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INTERPRETING PERSPECTIVE IMAGES.
Stephen T. Barnard

Artificial Intelligence Center, SRI International
Menlo Park, California 94025

ABSTRACT

A fundamental problem in computer vision is how to determine the 3-D spatial orien-
tation of curves and surfaces appearing in an image. The problem is generally under-
constrained, and is complicated by the fact that metric properties, such as orientation and
length, are not invariant under projection. Under perspective projection (the correct model
for most real images) the transform is nonlinear, and therefore hard to invert. Two con-
structive methods are presented. The first finds the orientation of parallel lines and planes
by locating vanishing points and vanishing lines. The second determines the orientation
of planes by “backprojection” of two intrinsic properties of contours: angle magnitude and
curvature.

1 Introduction

A -computational theory of vision must explain a very puzzling aspect of human visual
experience. How is it that we correctly perceive three-dimensional properties of objects in
space from two-dimensional projections (e.g., a single image)? At first it seems that essential
information for depth is lost when the retinal image is formed: a ray of light may as wel}
have come from a star light-years distant as from across the room. Nevertheless, we have
definite impressions of the distances and orientations of the things we see, even when there
is no explicit, unambiguous information about these three-space relations in the image.

There are a few purely physical mechanisms that can account for some modes of
spatial perception — in particular, accommodation of the lens for focusing at different
distances, binocular stereopsis, and optic flow. But while these mechanisms may account
for some spatial perception, their explanation remains insufficient and incomplete. We
usually have no trouble interpreting single images with substantial ranges of depth, or even
simple line drawings with an infinite number of possible interpretations. Since information
is lost in projecting a three-dimensional scene onto a two-dimensional surface, some form
of computational “cognitive” model is required to construct percepts from ambiguous,
incomplete, and noisy images.

Three important spatial properties that we perceive are size , shape, and depth.
Size and shape are fundamentally different from depth because they are defined relative
to an object, while depth is defined relative to an observer. Size is usually measured
with ordinary Euclidean metrics: length, area, and volume. [t is difficult to give a precise
definition of shape, but the essential principle is that the shape of an object is the spatial
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(a} PARALLEL PRQJECTION {b} CENTRAL PROJECTION

FIGURE 1 PARALLEL AND CENTRAL PROJECTION

arrangement of the contours and surfaces of which it is composed. While size is independent
of the choice of a coordinate system, shape usually is not. Shape is often specified in
some “natural” object-centered coordinate system that is selected and aligned to match the
symmetry of the object.

In much of the following discussion we shall assume that shapes can be described ade-
quately by straight lines and planes. These primitive shape descriptors are the simplest
geometrical contours and surfaces we can hope to find. They are common in scenes con-
taining man-made objects, less common in natural scenes. If we can develop computational
methods for the perception of lines and planes, we can perhaps generalize them to include
more complex shapes. In Section 4.3 curved planar contours will be considered.

To recover 3-D shape from 2-D projections, an explicit model of the projective trans-
forin is essential. Two models are common: parallel and central projection (Figure I). In
parallel projection an image is formed by parallel rays, usually perpendicular to the image
plane. In central projection an image is formed by rays passing through a common point in
space called the focal point. The parailel projective transform is called “orthographic,” the
central projective transform “perspective.”

[t is important to emphasize that central projection is the correct model both for
human vision and for cameras, whereas parallel projection is only an approximation.

The most important parameter that distinguishes perspective from orthographic
projection is the included angle of view, which is defined to be the maximum angle between
two rays (i.e., the angle between the two rays with the greatest angular separation). The
assumption of orthographic projection is essentially equivalent to the assumption of zero
included angle of view. Locally, perspective projection is approximately orthographic be-
cause the included angle of view is small. When the entire image is considered, however,
perspective becomes important.

If the focal length (the perpendicular distance from the focal point to the image plane)
is large, compared with the linear dimension of the image, the included angle of view is
small and the orthographic approximation is reasonable. Photographs taken with “normal”
lenses for a certain film format (e.g., a 50-mm Jens on a 35-mm camera) typically cover
about 45 degrees of view, and perspective effects are often quite apparent. If a wide-angle
lens is used, perspective is dominant and the picture may appear distorted, although the
“distortion” is merely the result of viewing the photograph from the wrong distance.
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{a)} ORTHOGRAPHIC PRQJECTION {b} PERSPECTIVE PROJECTION

FIGURE 2 NECKER CUBE ILLUSIONS

Another parameter that causes perspective images to differ from orthographic ones,
even when the included angle of view is small, is the ratio of the distances to objects in
the scene (or, informally stated, the ratios of “depths” of points). Under perspective, the
projected area of an object varies inversely with the object's distance from the focal point
{measured along the principal ray, defined to be the ray perpendicular to the image plane).
Under orthography, however, the size of an object in an image is independent of depth.

