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ABSTRACT

A map-guided approach to interpretation of
remotely sensed imagery is described, with emphasis
on applications involving continuous monitoring of
predetermined ground sites. Geometric
correspondence between a sensed image and a
symbolic reference map is established in an initial
stage of processing by adjusting parameters of a
sensor model so that image features predicted from
the map optimally wmatch corresponding features
extracted from the sensed image. TInformation in
the map is then used to constrain where to look in
an image and what to look for. With such
constraints, previously intractable remote sensing
tasks can become feasible, even easy, to automate.
Faur illustrative examples are given, involving the
monitoring of reservoirs, roads, railroad yards,
and harbors.

INTRODUCTION

Aerial and satellite imagery provide an
economical means of gathering large amounts of data
on the earth”s resources and environment. However,
except in the area of survey tasks such as crop
inventories and land use that can be performed with
multispectral analysis, there are few economically
feasible techniques for automatically extracting
the useful information from such imagery.

This paper describes some initial experiments in
automating an lmportant class of remote sensing
tasks that involve continuous monitoring or
tracking of predefined targets. Monitoring tasks
are concerned with detecting anomalous conditions
at specified peographic locations. Examples
include monitering particular industrial plants for
thermal or chemical polluticn, oil storage
facilities for spillage, forests for fires, and
reservoirs for water quality. Tracking is a
variant of monitoring, concerned with determining
the current geographic location of a slowly moving
object or boundary whose position is known
approximately from a previous determination.
Examples include tracking lcebergs, the spreading
boundaries of a known oil spill, the perimeter of
reservoirs (to assess changes in water volume),
coastal shorelines {(to assess erosion), and the
width of rivers (to assess flood threat). For such
tasks, an automated system 1s needed that can
extract updated information as new imagery arrives
and distribute 1t directly to interested users.
Multispectral analysis, by itself, {s lnadequate
because spatlal structure and context are
significant factors in interpretation.
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A major problem in automating such tasks 1is
laocating the designated sites in sensed ilmagery,
that may be taken from arbitrary viewpoints. Once
the image locations of a site are known, many
monitoring tasks are reduced to straightforward
detection or classification problems. For example,
once the precise pixel location of a river passing
beside a manufacturing plant is known, pollution
levels in the plant‘s effluents can, in principle,
be determined by using conventional multispectral
analysis. Similarly, forest fires can be detected
by looking for infrared hot spots in known forested
areas. Tracking slowly changing boundaries, such
as the perimeters of water bodies, is also
tremendously simplified by knowledge of the
boundaries” approximate prior location. Boundary
detection and linking can then be accomplished
using simple edge operators to verlfy precise edge
locations along the predicted path.

To locate monitoring sites in an arbitrary
image, we use a map in conjunction with an analytic
camera model. The camera maodel is first calibrated
in terms of known landmarks and then used to
transform between map coordinates of designated
sites and their corresponding image coordinates.

By constraining where to look in an image and what
to look for, a map and camera model greatly
simplify the extraction of relevant information in
complex aerial scenes.

MAP-IMAGE CORRESPONDENCE

A fundamental requirement in exploiting a map is
to establish the geometric correspondence between
lmage and map coordinates, which then allows known
ground sites to be located in the image. Ground
locations have conventionally been determined by
warping the current sensed image into
correspandence with a reference image, based on a
large number of local correlations [1l]. The
reference image serves as a map indicating
locations.in the sensed image that correspond ta
previously determined points of interest in the
reference image. The process is computationally
expensive and limited to cases where the reference
and sensed images were obtained under similar
viewing conditions.

To overcome these limitations, we abandan the
use of a reference Image and rely instead on a
symbolic reference map containing explicit ground
coordinates and elevations for all monitoring sites
as well as landmarks (roads, coastlines, and so
forth). The geometric correspondence between this
map and the sensed image is established by
calibrating an analytic camera model.

