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ABSTRACT

Interpolating smooth surfaces from boundary conditions 1is a
ublquitous problem in early visual processing. We describe a solution
for an important special case: the interpolation of surfaces that are
locally spherical or cylindrical from initial orientation values and
constraints on orlentatiom. The approach explolits an observation that
components of the unit normal wvary limearly on surfaces of uniform
curvature, which permits implementation using local parallel processes.
Experiments on spherical and cylindrical test cases have produced
essentially exact reconstructions, even when boundary values were
extremely sparse or only partially constrained. Results on cother test

cases seem in reasonable agreement with human perception.
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I INTRODUCT ION

Surface perception plays a fundamental role in early visual
processing, both 1in humans and machines {1, 2], An expiicit
representation of surface structure 1is directly necessary for many low-
level wvisual functions involved in applications such as terrain
modeling, navigation, and obstacle avoidance. It is also a prerequisite

for general-purpose, high-performance vision systems.

Information about surfaces comes from various sources: stereopsis,
motion parallax, texture gradient, shading, and contour shape, to name a
few. Information may be provided i1in terms of absolute or relative
values of orientation or range, depending upon the nature of the source.
Moreover, different techniques for extracting this information are valid
in different parts of the scene. For example, i1nferring shape from
shading 1s difficult on a highly textured surface, or in areas of
complex d1llumination, while stereo information i1s not available in
textureless areas nor areas visible only from one viewpoint. Thus, in
general, evidence is incomplete, may be quite sparse (as 1n line

drawings), and subject to nolse, which leads to ambiguity.

Any attempt to derive globally consistent surface descriptions from
these diverse local sources must therefore address the following basic

computational problems:

(1} interpolation of sparse data
(2) smoothing of noisy data

(3) deciding which techniques are applicable in which parts
of the scene

(4) integration of different types of data from different
sources

(5) deciding the location and physlcal type of boundaries

~In this paper we look mainly at the first problem, which arises in
virtually all theorles of low-level vision [1, 2]. We principally
address the problem of reconstructing a smooth surface, given a set of
initial orientation values, which may be sparse or only partially

constrained.



IT COMPUTATIONAL PRINCIPLES

We begin with a precise definition of the reconstruction problem in

terms of input and output.

The input is assumed to be in the form of sparse arrays, containing
local estimates of surface range and ordientation, in a viewer-centered
coordinate frame. In practice, the estimates may be clustered where the
information is obtaimable, such as along curves corresponding to surface
boundaries. In general, they are subject to error and may be only
partially constrained. For example, given a three-dimensional boundary,
the surface normals are only constrained to be orthogonal to the
boundary elements. We also assume that the location and nature of all
surface boundaries are known, since they give rise to discontinuities of
range or orientation. This Ilast condition is required in the current
implementation and is intended to be relaxed at a later date to

accommodate imperfect boundary detection.

The desired output 4is simply filled arrays of range and surface
orientation representing the most likely surfaces consistent with the
input data. Refinement of hypothesized surface discontinuities 1s also
desired. These output arrays are analogous to our intrinsic images [1]

or Marr’s 2.5D sketch [2].

For any given set of input data, an infinitude of possible surfaces
can be found to fit arbitrarily well. Which of these is best depends
upon assumptions about the nature of surfaces in the world and the image
formation process. Ad hoc smoothing and interpolation schemes which are
not rooted in these assumptions lead to incorrect results in simple
cases. For example, given a few points on the surface of a sphere,
iterative local averaging [3, 4] of range wvalues will not Tecover a

spherical surface.



A. Assumptions about Surfaces

The principal assumption we make about physical surfaces is that

range and orientation are continuous over them. We further assume that
each point on the surface i1is essentially dindistinguishable -from
neighboring points. Thus, in the absence of evidence to the contrary,
it follows that local surface characteristics must vary as smoothly as
possible and that the total wvariation is minimzl over the surface.
Range and orientation are both defined with reference to a viewer-
centered coordinate system, and so they cannot directly be the criteria
for evaluating the Intrinsic smoothness of hypothetical surfaces. The
simplest appropriate measures involve the rate of change of orientation
over the surface; principal curvatures (kl, k2), Gaussian (total)
curvature {(kl*k2), mean curvature (kl+k2), and variations upon them all
reflect this rate of change ([5]. Two reasonable definitions of
smoothness of a surface are uniformity of some appropriate measure of
curvature [6], or minimality of dntegrated squared curvature [7].
Uniformity can be defined as minimal variance or minimal integrated

magnitude of gradient.