The perspective camera model, therefore, will be required for accurate recovery of
size, shape, and depth whenever the image covers a substantial included angle of view, or
whenever objects at very different depths are compared.

The difference between orthographic and perspective projection is not only quantita-
tive, but also qualitative. In Figure 2 one of the most familiar of all illusions — the Necker
cube — is shown in parallel and central projection. In both cases the images are highly am-
higuous because they could have been produced by an infinite number of objects; neverthe-
less, in each case we perceive only two distinct interpretations. The interpretations of the
orthographic image are more or less equally preferable because both have the same sym-
metry. The interpretations of the perspective image, however, are radically different: one
is a symmetrical cube, while the other is a relatively asymmetrical octohedron. There are
other qualitative differences between orthography and perspective. For example, vanishing
points and vanishing lines are not found in orthographic projections, but are characteristic
of perspective projections. {This topic will be covered in detail later.)

The use of explicit models of the projective transform has a long history in computer
vision. Mackworth used the concept of gradient space [1], based on Huffman’s dual
space [2], to interpret line drawings of polyhedral scenes. For reasons that will be made
clear in Section 2, perspective involves more difficult mathematics than does orthography.
(See Haralick for a discussion of the mathematics of perspective [3].) Most computer
vision approaches, therefore, begin with the assumption of parallel projection. The general
approach involves representing physical constraints on the scene as relations in gradient
space. Horn, for example, used this approach in his analysis of “shape from shading” [4].
An overview of gradient-space methods can be found in [5].

In this work we shall treat the perspective projection exclusively. We shall use the
Gaussian sphere instead of gradient space as a domain for representing geometric constraints.
Analytical solutions, although possible in principle, appear to be very difficult, so we will
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present constructive methods that explicitly generate constraints over the entire sphere.

2 Mathematics of Perspective

2.1 Review of Algebraic Models of Projection

The standard coordinate system we shall use is illustrated in Figure 3. The origin is
at the focal point, the z-axis is parallel to “right” in the image plane, the y-axis is parallel
to “up” in the image plane, and the z-axis is directed through the principal point in the
image plane. The focal length is f. Note that this is a left-handed coordinate system. The
image plane is one focal length from the origin along the 2-axis.

Parallel (orthographic) projection can be represented as a simple linear transform.
Given ua point p = (z,y, 2}, the parallel projection p, of p is given by:

1 00
po=(o 1 0)pT+(0,0,f). (2.1)
0 0 0

Central (perspective) projection, on the other hand, is an essentially nonlinear trans-
form: image coordinates are determined by dividing sceme coordinates by the depth as
measured along the principal ray. The central projection p, of p is

pp=(L W gy (2.2)

F4 F4
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The perspective transform can be expressed elegantly with homogeneous coordinates.
Homogeneous coordinates were first developed as an analytical tool for projective geometry
[6]; more recently they have been used effectively in computer graphics [7] and industrial
automation [8]. The homogeneous coordinates of a point are represented by a four-tuple
{z,y,2,w), and the ordinary three-dimensional coordinates of the point are obtained by
z, %, Z}. One advantage of using homogeneous coordinates in projective geometry derives
from the fact that points “at infinity” are represented as four-tuples with w = 0, whereas
in ordinary coordinates they have no representation.

The formulation of perspective projection in homogeneous coordinates is as follows.
First, we must use a slightly different coordinate system than the standard one illustrated
in Figure 3. In the new coordinate system the image plane is the zy plane and the focal
point is at {(0,0,—f). A point P with homogeneous coordinates (z, y, z, w} is projected onto
the image plane at point q with ordinary coordinates q = (ﬁf—‘;, z—f{r—w,ﬂ). This projection
can be expressed in matrix form as

1 ¢ 0 0
01 0 0
r_ T
P=loo 1 off
(2.3)
00 4 1
z+wf
=(z,y,2, ),
/
followed by conversion to ordinary coordinates
zf vSf zf
P’ = ( ’ ’ ) s (2.4)
z+wf z+wf z+wf
and finally a “parallel” projection transform
1 00 r
Pp = (o 1 o)p’ . (2.5)
0 00

Clearly, parallel projection is a special case of central projection. If the focal length is
infinite Equation (2.3) becomes the identity transform.