Reprinted from PATTERN RECOGNITION AND
IMAGE PROCESSING 1979



A typical camera model [2] has between five and
seven parameters that specify focal length and the
location and orientation of the camera (in map
coordinates) when the image was taken. Once these
parameters are known, the image coordinates
corresponding to any map location can be determined
precisely with straightforward trigonometry. (The
camera location and map location jointly define a
ray in space. The intersection of this ray with
the image plane ylelds the desired image
coordinates.) Since image coordinates are
determined for the original unrectified image,
expensive image warping is unnecessary.

Map Data Base

The map data base used in this research is
essentlally a compact three-dimensional description
of the location and shapes of major landmarks and
monitering sites. Point features, such as road
intersections, small builldings, and many monitoring
sites, are represented by their three-dimensional
world coordinates and {(where applicable)} a list of
characteristics to be monitored. Linear landmarks,
such as roads and coastlines, are similarly
represented as curve fragments with assoclated
ordered lists of world coordinates. Ground
coordinateg are expressed In a standard reference
frame, the UTM grid, with elevations expressed in
meters above sea level. The data base can be
accessed by location (e.g., What is at x, y, z?),
by entity name (e.g., What 1is the location of
factory x?), and by entity type (e.g., What
factories are there?). For further details on map
representation, the reader 1s directed to Reference
[3].

Qur experimental domain throughout this project
was the San Francisco Bay Area, as depicted in
Figure l. Figure 2 is a computer display of a
simple map data base of this area. The map
contains a major landmark (the coastline) and a
number of representative monitoring sites, each
designated by a cross. Longltude and latitude data
for the on-line map were obtained interactively
from a USGS map, using a digitizing table.
Elevations were read off the wap and entered
manually via keyboard. Although displayed as a
continuous trace, the coastline, in fact, 1is
internally represented by just 100 discrete sample
cogordinates.

Several map data bases, each highlighting
specific features (e.g., roads, railroad yards,
plers) were used in experiments described in this
report. These maps have not yet been integrated
inte a monolithic data base, although all software
necessary to do soc exists {(Ref. [3]). '

Camera Calibration

The traditional method of calibrating a camera
model requires two stages: First, a number of known
landmarks are independently located in the image;
and second, the camera parameters are computed from
the pairs of corresponding world and image
locations, by solving an over-constrained set of
equations [2, 4].

The failings of the traditional method stem from
the first stage: Landmarks are located im the
sensed image by correlating with fragments of
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reference images. This requires reference images
taken under the same viewing conditions as the
current sensed image. Moreover, since landmarks
are found individually, using only very local
context (e.gs, a small patch of surrounding image)
and with no mutual constraints, false matches
commonly occur. (The restriction to small features
1s mandated by the high cost of area correlation
and by the fact that large lmage features correlate
poorly over small changes in viewpoint.)

A new calibration procedure, called "Parametric
Correspondence", was developed that overcomes these
failings by integrating the landmark-matching and
parameter solving steps and by using global shape
rather than tonal appearance as the basis for
matching. In this procedure, initial estimates of
camera locatlon and orientation are obtained on the
basis of available navigational data. The camera
model .is then used to predict the appearance of
landmarks in an image for this assumed viewpoint.
Calibration is achieved by adjusting the camera
parameters {(i.e., the assumed viewpoint) until the
predicted appearances of the landmarks optimally
match a symbolic description extracted from the
image.

A detailed description of parametric
correspondence 1is given in Reference [3]. However,
the ‘essential ideas can be quickly grasped through
an example. Figures 3-6 illustrate the process of
establishing correspondence between the symbolic
map of Figure 2 and the sensed image of Figure 1,
using the coastline as a landmark.

First, a simple edge follower was used to trace
the high contrast cocastline in Figure 1, producing
the edge image shown in Figure 3. Next, using
initial camera parameter values (estimated manually
from navigational data provided with the image),
the ceoastline coordinates in the map were
transformed into corresponding image coordinates
and overlaid on the extracted edge image
(Figure 4). The average mean square distance
between the extracted coastline and that predicted
on the basis of the assumed viewpoint was seven
pixels. A straightforward hill-climbing algorithm
then adjusted the camera pardmeters to minimize
this average distance. Figure 5 shows the final
state, 1n which the average distance has been
reduced to 0.8 pixel.