The choice of a measure and how to employ it (e.g., minimize the
measure or 1its derivative) depends, in general, upon the nature of the
process that gave rise to the surface. TFor example, surfaces formed by
elastic membranes (e.g., soap films) are constrained to minimum energy
configurations characterized by minimum area and 2zero mean curvature
[8]3 surfaces formed by bending sheets of inelastic material {(e.g.,
paper or sheet metal) are characterized by zero Gaussian curvature [9];
surfaces formed by many machining operations (e.g., planes, cylinders,

and spheres) have constant principal curvatures.

We are not prepared, at this point, to maintain that any of these
measures 1is inherently superior, particularly because of various close
relationships that exist between them. We note, for example, that

minimizing the integrated sgquare of mean curvature is equivalent to



minimizing the sum of integrated squares of principal curvatures and the

integrated Gaussian curvature, G, as shown by:

2 2 2
ﬁkl +k2) .da =ﬁc1 .da +ﬁ<2 .da + Eﬁcl*kz.da ‘
(D
2 2
=fx1l .da + Jx2 .da + 2J6.da

We also note that making curvature uniform by minimizing its variance of
any measure over a surface is equivalent to wminimizing total squared
curvature, if the integral of curvature is constant. This follows from

the well-known fact that for any function, £ (x),

2 _
'/(.f-fbar) dx
(2)
2 2
=/f. «dx - [j;.dx] / DX

On any developable surface f£for which Gaussian curvature, G, 1is

Variance of £

everywhere =zero, and on a surface for which orientation is known
everywhere at its boundary (e.g., the boundary is extremal), the
integral of G is constant. Thus, for such surfaces, minimizing variance

of G and minimizing its integrated square are equivalent.

By d1itself, however, uniformity of Gaussian curvature is not
sufficiently constraining. Any developable surface is perfectly uniform
by this criterion, so considerable ambiguity remains, as is evident in
Figure 1, where all of the developable surfaces satisfy the same
boundary conditions. Thus a secondary constraint, such as uniformity of

mean curvature, is required to find the smoothest developable surface.

In this paper we focus on surfaces with reasonably uniform
curvature--surfaces that are locally spherical or cylindrical. We shall
demand exact reconstructions for spherical and cylindrical test cases
and dntuitively reasonable reconstructions for other smooth surfaces.
In particular, given surface orientations defined around a circular

outline, corresponding to the extremal boundary of a sphere, or along



two parallel lines, corresponding to the extremal boundary of a right
circular cylinder, we rTequire interpolation to wvyield the correct
spherical or ecylindrical surface, with uniform (Gaussian, mean, and
principal) curvature. These cases are important because they require
reconstructions that are symmetric in three dimensions and independent
of viewpoint. Many simple interpolation techniques fail this test,
producing surfaces that are too flat or too peaked. Given good
performance on the test cases, we can expect reasonable performance in

general.

IITI A RECONSTRUCTION ALGORITHM

Although in principle correct reconstruction for our test cases can
be obtained in many ways, the complexity of the interpolation process
depeﬁds critically upon the representation. For example, representing
surface orientation in terms of gradient space leads to difficulties
because gradient varies very nonlinearly across the image of a smooth
surface, becoming infinite at extremal boundaries. We shall now propose
an approach that leads to elegantly simple interpeolation for our test

cases.

A. Coordinate Frames

Given an 1image plane, we shall assume a right-handed Cartesian
coordinate system with x- and y- axes lying in the plane (see Figure 2}.
We also assume orthogonal projection in the direction of the z-axis.
Each image point (x,y) has an associated range, Z(x,y); the

corresponding scene point 1s thus specified by

( x, ¥, Z(x,y) )} *



Each image point also has an associated unit vector that specifies the

local surface orientation at the corresponding scene point:

N{x,y) = ( Nx(x,y), Ny(x,y), Nz(x,y) ) .

Since N is nmormal to the surface Z,

Nx/Nz - dz/dx

(3)

and Ny/Nz - dZ/dy .