2.2 Gaussian Mapping

In the next two sections we shall use Gaussian mapping [9] to represent the orientation
of lines and planes. Gaussian mapping transforms vectors in 3-space into points on a unit
sphere centered at the origin (Figure 4). It can be used to represent the orientation of
either lines (if the vectors are interpreted as direction cosines) or planes (if the vectors are
interpreted as planar normals). Since all parallel vectors in space map to the same point on
the sphere, any point on the sphere represents a family of parallel vectors.

Suppose n is a point on the Gaussian sphere. It can be expressed in either spherical or
Cartesian coordinates. The azimuth of n, a, is the angle measured from the z-axis in the
zz-plane. The elevation of n, 4, is the angle measured from the zz-plane toward the y-axis.
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FIGURE 4 GAUSSIAN MAPPING

in Cartesian cocrdiantes,
n = (sin @ cos F,sin #,cos acos §} . (2.2.1)

The Gaussian sphere is a more convenient domain in which to express geometric
constraints under perspective than the more widely used gradient space. All orientations
are represented on the sphere, while orientations perpendicular to the line of sight are
undefined in gradient space. The sphere is a finite (i.e., closed) space, whereas gradient
space is infinite (i.e., open), and therefore more difficult to represent directly in a finite
computer memory. More fundamentally, the Gaussian sphere exhihits the same symmetry
as the central projection (i.e., it is symmetric with respect to the focal point), while gradient
space exhibits the symmetry of orthographic projection (i.e., it is symmetric with respect
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to the line of sight). In fact, gradient space is the limiting case of the Gaussian sphere as
the focal length approaches infinity and the central projection approaches orthography.
There is an interesting dual relationship between lines and planes in projective space:
two lines determine a plane, and two planes determine a line. There is a similar dual
relationship on the Gaussian sphere between points and lines (i.e., great circles): a point
on the sphere determines a pole through the origin; the dual of the point is the equator
associated with the pole. Analogous dual relationships are found in gradient space. Duality
can be exploited in the interpretation of perspective images, as we shall see in Section 3.

2.3 A Computational Approach

Geometric properties can be divided into two classes: metric, such as the length and
orientation of lines; and descriptive, such as the colinearity of three points or the coincidence
of three lines. Metric properties are in general not invariant under projection (either parallel
or central), but descriptive ones are. One general approach to using a camera model for
image interpretation (and the one used in Section 3) is to first identify instances of descriptive
attributes in the image, which, since they are invariant under projection, express strong,
unambiguous, and often global information about the scene. These descriptive attributes
can then be combined with geometric constraints {the camera model), heuristic rules (such
as a preference for symmetrical figures), and specific knowledge of the scene to infer metric
properties.

Under orthographic projection the parallelism of lines (a descriptive property) is in-
variant; under perspective projection, however, it is not — and must therefore be replaced
with a more general property. Central projection maps parallel lines in space onto a pencil
of lines intersecting at a common point on the image plane. This point of intersection, called
a vanishing point, has important implications for image interpretation. In perspective, con-
sequently, parallelism as a descriptive property is replaced by “coincidence.” In Section 3 a
computational method for finding vanishing points is described.

Under both orthographic and central projection the metric properties are transformed
in highly ambiguous ways. For example, an angle on a plane in three-space (defined as the
intersection of two lines in the plane) can project to any angle in the image, depending on
the orientation of the plane with respect to the image. From a more optimistic standpoint,
we can say that angles in the image constrain the orientation of.planes in three-space.

ln Section 4 two algorithms are described for finding the orientation of planes from
metric properties (angles and curvatures). It will be necessary to invoke heuristic as-
sumptions about the symmetry of figures in space to arrive at a meaningful answer.
Computational metbods for shape perception sometimes make use of known or suspected
symmetry in the scene to choose among multiple interpretations. Kanade has used this
approach for interpreting orthographic projections [10].

3 Vanishing Points

This section describes a method for findieg vanishing points in a perspective image
and discusses how to use them to interpret the scene.
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FIGURE 8 CONSTRUCTION OF A VANISHING POINT

The approach is based on the assumption that there exist groups of parallel straight
structures in the scene, and that these structures produce line segments in the image.
According to the laws of perspective, such a group of image line segments, when extended,
will intersect at a common vanishing point. This point has the following interpretation: it
is the projection of the intersection of the parallel lines “at infinity.” If the focal length is
known, the spatial orientation of the group is fully determined by the vanishing point of the
lines (i.e., the line from the focal point to the vanishing point is a member of the group).
This is illustrated in Figure 5.

The problem of finding vanishing points is divided into (1) finding line segments in
the image and (2) finding intersections of the extended line segments that are likely to be
vanishing points.