Using the fipal parameter values, 1t is now
possible to determine within a pilxel the precise
image locations corresponding to each monitoring
site in the map. Only three sites are actually
vigible in this image: two oll depots and a
coffee factory. These are shown in Figure 6,
superimposed on the original image. The apparent
misregistration in Figure 5 is actually the result
of errors in contour extraction (Figure 3); despite
such errors, the global matching criteria is still
able to achieve subpixel accuracy of the projected
map points. Figures 7 and 8 provide two additicnal
examples, illustrating the ability of the
calibration process to place the mzp in Figure 2
into correspondence with imagery taken from
arbitrary viewpoints.

Parametric correspondence has some significant
advantages over conventional apptoaches to camera



calibration that depend on reference imagery.
Computational requirements (beth processing and
nemory) are sharply reduced because a symbolic map
typically contains orders of magnitude less data
than a reference image. Invariance to viewing
conditions {viewpoint, spectral band, sun angle
etc.) 1s significantly {mproved because maps
describe global shape characteristics that are
relatively immune to seasonal and diurnal variatiom
and to ambiguous matches. Moreover, since shape
information is projected through the camera model
before matching, distortions due to viewpolnt are
no longer a problem. A detailed discussion of
these advantages appears in Reference [3].

MAP-GUIDED MONITORING

Having placed an image into parametric
correspondence with a three-dimensional map, it is
possible to predict the image coordinates of any
feature in the map and, conversely, to predict the
map features corresponding to any point in the
image. Given this capability, many basic
monitoring tasks cf the type discussed in the
introduction can be automated using straightforward
image-analysis techniques. In Figure 8, for
example, one could, in principle, test the pixels
located in reservolrs for water quality, the pixels
located in shipping channels beside oil depots for
evidence of spillage, the pixel located at the
industrial plant for evidence of particulates, and
the pixel located at the Sacramento River Delta for
evidence of salt water intrusion.

These examples fall within the competence of
traditional multispectral analysis programs which
uniformly process all pixels in an image and
produce a statistical result. For such tasks, the
primary advantages of map guildance are an enormous
reduction in the number of pixels to be processed,
potentially enhanced discrimination (resulting from
the ability to optimize classificatiom c¢riteria at
each site), and geographically specific results
that are generally more useful than statistical
summaries. In more complex interpretation tasks,
where spatial structure and context are important,
the benefits of map guidance are more profcund.
Four representative experiments will now be
described.

Reservoir Monitoring

Consider first the problem of moniltoring the
water level of a reservoir. Water level, of
course, 1s not directly measurable from an aerial
image; some additiomnal informatlon or constraint is
needed. The required information can be obtained
from a terrain map in registration with the image.

As the water level rises and falls, the outline
of the reservolr expands and contracts im a
predictable way to follow the elevation contours of
the terrain (see Figure 9)}. Thus water level can
be determined by extracting the outlime of the
reservolr in the image and determining its location
with respect to known elevation centours. Knowlng
the water level, one can then integrate over the
corresponding reglon ef flooded terrain to
determine the volume of stored water. (The
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function relating water volume and water level is
monotonic and can be tabulated Eor each reserveir.)

Since the surface of a reservoir is flat, the
water level can be determined without a complete
outline; the image coerdinates of even a single
point on the reservolr boundary would, in
principle, suffice. In practice, elevations can be
determined for a number of boundary poimnts and
averaged together to compensate for statistical
uncertalnties in estimating the precise image
coordinates of each boundary point. (Concentrating
the boundary samples where terrain slope 1s most
gradual maximizes the sensitivity of edge location
to changes in water level. See Figure 9(b).) The
resulting distributlon of elevations, which should
be tightly clustered, provides a check on the
quality of the map-image correspondence.