(The derivatives dZ/dx and dZ/dy correspond to p and q when the surface

normal is represented in gradient space form, (p,q,-1).)

Differentiating equation (3), we obtain

2
d(Nx/Nz)/dy = -d Z/dy.dx
(4)
2
and d(Ny/Nz) /fdx = - d Z/dx.dy .
For a smooth surface, the terms on the right of (4) are equal, hence
d(Nx/Nz)/dy = d(Ny/Nz)/dx . (5)
Finally, since N is a unit vector,
2 2 2
Nx + Ny + Nz =1 . ' (6)

B. Semicircle

Let us begin by considering a two-dimensional version of surface
reconstruction. In TFigure 3 observe that the unit normal to a

semicircular surface cross section 1s everywhere aligned with the’



radius. It therefore follows that triangles OPQ and PST are similar,

and so
OP : 0Q : QP = PS : PT : TS . (7)

But wvector OP is the radius vector (x,z) and PS is the unit normal
vector (Nx,Nz). Moreover, the length OP is constant (equal to R), and

the length PS is also constant (equal to unity). Hence,

Nx = =x/R and Nz = z/R . _ (8)

C. Sphere

Now consider a three-dimensional spherical surface, as shown in
Figure 4. Again the radius and normal vectors are aligned, and so from

similar figures we have

Nx = x/R Ny = v/R and Nz = z/R . (%)

The point to note is that Nx and Ny are both linear functions of x
and y, and that Nz can readily be derived from Nx and Ny because vector

N has unit length.

D. Cylinder

The case of the right circular cylinder is only a little more
complex. In Figure 5 observe a cylinder of radius R centered upon a
line in the =x-y plane, inclined at an angle A to the x axis. Let d be

the distance of polnt (x,y,0) from the axis of the cylinder. Then

d = y.Cos A - x.8In A (10)
and z = R - d . (1)

Let Nd be the component of vector N parallel to the x—y plane; it

1s clearly perpendicular to the axis of the cylinder. Now, since a



cross section of the cylinder is analogous to our first, two-

dimensional, case,
Nd = d/R . (12)
Taking components of Nd parallel to the x and y axes,
Nx = Nd.S5in 4 and Ny = -Nd.Cos A . (13
Substituting in this equation for Nd, and then for d,

Nx

(y+.Cos A - x.Sin A).Sin A/R
(14)

and Ny -(y.Cos A - x.S5in A}.Cos A/R .
Observe that as for the sphere, Nx and Ny are linear functions of x

and y, and that Nz can be derived from Nx and Ny.

IV  INTERPOLATING SPHERICAL AND CYLINDRICAL SURFACES

From the preceding section, we can see that to interpolate values
for the normal vector, on spherical and cylindrical surfaces, between
points where its value is known, we need only determine the linear
functions that describe the components WNx and Ny. This can be done
simply from known values at any three noncollinear points. The
resulting functions can be used to predict precisely values of Nx and
Ny, and hence Nz also, over the entire surface. The vector field
produced 1is guaranteed to satisfy the integrability constraint of
Equation 5, as may be verified by substituting for Nx, Ny, and Nz from
Equations 9 or 14 (for the sphere or cylinder, respectively) and 6.
Finally, the orientation field can be integrated to recover range

values.

For the special test cases, because of the global nature of the
linearity of Nx and Ny, it is possible to interpolate between given

boundary values, treating Nx and Ny as essentially independent



variables. While in general the integrability constraint should not be
ignored, in practice, since complex surfaces can often be approximated
locally by spheres or cylinders, this constraint is weak and its

omission does not result in significant errors.

V A COMPUTATIONAL MODEL

We have implemented a model that uses parallel local opérations to
derive the orientation and range over a surface from boundary values.

It exploits the linearity and separability results for the test cases

and extends them to arbitrary smooth surfaces.

The overall system organization is a subset of the array stack
architecture first proposed in [1]. It consists conceptually of two
primary arrays, one for range and the other for surface normal vectors,
which are in registration with each other (and with the input image).
Values at each point within an array are constrained by local processes
that maintain smoothmess and by processes that operate between arrays to
maintain the differential/integral relationship. Im general, we must be
able to dinsert initial boundary values sparsely din both range and
orientation arrays and have the system relax to fi11l in consistent
intervening wvalues. At present we know how to handle the restricted

case where only orilentation is initially specified.