Problem (1) is solved with well-known, conventional techniques. First, “zero-crossing”
contours in the image are found [11], then more-or-less straight segments of the zero-crossing
contours are found with a recursive contour-splitting technique [12], and finally straight lines
are fit to the segments using the method of least-squares.

Problem (2), that of finding intersections, is greatly simplified by using Gaussian
mapping. The problem with trying to find intersections directly in the image is that
the image plane is an open space, and the vanishing points may occur anywhere, even
“at infinity.” (The use of gradient space to represent surface orientation raises the same
problem: as the surface normal approaches 90 degrees from the z-axis, the gradient space
point approaches infinity.)

The interpretation plane associated with an image line is defined as follows (Figure
8). Let py = {z1,y1, f) and p2 = {z2,y2, f} be two distinct image points defining a line /.
Then the interpretation plane ¢ associated with [ is the plane containing [ and the origin
(i.e., the focal point), and can be represented by its unit normal row vector:

_ P Xp2
Ip1llpe| (3.1)
= (¢zr¢y’ ¢z) .
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FIGURE 6 THE INTERPRETATION PLANE

The plane ¢ is called the interpretation plane of { because the line in space, the projection
of which is I, must lie in ¢.

The interpretation planes of image lines intersect the Gaussian sphere in great circles,
as shown in Figure 7. The intersections of these great circles on the sphere correspond
exactly to intersections of their associated lines in the image plane. The procedure for
finding vanishing points is then as follows: (1) find lines in the image; (2) determine the
interpretation plane of each line; (3) trace the great-circle intersections of the interpretation
planes with the Gaussian sphere; (4) find the points on the sphere where several great circles
intersect. The vanishing points can then be projected back onto the image plane, if desired.

After a vanishing point has been found, its dual interpretation can also be very useful
for interpreting the image. The dual of a vanishing point is a vanishing line {a great circle
on the sphere). For example, if the vertical vanishing point is found, its dual is the “horizon
line” (i.e., the vanishing line of all horizontal planes). As another example, if two horizontal
vanishing points are found, their duals intersect at the vertical vanishing point.

The Gaussian sphere can be represented digitally as a two-dimensional array of real
numbers, with the row index indicating an azimuth and a column index representing an
elevation. Each array element corresponds to a small surface area of the sphere. (In this
representation the surface areas are not equal. Other forms, such as tessellated regular
polyhedra [13], might be better suited to represent the sphere, but they are rather compli-
cated to implement.)

The procedure for tracing a great circle in the sphere array is as follows. Let a and g
be the spherical coordinates (azimuth and elevation) of a point on the sphere. In Cartesian
coordinates, the point is
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FIGURE 7 VANISHING POINTS ON THE GAUSSIAN SPHERE

g == (sinacos 3,sin 4, cosa cas ) . (3.2)

The equation of the great circle associated with interpretation plane ¢ = (¢,,d,,9.)
is
from which we can derive an expression for the elevation 2 in terms of the azimuth o and
the interpretation plane ¢:

| —¢zsina—¢,cosa
Py

If ¢, is small, this equation can be replaced by a slightly different form that gives azimuth
as a function of elevation and has ¢, in the denominator.

The array is first initialized to zeros. Since we have the elevation A as a function
of the azimuth o and an interpretation plane ¢ (Equation 3.4), we can generate the great
circle of ¢ in the array. When a curve is traced into the array, a real value associated with
that curve is added to all the array elements containing the curve. (This value is derived
heuristically from the length and goodness-of-fit of the image line.) Points at which many
curves intersect form clusters of high values; these indicate likely vanishing points.

10
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Figures 8 and 9 show two examples of the method’s application to real images. The
images were recorded onto 50-mm X 50-mm film areas with a 50-mm-focal-length lens
(considered “wide-angle” for this film format) and were digitized at a resolution of 100
microns/ pixel.

in Figure 8c, the traces of the interpretation planes of each line segment is shown, and
the original image is mapped onto the sphere for reference. This figure shows the “front”
hemisphere spread flat. Only the vertical vanishing point is clearly indicated. The dual of
the vertical vanishing point is shown to be the horizon line. In Figure 8d, those image line
segments whose interpretation planes contain the vertical vanishing point are shown.

In Figure 9 two horizontal vanishing points are found, but the vertical vanishing point
is not clearly indicated. The vertical vanishing point i3 located by intersecting the duals of
the two horizontal vanishing points. Again, the horizon line is shown to be the dual of the
vertical vanishing point.