A reservoir monitoring procedure incorporating
these ideas was lmplemented. First, geometric
correspondence was established between the sensed
image and a contour map of the terrain using the
techniques described in the previcus section.
Correspondence was based on geographically stable
landmarks unrelated to reservoir boundaries.

Second, the image coordinates of selected points
on the reservoir boundary were determined to
subpixel precision by analyzing the gradient of
intensity along a line in the image perpendicular
to the elevation contours at each point. The
analysis was restricted to a contour Interval
bracketing the water level observed in a previously
analyzed image. This constraint not only reduced
computation but also served as an effective
contextual filter for discriminating irrelevant
intensity discontinuities, arlsing, for example,
from other nearby bodies of water.

Third, the water level correspouding to each
detected boundary pelnt was obtained by linearly
interpolating the elevations of the terrain
contours used to delimit boundary detection.

Finally, the water volume corresponding to the
average water level was obtained by table lookup.

Steps (2)-{4) are repeated for each reservoir in
an image containing more than one.

The above procedure was tested on a set of
images of Brienes reservoir, the rightmost of the
twin reservoirs in the upper center of Figure 8.
Figure 10 is a higher resclution image of the
Briones shoreline with elevation contours
superimposed. The lines in Figure 1l indicate
selected perpendiculars between the 500 and 550
elevation contouts where the terrain slope is mest
gradual. The location of the land/water boundary
along each of these lines was assigned to the point
of maximal intensity discontinuity, as shown in
Figure 12.

The water level corresponding to each boundary
point was computed by interpclation. The mean
water level In the present image of Briones, based
on interpolating 170 boundary points, was
determined to be 523.8 feet. This is within a foot
of the ground-truth figure provided by the
reservolr operator and corresponds to about a one
percent error in volume. The accuracy of this
approach 1s limited by the accuracy of the terrain



map, the quality of map-image correspondence, and
the precision with which the land/water interface
can be located in an image. These factors are
discussed further in Reference [6].

Reservolr monitoring 1s an instance of a generic
class of tasks in which 1t is necessary to
determine the precise path through an image of a
linear feature (e.g., shoreline, river, road) whose
location and shape are known, perhaps only
approximately, Erom a map. Maps can be used in
such tasks to facilitate both the process of
locating the boundary in the image and the
subsequent interpretation of boundary
characteristies in terms meaningful to an
application {e.g., interpreting image coordinates
as water levels). Applications of map-guided
boundary verification might include monitoring
river widths (and heights)} for flood threat,
monitoring ceastlines for erosion, and monitoring
river deltas for excessive silt deposit. Unlike
reservolr monitoring, extensive manual ground-based
monitoring is not economically feasible in these
applications.

Road Monitoring

Locating known roads in an aerial image is a
prerequisite for a variety of applications ranging
from vehicle monitoring (7] to map updating.
Finding roads is somewhat different from finding
reservoir boundaries in that a thin linear feature
is involved and a continuous path 1s needed.

Conventional sequential line-tracking algorithms
are unsultable because they are easily sidetracked
whenever elther the local evidence for a line is
weak or other lines are present in close proximity.
These contingencles arise frequently in aerial
imagery because roads are usually clustered into
networks and pass regularly through heavily
textured areas where one or even both edges may be
locally obscured.

To overcome these problems, a line-tracing
algorithm was developed that uses a rough
prediction of the path of a road, provided by a
map, as a gulde in determining the precise path.
The map information constrains the analysis to
relevant parts of the imzge and is used to bridge
gaps where local pictorial evidence is weak or
ambiguous. The algorithm operates by applying
specially developed line and edge detectors in the
vicinity of the predicted road path and then uses a
parallel dynamic programming algorithm to find a
globally optimal path through the local feature
values. Further technical details can be found in
Ref . IB]-