VI  THE INTERPOLATION PROCESS

At each point in the orientation array we can imagine a process
that is attempting to make the two observable components of the normal,
Nx and Ny, each vary as linearly as possible. The process locks at the
values of Nx (or Ny) in a small patch surrounding the point and attempts
to infer the linear function, f = ax + by + ¢, that best models HNx
locally. It then tries to relax the value for the point to reduce the

supposed error.



There are numerous ways to implement such a process, and we shall
describe some of the ones with which we have experimented. One of the
simplest 1is to perform a local least-squares fit, deriving the three
parameters a, b, and c. The function £ is then used to estimate a
corrected value for the central point. The least-squares fitting
process is equivalent te taking weiphted averages of the values in the

patch, using three different sets of weights:
z x Nx , Z v Nx , ZN}[ . (15)
i i i i

i i i i
The three parameters of £ are given by three linear combinaticns of

these three averapes.

If we are careful to use a symmetric patch with its origin at the
point in question, the sets of weights and the linear combinations are
particularly simple~-the three sums in equation (l15) correspond,

respectively, to
2 2
a*z X , b*z v o, c*z 1 . (16)

Equations (15) and (16) can be readily solved for a, b, and c¢; but note
that under the above assumptions, £(0,0)=¢c, so computation of a and b is
unnecessary for updating the central point, unless derivatives are also

of interest.
An alternative approach follows from the fact that a linear

function satisfies the equation

vif = 0 . (17)

Numerical solution of this equation, subject to boundary
conditions, is well known. The ¥2 operator may be discretely approximated

by the operator

-1
-1 4-1 .
-1
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Applying this operator at a point in the image leads to an equation of

the form

4Nx - Nx - Nx -~ Nx - Nx = 0 , (18)

and hence, rewriting,

Nx = (Nx +Nx +N8Nx +Nx)/4 . (19)
)] 1 2 3 4

Equation (19) 1is used in a relaxation process that iteratively
replaces the value of NX4 at each point by the average of its neighbors.
Although the underlying theory is different from least-squares fitting,
the two methods lead to essentially the same discrete numerical

implementatione.

The iterative 1local averaging approach works well in the interior
regions of a surface, but difficulties arise near surface boundaries
where orientation is permitted to be discontinuous. Care must be taken
to ensure that the patch wunder consideration does not fall across the
boundary, otherwise estimation of the parameters will be in error. On
the other hand, it is necessary to be able to estimate values right up
to the boundary, which may, for example, result from another surface

occluding the one which we are attempting to reconstruct.

The least-squares method 1s applicable to any shape of patch, which
we can simply truncate at the boundary. However, the linear combination
used to compute each parameter depends upon the particular shape, so we
must eilther precompute the coefficients for all possible patches (256
for a 3x3 area) or resort to inverting a 3x3 matrix to derive them for

each particular patch. Neither of these is attractive.

The above disadvantages can be overcome by decomposing the two-
dimensional f{fitting process 1into several one-dimensional fits. We do
this by considering a set of line segments passing through the central
point, as shown in Figure 6. Along each 1line we f£it a function,

f = ax + ¢, to the data values, and thus determine a corrected value for

11



the point. The independent estimates produced from the set of 1line
segments can then be averaged. If the line segments are each symmetric
about the central point, then the corrected central value is again
simply the average of the values along the line. The principal
advantage of the decomposition 1s that we can discard line segments
which overlap a boundary, and oftemn at least one is left to provide a
corrected value. We would prefer to use short symmetric line segments,
since they form a compact operator, but in order to get into cormers we
need also to resort to one-sided segments (which effectively extrapolate
the central value). We have implemented a scheme that uses the compact
symmetric operater when it can, and an asymmetric operator when this is

not possible (see Figure 7).

We have experimented with a rather different technique for coping
with boundary discontinuities, which is of interest because it involves
multiple interrelated arrays of information. For each component of the
orientation vector we introduce two auxiliary arrays containing
estimates of its gradient in the x and y directions. For surfaces of
uniform curvature, such as the sphere and cylinder, these gradients will
be constant over the surface; and for others, we assume they will be
slowly varying. To reconstruct the components of the normal, we first
compute 1its derivatives, then locally average the derivatives, and

finally reintegrate them to obtain updated orientation estimates.