Locating vanishing points may be extremely useful for wide-angle stereo image match-
ing. A vanishing point measures the orientation of a group of parallel lines. Two vanishing
points are sufficient to determine the rotational transiorm between the camera's coordinate
system and a “natural” world coordinate system defined by the two groups of parallel lines.
If two vanishing points in one stereo image are matched with two in the other image, the
rotational part of the relative stereo camera model is determined. Matching vanishing points
is more robust than matching image points for several reasons: there are fewer of them, they
are truly “point-like” features which are not distorted by the projective transform, and they
represent a relationship among many contour points covering a large part of the image, and
are therefore less dependent of noise that can corrupt a single measurement in the image.
Furthermore, matching actual line segments can be constrained to matching between sets
of lines passing through corresponding vanishing points.

4 Orientation of Planes

4.1 General Approach

In this section, we shall consider a somewhat different class of algorithms for determin-
ing the orientation of plapar figures; namely, backprojection of metric image properties. The
algorithm for finding vanishing points described in the previous section exploits descriptive
geometric properties (the intersection of lines in projective space} that are preserved under
projection and can be used to infer rotational transforms. The two algorithms treated in this
section, however, will exploit metric geometric properties (angles and curvatures), which,
in general, are not preserved under projection. We shall have to impose heuristic, but very
general, constraints (usually expressed as assumptions about the symmetry of the figure in
space} to derive a meaningful answer.

Backprojection has been described most thoroughly by Kender [14]. Similar ap-
proaches have been used by Witkin [15] and Ikeuchi [16] for 3-D interpretation. The object
is to find the most likely planar orientation of an area, given measurements of its geometric
features in the image, such as size, slope, angles, and curvature. The essential idea is that
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(e} (d}

FIGURE 8 A VERTICAL VANISHING PGINT: {a) original image; {b) line segments; {c} great
circles on one half of the Gaussian sphere accumulator, showing the vertical vanishing
point and the implied horizon; {d) vertical line segments.
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FIGURE 9 HORIZONTAL VANISHING POINTS: (a) original image; (b} line segments; (c) great
circles on one half of the Gaussian sphere accumulator, showing two horizontal vanishing
points, the implied vertical vanishing point where their duals intersect, and the implied
horizon; {d} horizontal and vertical line segments.
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the projective transform is reversed by computing, examining, and selecting the most ap-
propria'te of all feasible inverse projections. Consider a plane (e, 4} tangent to the Gaussian
sphere at the point with spherical coordinates (a,#). The plane is represented by its unit
normal, In Cartesian coordinates the plane is

4la, 8) = (sin acos 3, sin 8, cos a cos F} . (4.1.1)

The equation of the plaue is
e, B) {z,y,2) =1 .

Image features can be projected onto 4(a, #) and measured. We can do this for all values
of {a, #) {(subject to some quantization of the sphere). The solution is that plane in which
the “backprojected” properties satisfly various constraints. Witkin, for example, chooses the
backprojection plane in which the distribution of tangents is most uniform {15].
The approach described here uses intrinsic properties of line figures and curves for
- backprojection. An intrinsic property is defined to be a property that is invariant under
translation and rotation. Two such properties are the magnitudes of the angles of a planar
polygon and the curvatures of a planar contour. Angle magnitude is also invariant under
scaling, while curvature is not. As we shall see, this will affect the way we must interpret
the curvature results.

4.2 Backprojection of Angle Magnitudes

Assume that the figure in space is a closed planar polygon, such as a triangle. Each pair
of adjacent sides defines an angle, and each apgle in the planar figure generally projects to a
different angle in the image. (The metric property of angle magnitude is not preserved under
projection.) Nevertheless, an angle measured in the image constrains the angle measured in
the planar figure as a function of the orientation of the containing plane, but the constraint
ranges over a family of possible planor orientations. In essence, the angle in the image can
“backproject” onto any plane in space.

Congsider two interpretation planes, ¢; = (¢, 91,,41,) and g2 = (d2_, ¢2,, ¢2,}, that
form angle w in the backprojection plane +{a, 8) (see Figure 10). The vectors 4 X ¢, and
4 X ¢o are the intersections of 4 and the two interpretation planes. The dot product of
these vectors is the product of their magnitudes and the cosine of the angle between them:

(v X ¢1)- (v X ¢2) = |7 X 1|7 X ¢2|cosw (4.2.1)

or

(¥ X é1): (7 X ¢2)
Iy X d1lly X 2]

By using (4.2.2), angles measured in the image cap be expressed as constraints on the
ortentation of the plane containing the angle in space.

