2
Rmm = ! le
Im

Substituting these relationships for Ry and Ry, in the expressions for I.,,I,y,,and I,
we obtain

[‘.2 ( Im )+ m, ( Im )+ 2’zmz]le = I;; - Rl;, — Rpym,; I3
1 —m? 1-£#

[lyz( Im )+ myz(w) +2lymy|Rim = lyy — Rilyy — Rmyy
1 —m? 1-12
By removing R, and substituting the expressions for R; and R,,, defined by the

expressions for I and I, we produce two partial differential equations relating surface
orientation to image irradiance:

aal:x + ﬁamzz - a"}'l,y - B“fmzy —_ xaIxz —_— xanzy

1

H

where
a=I,my—I,m,

B=1I1l —Ll, ,

v =21 — m®)+ m, (1 — %) + 2. m,im

§ = 1,21 —m?) + m2(1 — By + 2,mylm

8 = Lly(1 — m®) + mymy(1 — B) + (lbmy + lymz)lm |
x = l;my —lym,

¥

These equations relate surface orientation to image irradiance by parameter-free ex-
pressions. They involve the derivatives of image irradiance, but not the image irradiance
itsell — an important feature if we conjecture such a model for the human visual system.
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8 RECOVERY OF SURFACE SHAPE — A SPECIAL CASE:
A SPHERICAL SURFACE

It is difficult to solve the equations relating surface orientation to image irradiance, and
thus to recover surface shape from observed image irradiance. Two types of approaches are
possible. The two d:ierential equations can be integrated in a step-by-step manner or, given
some initial solution, a relaxation procedure may be employed. The difficulties that arise
are two-fold, numerical errors and multiple solutions.

Solutions of the equation x = 0 (the developable surfaces, e.g., a cylinder) are also
solutions of the equations relating surface orientation to image irradiance. If the images
intensities were known in analytic form then analytic solution of the equations could employ
boundary conditions to select the appropiate solution. However since the analytic form
for the image intensities is unknown, numerical procedures must be employed. Numerical
procedures to integrate the equations inevidently introduces small errors. Instability of the
numerical scheme seems responsible for such errors eventually dominating the recovered
solution.

The alternative, a relaxation procedure to solve the equations, has its own difficulties.
The difficulties experienced in the shape-from-shading methods discussed in the first part
of this paper dictate caution. The importance of a good initial solution for a relaxation
method cannot be overemphasized. Simplfying the two partial differential equations (using
additional assumptions) provides a method for obtaining an good initial solution.

The spherical approximation assumes that we are on a spherical surface. This implies
{, =0,m; =0,!{; = my, — namely, constant curvature independent of direction. For this
case the partial differential equations become relationships between the second derivatives
of image irradiance and the components of the surface normal:

1 —m? T

Im —Ey ’
1-FP Iy
Im —HI;,,

These results for the spherical approximation are equivalent to those Pentland was able
to obtain [8] through local analysis of the surface. In addition to providing a mechanism
for obtaining an initial solution for a relaxation-style algorithm, their direct application
estimates the surface orientation by local computation [8].

We are actively engaged in the development of a relaxation procedure to transform the
initial solution (given by the spherical approximation) into a solution the satifies the full
equations.

9 THE INFLUENCE OF BELIEF ON THE PERFORMANCE OF
A VISUAL SYSTEM

The constraints derived for isotropic scattering do not have to be true embodiments of
the physical laws of nature; rather, they can represent the beliefs a visual system possesses
regarding those laws. In circumstances in which such beliefs do not hold, the visual system

10



will err in predicting the world’s true nature. Of course, il the model is not a good
approximation of the physical laws of nature, the visual system embodying it is useless,
The two constraints specifying isotropic scattering,

(1- ey = (1 — m*)Rinn
(R — Rpn lm = (12 — mz)Rgm ,

obviously both hold when the scattering is isotropic, but what is the situation for other
forms of scattering?