Figures 13-16 show the tracing algorithm in
action. TFigure 13 i{s an aerial image of a rural
area taken for a U. 5. Geolegical Survey mapping
project. The portion shown has been digitized into
256 x 256 pixels {representing 20-foot squares on
the ground), each having one of 256 brightness
levels. Overlaid on the image is a road path
predicted from a map with standard (50-foot)
cartographic accuracy. A local line detector was
applied at all image points within a band centered
on this guideline. The system then found the
lowest-cost path from the start of the guideline to
the finish, where the incremental path cost between
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adjacent image points was an inverse function of
the local line detector score. The path so traced
is displayed in Figure l4. Figure 15 shows the
result of tracing many of the roads visible in the
image. WNote that the program has traced the center
line of the wide road and that it has performed
extremely well in areas 1in which the road is faint
or partially obscured, such as at the lower left
and the upper right of the image. Figure 16 shows
the results of gulded road tracing in an urban area
containing many intersecting streets. The tracings
have been fitted with straight line segments to
cartographic accuracy. The results here, too, are
extremely good.

Although we have performed only a limited number
of experiments with guided tracing, the results
have been most encouraging. The system is capable
of tracing linear features that are hard even for a
human to discern through a wide range of terrain
types and environments. It needs relatively little
guidance; but the more guidance it is given, the
more reliable and efficient 1s its performance. It
can accept guldance interactively (via light pen),
as well as from preexisting maps. Interactive
guidance is useful in map updating, allowing new
roads to be carefully traced on the basis of a
quick, light pen sketch.

Map-gulded tracing of linear features is a
requirement that arises in a varlety of remote
sensing tasks, for example, in the monitoring of
rivers and rallroad lines. Given suitable
operators for detecting local evidence, the optimal
path algorithm used to obtain a continuous road
track should also work equally well in these other
line tracing applicatioms.

Cbject Verification Tasks

Railroad and highway monitoring are two examples
of a generic class of remote sensing applications
we shall call object verification tasks. Such
tasks entail the detection, mensuration, or
counting of specified entities whose possible
locations and orientations in the image can be
constrained by a map. The general approach is to
determine the image coordinates for a reference
structure (such as a railroad track, ship berth, or
road) and then apply special-purpose operators to
detect objects of interest (such as boxcars, ships,
or cars). For example, we have implemented a
boxcar-counting routine that analyzes the Intensity
profiles along predicted paths of railroad krack in
an image, looking for possible ends of trains and
gaps between cars. Such events usually appear as
step changes in brightness and dark, transverse
lines, respectively. Hypothesized gaps and ends
are interpreted in the context of knowledge about
trains (e.g., standard car lengths and allowed
inter—car gap widths) and about the characteristics
of empty track to prune artifacts and improve the
overall rellability of interpretation. The program
then reports the number of cars classified by
length [8]. We have also implemented a ship-—
monitoring program that analyzes intensity patterns
alongside predicted berth locations in a harbor to
distinguish ships from water. (Water
characteristically has a low density of edges,
f2].) Railrcad monitoring is illustrated in Figure
17 and ship monitoring in Figure 18.




The key to automating both tasks Iies in using a
map to define a highly constrained context (i.e.,

area of the image) 1in which relatively simple tests
can be used to distinguilsh objects of interest.
Knowing the locations of tracks, for example,
reduces the task of boxcar counting to a one-
dimensional, template-matching problem, while
knowing the locations ¢f berths reduces ship
finding to a trivial discrimination task. We
believe that boxcar counting and ship monitoring
are representative of a broad class of object-
verification tasks that includes counting planes on
runways and cars on highways, for which simllar
monitoring programs can be develeped.

CONCLUDING COMMENTS

This paper has described a map-guilded approach
for automating an important class of remcte sensing
tasks involving long-term monitoring of predefined
ground sites. The key idea 1s the use of a map in
conjunction with an analytic camera model to
constrain where to look in an image and what to
look for. With map-guidance, many previously
intractable monitoring tasks become feasible, in
Some cases even easy, Lo automate.