One approach to using the backprojection constraint would be to solve a system
of cquations in the form of (4.2.2), but such an explicit solution may be very difficult.
Instead, using a highly parallel algorithm, we backproject each image angle onto planes of
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FIGURE 10 THE ANGLE TWO INTERPRETATION PLANES FORM ON
ANOTHER PLANE IN SPACE

all possible orientations (subject to some quantization of the Gaussian sphere), obtaining at
each orientation a value that expresses the angle the figure must make on such a plane.

Two examples of this method are illustrated in Figures 11 and 12. The triangle in
Figure 11a is interpreted as an image of some other triangle in space (Figure 11b). Each
of the three angles is backprojected onto planes of all possible orientations (Figure 1lc).
Each image in Figure 11c represents a map of the back of the Gaussian sphere. Each point
represents a possible planar orientation in terms of the Gaussian spherical coordinates of
the plane’s normal. The intensity value at each point is directly related to cosw for that
orientation (e.g., black indicates cosr = —1 and white indicates cos0 = 1).

Knowledge or bheuristic assumptions about the values of angles in space can be used to
choose particular interpretations of planar orientation. For example, suppose we interpret
the triangle as being as symmetrical as possible — namely, an equilateral triangle (w =
60 degrees). Contours for this value of w are shown in the Figure 11c. Note that the
triangle yields two solutions (i.e., the contours sll intersect at two points). When asked to
interpret Figure 11a as an equilateral triangle, most people have no difficulty in perceiving
two possibilities: one in which the plane of the triangle faces “up” (this seems to be the
preferred interpretation), and one in which it faces “down.” This is actually a simplified
version of the Necker cube illusion. The backprojection computation is therefore consistent
with human perception.

Similarly, the quadrangle in Figure 12a is interpreted as an image of some other
quadrangle in space. In this case four angles are backprojected (Figure 12¢). If we assume
the quadrangle in space is a rectangle (w = 90 degrees), and plot the contours for this value
(shown in Figure 12¢), we find that it yields a unique solution. Again, the result is consistent
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FIGURE 11 BACKPROJECTION OF ANGLES {AN EQUILATERAL TRIANGLE): (a) image of the
triangle; (b) spatial configuration; (c) backprojection of the three angles, showing contours
for 60° (superimposed contours at the lower right indicate two solutions).
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SQUARE

{a} {b)

{e)

FIGURE 12 BACKPROJECTION OF ANGLES {A RECTANGLE): (a) image of the rectangle;
{b}) spatial configuration; (c) backprojection of four angles, showing contours for
a0° {one solution is indicated in the superimposed contours at the lower right),
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FIGURE 13 A TRIANGLE vs A QUADRANGLE

with human perception. This is not so surprising when consider that the backprojection
computation does not merely estimnate planar orientation, but actually meaesures it under
some arbitrary constraint. Consistency of the backprojection computation with human
perception in these examples implies that assumptions about or preferences for symmetrical
figures is fundamental to shape perception in humans.

Why does a triangle lead to two solutions and a quadralateral to only one? Consider
the situation illustrated in Figure 13. The triangle ABC is the perspective projection of
an “ideal triangle” in projective space with parallel sides AC and BC. Point C is then a
vanishing point. The vanishing point of side AB must be separated from C by 90 degrees
on the Gaussian sphere, so it could be either point V| or point V5. These two choices
correspond to the two solutions for the orientation of the plane of ABC. (Two vanishing
points determine the vanishing line, and hence the orientation, of a plane.} Now suppose
we construct a rectangle in projective space from ABC by adding a line DE parallel to AB.
This can be done in two ways, depending on which vanishing point is chosen for AB (lines
D1 Ey and DoFE3, respectively). Therefore, if we interpret the image quadrangle ABDE,
as a rectangle in space we get the solution corresponding to vanishing point V;, but if
we interpret the image quadrangle ABD2;E; as a rectangle in space we get the solution
corresponding to vanishing point V.

4.3 Backprojection of Curvature

Consider the projection of a curved planar contour in space onto an image plane (as in
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Figure 4). The curvature measured at a contour point in space will be different, in general,
from the curvature measured at the corresponding point in the image. The difference will
depend both on the orientation of the plane in space and on the distance of the plane from
the origin.