Derivatives at a point are estimated by considering line segments
through the point parallel to the axes. We again fit a linear function-
-but now we record its slope, rather than its intercept, and imsert it
in the appropriate gradient array. In the interior of a region we may
use a symmetric line segment, and near boundaries, a one-sided segment,
as before. The gradient arrays are smoothed by an operator that forms a
weighted average over a patch, which may easily be truncated 'at a
boundary. (To form the average over an arbitrarily-shaped patech, it is
only mnecessary to compute the sum of weighted values of points within
the patch and the sum of the weights, and then divide the former by the

latter.) A corrected orientation value can hbe computed from a

12



neighboring wvalue by adding (or subtracting) the appropriate gradient.
Each neighboring point not separated by a boundary produces such an

estimate, and all the estimates are averaged.

VII ESTIMATION OF SURFACE RANGE

The process of integrating orientation wvalues to obtain estimates
of range Z is very similar to that used in reintegrating orientation
gradients. We again use a relaxation technique, and iteratively compute
estimates for 2 .from neighboring wvalues and the local surface
orlentation. Here we need orientation expressed as dZ/dx and dZ/dy,
which are obtained from Nx and Ny by Equation 3. At least one absolute
value of Z must be provided to serve as a constant of integration.
Providing more than one initial Z value constrains the surface to pass
through the specified poilnts; but since the inverse path from Z to N has
not yet been implemented, the resulting range surface is not guaranteed

to be consistent with the orientations.

VIII EXPERIMENTAL RESULTS

An  dinteractive system was implemented in MATNSAIL [10] to
experiment with and evaluate the various interpolation algorithms
discussed above. This system includes facilities for generating quadric
surface test cases, selecting interpolation options, and plotting error

distributions.

A. Test Cases

How well do each of the above ipterpolation techniques reconstruct
the test surfaces? To answer this, we performed a series of experiments
in which the correct values of Nx and Ny were fixed along the extremal
boundaries of a sphere or cylinder, as shown in Figure 8. The surface

orientations reconstructed from these boundary conditions were compared

13



with those of ideal spherical or cylindrical surfaces generated

énalytically.

The first set of experiments involved a sphere of radius 7 centered
in a 17 x 17 interpolation array. We deliberately used a coarse grid to
test the accuracy of the reconstruction under difficult conditions. (A
coarse grid also has the experimental advantage of minimizing the number
of iterations needed for convergence.) Correct values for Nx and Ny
were fixed at points 1in the array falling just inside the c¢ircular
extremal boundary of the sphere. Table I summarizes the results for

this test case, using various interpolation operators.

The results on the spherical test case are almost uniformly good.
In all cases, except gradient smoothing, the maximum absolute error is
below one percent after 100 iteraticens (-1.0 < Nx, Ny < 1.0). On any
cross section through the sphere, the maximum error occurs approximately
a quarter of the way in from both boundary points, the error being zero
at the boundary points and also on the symmetry axis half way between
them. We conclude that 8-connected, uniformly weighted averaging and 8-
way linear interpolation/extrapolation are superior in terms of speed of
convergence, with the Jlinear operator preferred because of its
advantages at boundaries and corners. These conclusions generalize to
all of the test cases we have studied to date. Thus, for brevity, the
experimental results that follow are reported only for the 8-way linear

operator.

The second set of experiments invelved a cyliomder of radius 6,
centered in an 8 x 8 interpolation array. Again, correct values for Nx
and Ny were fixed at points in the arréy falling just inside the
parallel lines representing the extremal boundaries of the c¢ylinder.
With the cylinder oriented parallel ¢to the X or Y axis, the maximpum
absolute error in Nx or Ny after 50 iterations was .0l8 and the RMS
average error .0l . After 100 iterations, the absolute error dropped to
0004 and the RMS average to .0002. When the major axis of the cylinder
was inclined 60 degrees to the X-axis, the errors look much higher: .12
absolute and .03 RMS after 50 iteratioms; .108 absolute and .03 RMS

14



after 100 iterations; .09 absolute and .02 RMS after 300 iterations.
However, the errorful orientations were concentrated solely in the upper
right and 1lower left corners of the array, where the cylinder boundary
is effectively occluded by the array edge. Extrapolation of values from
the central region, where the orientations are very accurate, into these
partially occluded corners accounts for the slow rate of convergence.
After 1,000 iterations, however, orientations are highly accurate

throughout the array.