The images produced by a scanning electron microscope constitute an intriguing situa-
tion. The appropiate expression for scene radiance (7] is

R(l,m)=a(l + ;) )

V1—8 —m?

where a is a constant. This expression is quite unlike those for natural scenery, yet the
human visual system ‘sees’ an image. Note that the second constraint for the isotropic
scattering case is satisfied by this radiance function, but not the first. The second constraint
is about surface tilt, as z/™; = 'a02f where 7 is the surface tilt; the first constraint
introduces slant. In using the equations relating surface orientation to image irradiance to
recover surface orientation, one might expect them to predict tilt correctly for surfaces in
electron microscope images, but to err in predicting slant.

For other forms of the scene radiance expressions, neither constraint holds. Specular

reflectance has been approximated [2] by

Rl.m)= app(1—1—-m?}+elV/1—-1—m?+dm\/1—1[2—m2]" |

where n is a constant, usually bhaving a value between 1 and 10 that determines the
‘sharpness’ of the specular peak.
For the maria of the moon, the form of scene radiance normally used {2] is

a(bl + cm)

V1— P2 —m2

The constants a,b,¢, and d in the above expressions are associated with the strength and
position of the light source, as well as with the surface albedo.

The constraints do not hold in either of the preceding cases. We would expect a visual
system embodying them to make errors under these circumstances. Nevertheless this should
not induce us to immediately begin searching for new visual beliefs. After all the human
visual system is imperfect under conditions of specular reflection; moreover, people observed
the moon throughout history without concluding that it was spherical.

If these constraints are incorporated in the human visual system, the predictions based
on them — j.e., when the visual system will return ostensibly ‘correct’ and ‘incorrect’
information — could be tested by psychophysical experiments. Such predictions together
with their verification or refutation are being investigated.

11
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10 CONCLUSION

The shape-from-shading task (recovering surface orientation from image irradiance),
has meant finding a solution to the image irradiance equation. This formulation requires
that the characteristics of the scene illumination and the surface material be known. While
these requirements are difficult to satisify, knowing them makes it possible to apply the image
irradiance equation to any scene material for which the scene radiance function is known.
Such application, however, is not without difficulty, appropiate boundary conditions are
needed and the effect of image noise is uncertain.

To recover surface orientation, relaxation-style algorithms based on the image irradiance
equation employ additional constraints. These constraints, which are needed to supplement
the underdetermined image irradiance equation, capture the concept of smoothness. While
smoothness superficially determines the relationship between image irradiance and surface
oricntation, it is too weak a concept to propagate boundary conditions and thus equally
ineffectual as a means of recovering the required solution.

in presenting a new formulation for the shape-from-shading task, we have traded the
need to know the explicit form of the scene radiance function for the assumption that
material scatters light isotropically. This model is applicable to natural scenery without
additional assumptions about illumination conditions or the albedo of the surface material.
The model also demouvstrates some competence even when the scattering is not isotropic.
Such a model poses the question: does the human visual system embody a particular belief
about the laws of scattering that it applies even when these laws are inexact?

Effective numerical procedures based on this new formulation of the shape-from- shad-
ing task remain unknown and, are subjects for further development.
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APPENDIX
We show that the solution of the system of partial differential equations,

(1 — lz)Ru =(1- mz]Rmm ,
(R — Rmm)[m = ([2 - m2)le y

where Iy is the second partial derivative of R with respect to [, Ry, is the second partial
derivative of R with respect to m, and R}, is the second partial cross derivative of R with
respect to [ and m, is

R(l,m)y=al+bm+cyV1-B-—m?>+d ,
where a,b, ¢, and d are constants,
Proof: Rearranging

(1- )Ry =(1-m*)Rmm ,
(Ri — Rpm)im = (I? = m®)Riy,

we obtain |
m
Rim =1 zRu
Im
Rim = T‘_‘TQ'Rmm
Integrating Hiy, = li':l._.Ru with respect to I, that is,
m
_[le dl == l——fnz./.lR“ dl y
gives
=" (IR — R)+ Fi(m)
Rm - 1— mz( { 1 H
where Fy(m) is an arbitary function of m. Similarly, integrating Rim = {%;Rmm with
respect to m gives
{
R{ - ].——F(mRm —R) + Fz(l) y