Suppose a curvature measurement is made in the image. It can be represented by
two vectors: p = {p.,py, f}, a point on the image curve, and ¢ = {c., ¢y, f), the center of
curvature for that point. That is, p and ¢ determine a circle of curvature q(#) tangent
to the image-plane contour (Figure 14). The curvature x of the contour at the point of
tangency is the inverse of the radius of the circle of curvature, or k = ﬁ
The equation of the circle of curvature in the image is

cosfd ~—sinf O
q(f) = (sinﬂ cosd 0)(p - c)T +ec. (4.3.1)
0 0 1

Using the circle of curvature, we can define an interpretation cone that is a
generalization of the concept of an interpretation plane. The interpretation cone ¢ is
the oblique circular cone with its apex at the origin (the focal point) and its base g(#) in the
image plane (Figure 14). It can be represented mathematically as a ruled surface:

bz, 0) = zq(8) . (4.3.2)
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In fact, the entire image-plane contour describes a “complex cone.” Each interpretation
cone shares a line with this complex cone (the ray through the focal point and point p).
Along this line, the interpretation cone also has the same curvature as the complex cone.
(They are called “osculating surfaces.”)

To find the backprojected curvature for a pair of image-plane measurements p and c,
we intersect the interpretation cone of p and ¢ with planes tangent to the Gaussian sphere,
and then measure the curvature of the resulting contour. (Figure 13). One of these planes
is the Gaussian mapping of the plane of the contour in space, and therefore specifies the
orientation of the contour in space. Our object is to find it.

Because the correct backprojection plane is parallel to the plane of the contour in
spdce, the intersection of the correct backprojection plane and the complex cone is a contour
that is similar to the contour in space. The backprojected curvatures in the correct plane
will differ from the true curvatures on the contour in space only by a common scale factor.
This is not true, in general, for other planes. If, therefore, we know (or suspect) something
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about the distribution of curvatures on the contour in space, we can use this information

to select the correct plane.
The intersection of the backprojection plane ~{a, #) (Equation 4.1.1) with an inter-

pretation cone ¢ is given by

Ao, 8) - ¥(z,0) = z(2(e, B)- a6 =1 . (433)
We can solve for z: 1
z= o B ) (4.3.4)
Substituting z into (4.3.2), we get
___4a(@)
=S 8)-a0) ° (4.33)

Equation (4.3.5) describes an ellipse that is the intersection of the ~{a, #) plane and
the q(#) interpretation cone. The backprojected curvature x{a, 4) is the curvature of the
ellipse at #§ = 0. It may be possible, using the calculus of variations and differential
geometry, to solve (4.3.5) analytically. That is, for a collection of image-plane curvature
measurements {p;,c;}, find the values for @ and A that either minimize or maximize some
measure over {k{a, 8)}. In the meantime, we can solve the problem constructively, just as
in the preceding section. :

Let the first and second derivatives of an image-plane circle of curvature q(#) with
respect to # be denoted as as ' = dq(#)/d# and q” = d2q{#)/d#® . These can be found by
differentiating (4.3.1).

Similarly, let the first and second derivatives with respect to # of an ellipse e(8) in some
backprojection plane (a, #) be denoted as & = de(d)/d? and e” = d®e(6)/d® . These can
be found by differentiating {4.3.5), yielding

’ q q(v-q')
= - 436
“T e (- (4.3.8)
and q’ 2q'(v-q') + q(v-q") | 2q(7-q')?
e’ = - + {4.3.7)

(v-q) (v-aqp? (v-a)?
If e{f) were a “natural” representation of the ellipse, backprojected curvature could be
computed directly from (4.3.7) as |e”(0)|. {A natural representation of the ellipse e(s) is
one in which |de(s)/ds] = 1; or, intuitively, it is one in which the natural parameter s is
a measure of arc length.) But e(f) is not a natural representation, so the backprojected
curvature must be be computed with

_ |e'(0) x €"(0)

x(a, B
(@8 le(0)[®

(4.3.8)

See Lipschutz [17] for a derivation of (4.3.8).
Just as Equation (4.2.2) was used to generate constraint surfaces for angle magnitudes,
Equation (4.3.8) can be used to generate constraint surfaces for curvature. From a collection
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of image-plane curvature measurements, {p;, ¢;}, we generate constraint surfaces {x(a, 8)}.
Examples are shown in Figure 16. The solid ellipse in Figure 16a is the projection of some
circle in space, and the four broken circles represent curvature measurements along this
image contour. (Lines from the points of each measurement to the centers of curvature are
also shown.) Figure 16¢c shows the backprojected curvatures of each measurement.

The problem of interpreting the curvature results is somewhat more complex than for
the case of angle magnitude. Angle magnitudes are invariant under scaling, but curvatures
are not. For example, if the size of a rectangle increases the angles remain 90 degrees, but
if the size of a circle increases the curvature decreases as the inverse of the radius. We can
assign a definite physical meaning to a backprojected angle (e.g., it must be 90 degrees in
the backprojection plane). A backprojected curvature, however, is meaningless by itself,
and must be interpreted in relation to other backprojected curvatures. (Contours for the
correct backprojected curvature are shown in Figure 16¢, but this value was computed a
priori from the known spatial configuration.)