B. Qther Smooth Surfaces

Given that orientations for uniformly curved surfaces can be
accurately reconstructed, the obvious next questjon is how well the
algorithms perform on other surfaces for which curvature is not globally
uniform. A simple case to consider is that of an elliptical boundary.
However, we immediately run into the problem of what is to be taken as
the "correct" reconstruction. When people are asked what solid surface
they perceive, they usually report either an elongated cbject or a squat
object, roughly corresponding to a solid of revolution about the major
or minor axis, respectively. The elongated object is preferred, and one
can argue that it is wmore plausible on the grounds of general wviewpoint
(a fat, squat object looks elongated only from a narrow range of
viewpoints). When presented with initial orientations for an elliptical
extremal boundary (Figure 9), our alpgorithms reconstruct an elongated
cbject, with approximately uniform curvature about the major axis.
They, 1in effect, reconstruct a gemneralized cylinder [l1], but without
explicitly invoking processes to find the axis of symmetry or matching

the oppbsite boundaries.

In a representative experiment, initial values for Nx and Ny were
fixed inside an elliptic-shaped extremal boundary (major axis 153, minor
axis 5). The reconstructed orientations were then compared with the
orientations of the solid of revoluticon generated when the ellipse is
rotated about its major axis. The resulting errors after 50 iterations
were: for Nx, .02 maximum absolute error and .006 average RMS5 error;

and for Ny, .005 maximum absolute and .002 RMS.
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C. Oceluding Boundaries

We also wish to know how well the reconstruction process performs
when the orientation is not known at all boundary points. In
particular, when the surface of interest is occluded by another object,
the oceluding boundary provides no constraints. In such cases, the
orlentation at the boundary must be inferred from that of neighboring
points, just 1like at any other interior polnts of the surface. The 8-
way linear operator will correctly handle these situations, since it
takes care to avold interpolating across boundaries. We take advantage
of this ability by treating the borders of the orientation array as
occluding boundaries, so that we may deal with objects which extend out
of the image. For example, spherical surface orientations were
correctly recovered from the partially visible boundary shown in Figure
10. The case of the tilted c¢ylinder discussed above is a second

example.

Experiments with occluded boundaries ralsed the question of just
how 1little boundary information suffices to effect recovery. We
experimented with a limiting case 1n which we attempted to reconstruct
surface orientation of a sphere from just four initial boundary values
at the cormers of the arrays. This corresponds to the image of a large
sphere whose boundary circumscribes the square array (see Figure 11).
The resulting surface orientations produced from these extremely sparse
initial conditions were as accurate as when all the Yboundary
orientations are given, but more iteratlons were required. For example,
fixing the Nx and Ny orientations at the corners of a 17 x 17 square
array to the wvalues for a sphere of radius 12, the maximum absolute
error of the reconstructed interior orientations after 400 iteratiloms

was less than .005.

16



D. Qualitative Boundary Conditions

In all the above experiments, boundary conditions were provided by
specifying exact orientations at all unoccluded points along extremal
boundaries. The values of Nx and Ny at these points were initially
inserted in the arrays and were held fixed through all iterations. 1In a
complete visual system it is necessary to derive these values from the
shape of extremal boundaries in the image. 1In principle, this can be
done easily, since the surface normal at each point is constrained to be
orthogonal to both the tangent to the boundary and to the line of sight.
{For orthogonal projection, the normal must thus be parallel to the
image plane.) In a spatially quantized dimage, the accurate
determination of tangent is difficult, particularly when the object 1s

not very large compared to the quantization grid.