13



where Fu(l) is an arbitary function of {. Rearranging these two equations, we get a system
of two first order partial differential equations

(1= —m®)R + (R =ImF3(m)+(1—m?)Fy(l) ,

(1 =82 ~m?)R, + mR =ImFy(l) +(1— B)F3(m)
where Fy(m) = (1 — m?)Fi(m), and Fy{l) = (1 — {?)F2({). Multiplying both equations by
the integrating factor (1 — {2 — m2)~3, we obtain

211~ 8~ m?) Rl = (1 = & = m?) 2 imPy(m) + (1 - m)PA0]

%{(1 C P —md)AR] = (1 = &= m?) " ImFyl) + (1 — B)Fy(m)]
Before carrying out the integration, we can find the form of Fi(m), and Fy(l) by

differentiating the first equation with respect to m and the second with respect to {:

i2—[(1 —P—m?) iR = (1 - — m®) i1 — P + 2m®)F3(m) + m(1 — m® + 28)F,(1)

alom
+ Im(1 — ?— mz)FQ(m)] ,
32
dldm

(1= -m?)"iR)=(1—-1%- m2)"2[l(1 — P + 2m®)F3(m) + m(1 — m? + 22)F4(1)
+Im(1 — P —m?)F(1)] ,
where F/(k) indicates diflerentiation with respect to the independent variable k. Hence,
Fy(m) = Fi(l)
F3(m) is a function of m and Fy({) is a function of /; this implies that
Fym)=d ,
Fyl) =d ,
where d i3 a constant. Therefore,
Fi(m)=dm+4b ,
Fil) =dl +a ,
where a, and b are constants. Returning to the integration step, we now have the expressions

%Kl ~ I~ m?) iR = (1= F - m®) 3 [I(bm + d) + a(1 — m?)] ,

(1=~ m? AR = (1~ P~ m?) Hmlal +4) + (1~ ?)

Integrating the first equation with respect to { and the second with respect to m, we obtain
(1=—P-m?) iR=(bm+d(1 - —m®) % +al(1 -2 —m?)"% 4 Fy(m) ,
(1-C-m®) iR=(al+d)1 - P -m?)"t +bm(1 - P —m?) L + Fe(1) ,

where F5(m), and Fg(l) are arbitary functions of m and {, respectively. We have two

expresstons for R:

R =al +bm+ Fy(m}1 —? —m?)} +4 |
R=al+bm+ Fe(l)f(1 -8 -m?)% +d ,
which are compatible if
Fs(m)=Fe(l)=¢c ,
where ¢ is a constant. The solution for R is

R=al+bm+eVi—-F—m2+d
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Figure 1 Original Image.

/

Figure 2 ‘Ideal’ Result. Top left - profile of recovered aurface; top
right - sine slant, black=0, white=1; bottom left - cosine tilt, black=s-1,
gray=0, white=+1; bottom right - sine tilt.
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Figure 8. No boundary conditions; planar initial solution perpen-
dicular to viewing direction; image quantization 84 X 64.
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Figure 4. Boundary at edge of sphere given; planar initial solution
perpendicular to viewing direction; image quantization 84 X 84,
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Figure 5. Boundary condition curve on sphere’s surface (square
shape); planar initial solution perpendicular to viewing direction; image
quantization 64 X 64.

Figure 8. Random five percent of points fixed; planar initial solution
perpendicular to viewing direction; image quantization 64 X 64.
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Flgure 7. Boundary at edge of sphere given; planar initial sclution
perpendicular to viewing direction; image quantiaation 32 X 32.
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Figure 8. Boundary at edge of sphere given; planar initial solution
perpendicular to viewing direction; image quantiaation 16 X 16.
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Flgure 9. Boundary at edge of sphere given; conical initial solution;
image quantization 64 X 64.

Figure 10. Boundary at edge of sphere given; planar initial solution
slanted T to viewing direction; image quantization 64 X 64.
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Figure 11. Smoothness constraint only. Boundary at edge of sphere
given; planar initial solution perpendicular to viewing direction; image
quantization 64 X 684.
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