A reasonable heuristic assumption about a contour in space, in the absence of any
contradictory information, is that it is the most symmetric contour which is consistent with
the projection of the contour in the image. In the following discussion the principle will be
illustrated with circular contours. Since the curvature is constant on the circle in space,
and the backprojected curvatures in the solution plane (the plane tangent to the Gaussian
sphere and parallel to the circle in space) differ from the curvatures on the circle in space by
only a common scale factor, we can infer that the backprojected curvatures in the solution
plane must be equal. Fortunately, there is an easy way to compute this.

Suppose we have a set of scalar measurements {p; |1 = 1,n)} such that 0 < p; and
2t Pi=1. Then the entropy of the set {p;} is defined to be

H=- Z pilogpi . (4.3.9)

=1

It is well known that H is a maximum if and only if for all ¢, p; = L.
The curvature backprojection constraint surfaces satisfy the first condition on {p;},
but the sum is not in geperal upity. Let

n

S(a,8) = Y_ rila, ) (4.3.10)

i=1
be the sum of backprojected curvatures at some a, 3. Let
H'(a,8) = — 3 xa, B)log e, B) . (4.3.11)
=1

The curvature measurements can be normalized hy dividing each &{a, 8) by S(a, §), yielding

H(a, f) = F;;LL';)) —log S(a, 8) . (4.3.12)
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(e}

FIGURE 16 BACKPROJECTION OF CURVATURE (A CIRCLE): {a} image of the circte {the solid
ellipse) and four curvature measurements (the broken circles); (b) spatial configuration;
{c) backprojection of curvatures, showing contours for the soiution value.
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FIGURE 16 BACKPROJECTION OF CURVATURE (A CIRCLE) {Continued}: {d) entropy surface
for backprojected curvatures, showing contours for various entropy values and two
solutions with maximum entropy; {e} perspective plat of entropy surface,
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Equation (4.3.12) gives the entropy of a set of backprojected curvatures in the plane specified
by a and 3, and it can be used to convert a set of backprojection constraint surfaces into
a single entropy constraint surface.

In information theory, entropy is interpreted as the average information per symbol
[18]. Here we are interpreting it as a measure of symmetry. The relationship between the
two concepts ¢can be understood by thinking of the set of normalized scalar measurements
{ki(a, B)/S{a,B) | ¥ = 1,n} as a message. The language this message belongs to is the
set of all possible sets of measurements for a particular curve. If the curve is symmetric,
the message will tend to have repeated symbols. The maximum-entropy heuristic is then
simply an assumption that symmetric figures are more likely than asymmetric ones. It is a
very general heuristic, and could be used to interpret the results for backprojected angles
in the previous section. It could also be used to interpret backprojection of size, which, like
curvature, 1s another intrinsic metric property invariant under rotation and translation, but
not under projection or scaling.

Figure 16 illustrates the use of maximum entropy to select an interpretation for a set of
backprojected curvatures. The entropy surface resulting from the backprojected curvature
surfaces in Figure 16¢ is shown in Figure 16d, along with contours for several values, and
a perspective plot of the surface is shown in Figure 16e. Two solutions are found, one of
which corresponds to the known solution. Two solutions are found because an ellipse in
the image plane could be the projection of circles in planes of two different orientations in
space. One way to understand this result is to consider the oblique circular cone defined
by the origin (the apex) and the circle in space (the base). There are two ways to cut an
oblique circular cone into sets of parallel circular sections [19]. These correspond to the two
solutions.

5 Conclusions

The perspective camera model is crucial for the interpretation of real images. Although
parallel projection provides an adequate approximation when the included angle of view and
the range of depth in the scene are small, these conditions are never completely satisfied.
Perspective camera modeling entails more difficult mathematics than does orthography,
but it also provides more powerful aids to perception (e.g., the Necker cube example in
Section 1). In each of the problems we considered effective procedures that use constructive
computational techniques were presented.

In Section 3 Gaussian mapping was used to identify descriptive geometric properties
{the coincidence of parallel lines), and to infer metric properties (the orientation of groups
of parallel lines). The dual interpretation of vanishing points on the Gaussian sphere was
used to extend the analysis to finding vanishing lines.

Section 4 described the technique of backprojection of angles and curvatures. Once
again the Gaussian sphere was used to represent the space of possible interpretations.
Assumptions about the symmetry of figures in space, combined with the constraint surfaces
obtained through backprojection, resulted in quantitative measurement of the orientation
of the figures. A maximum-entropy heuristic was presented for interpreting the results of
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backprojected intrinsic metric properties.
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