One way to overcome this problem is to introduce the notion of
qualitative, partially-constraining boundary conditions. We can, for
example, constrain the surface normals along a quantized extremal
boundary to be approximately parallel to the image plane and point
outward across the boundary. We then rely on the iterative process to
reconstruct exact values for the normals at points on the boundary,
treating them just like interior points. To implement this approach, we
introduce a step which at each iteration checks the orientation at
boundary points. For each boundary element adjacent to the point, we
check that the surface normal has a component directed outward across
it. If it does not, the value of Nx or Ny is modified appropriately.
The wvalue of Nz is also checked to be c¢lose to zero, and vector N is
normalized to ensure it remains a unit vector. This process was applied
to the spherical, cylindrical, and elliptical test cases, and was found
to yield orientation values accurate to 10 percent, for both interior
and boundary points, after only 100 diterations. The principal
limitation onm accuracy appears to be the coarse quantization grid being

used.
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IX DISCUSSION

The ability to handle sparse or partially constrained dinitial
conditions is important in a reconstruction algorithm because 6ften
nothing else 1s obtainable. Line drawing interpretation is amn obvious
example since surface orientation is constrained only along boundaries.
In grey-level imagery, photometric constraints yield families of normals
at most points on a smooth surface, not unique values. Even direct
range measurement, as provided by stereo, motion parallax, and laser

range-finders, may result in data that are nolsy or missing im places.

Experimentation is continuing to determine how  well the
reconstruction technique performs, both in absolute terms and relative
to human perception, for a variety of test surfaces. Of particular
interest 1is whether the assumption of loczlly uniform curvature is an
adequate basis for reconstruction. Simultanecusly, we are investigating
alternative interpolation operators that reflect measures of curvature

appropriate to different surface types, such as soap films.

We are also extending the program to deal with a wider ramnge of
reconstruction problems, including, specifically, reconstruction from
noisy range values and from partially constrained normals along
intersection edges (which are constrained only to be orthogonal to a
three-dimensional line element). These extensions will require properly
integrating surface orientation and range (which may require making the
integrability c¢ondition of Equation 5 explicit), and smoothing noisy,
and possibly incomsistent, data. Ultimately, a general vislon system
will need the ability to add and delete hypothesized discontinuities so

that surfaces and boundaries can be simultaneously refined.

Although the reconstruction oprocess we have described is
conceptually parallel, there are inherent limitations on how fast
information can propagate across the image. Thus, convergence speed is
of practical concern. Using larger operators 1increases the effective

velocity of propagation but can impair precision where small features
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are involved. What seems to be required is a scheme that combines
multiple sizes of operators in a hierarchical organization, where
initial estimates provided by the larger operators are refined by the
smaller ones. We are studying a number of theoretical questions raised
by a hierarchical approach to surface reconstruction, including the
effects of operator size on speed and accuracy, and the key question of

how information propagates between levels of the hierarchy.

X  CONCLUSION

Interpolating smooth surfaces from boundary conditiens is a
ubiquitous problem in early visual processing [l, 2, 7, 11-18]. We have
described a solution for an important special case: the interpolation
of surfaces that are locally spherical or cylindrical, given initial
orientation wvalues and constraints on orientation. We developed
parallel computational techniques for reconstruction of such surfaces,
exploiting the observation that, since curvature is uniform, the

components of the unit normal vary linearly across the image.

Reconstruction experiments on spherical and cylindrical test cases
have produced essentially exact reconstructions, even when boundary
values were extremely sparse or only partially constrained. Results on

other test cases seem in reasonable agreement with human perception.
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TABLE I - INTERPOLATION RESULTS FOR SPHERICAL TEST CASE

QOperator # Iterations Max. Abs. Error Average (RMS3) error
(NK: NY) (Nx, N}’)
Uniformly Weighted 50 .0165 0075
Average over 4- 100 0004 .0002
connected 3x3 patch
Uniformly Weighted 50 .0007 .0003
Average over 8- 100 .0000006 .0000003
connected 3x3 patch
y2 over a 4- 50 .006 .003
connected 3x3 patch 100 00006 00003
8—way linear interpolation/ 50 004 .002
extrapolation (see Figure 6) 100 .00002 .00001
4-—way linear interpolation/ 50 .03 .01
extrapolation (just parallel 100 .001 .0007
to x and y axes)
Gradient smoothing over a 50 -40 +19
4-comnected 3x3 patch 100 226 .12
200 .10 .05
Gradient smoothing over an 50 .13 .05
8—connected 3x3 patch 100 .03 .01
200 000 .0005

— - - —
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