The map-guided apprcach has some potentially
significant advantages over the exhaustive
statistical style of processing currently used in
applications such as crop classification. First,
processing can be focused on the relevant portions
of an image, sharply reducing computational costs
and making feasible the use of sophisticated forms
of analysis (involving texture, spatial patterns,
and the like) that would be utterly impractical to
apply at each pixel (16 millieon in a typical 4000 x
4000 LANDSAT image). Second, analysis routines can
be simplified and made more reliable by expleoiting
knowledge of what to look for at each site. For
example, classification criteria can be optimally
tuned to discriminate the few relevant alternatives
at each location. Finally, a map—guided analysis
yilelds geographically specific results that are
much more useful than conventional statistical
summaries: Knowing that a particular factory is
emitting excessive 330, is wmuch more useful, for
example, than knowing that 1 percent of 16 million
pixels are polluted.

The practicality of automating monitoring tasks
using the approach we have described depends, of
course, on the availability of high resclution
satellite imagery and satellite sensors that can be
modeled analytically. Assuming these are
forthcoming, the payoffs from automated monitoring
could be substantial. We envisage systems that
would extract updated information automatically as
new imagery arrived and distribute it to interested
users con a subscription basis. Initially, the
analysis could be performed at existing ground-
based data-processing facllities with only modest
increases in computational load. Ultimately, the
information could be extracted on-board satellites
dedicated to specific monitoring functions and
relayed direct to users via communication

satellites. On-board processing appears feasible
because of the dramatic reductions in computation
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made possible by the concept of map-guided image
analysis.

For routine monitoring tasks with large user
constituencies, centralized information extraction
should significantly reduce the overheads of
storing, retrieving, and distributing large volumes
of data. Moreover, it would eliminate the need for
installing image analysis facilities at many user
sites.
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FIGURE 1

FIGURE 4

HIGH ALTITUDE VERTICAL
MAPPING PHOTOGRAPH OF
SAN FRANCISCO BAY AREA

Taken from a U.2 at 45,000 feet,

PREDICTED IMAGE COORDI-
NATES OF COASTLINE, {BASED
ON NAVIGATIONAL ESTIMATES
OF CAMERA LOCATION AND
ORIENTATION) SUPERIMPOSED
ON EXTRACTED 80UNDARY

FIGURE 2 COMPUTER DISPLAY OF A SIMPLE
MAP DATA BASE FOR THE SAN
FRANCISCO BAY AREA SHOWING
MAJOR LANDMARK (COASTLINE}
AND REPRESENTATIVE
MONITORING SITES {CROSSES)

FIGURES PREDICTED COASTAL COORDI-
NATES AFTER OPTIMIZATION
OF CAMERA PARAMETERS
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FIGURE 3 COASTLINE EXTRACTED BY
BOUNDARY FOLLOWER

FIGURE6 PREDICTED IMAGE LOCATIONS
OF VISIBLE MONITORING SITES
BASED ON OPTIMIZED
PARAMETERS



FIGURE 7 PREDICTED LOCATIONS OF

VISIBLE MONITORING SITES
IN AN CBLIOUE VIEW LOCKING
WEST FROM ALAMEDA

FIGURE 10 TERRAIN CONTOURS SUPER-
IMPOSED ON IMAGE OF BRIONES
RESERVOIR.

The actual water height is 524 feet
above sea level,

FIGUREB PREDICTEQ LOCATIONS OF

VISIBLE MONITORING SITES
IN A HIGH ALTITUDE OBLIQUE
VIEW LOOKING EAST FROM
THE PACIFIC OCEAN

FIGURE 11 LINES DESIGNATING LOCATION
FOR DETERMINATION OF LAND-
WATER BOUNDARY
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FIGURE9 HRELATIONSHIP OF WATER

LEVEL TO TOPOGRAPHY OF
TERRAIN

FIGURE 12 LOCATIONS OF LAND-WATER
BOUNDARY ASSIGNED TO
PCINTS OF HIGHEST LOCAL
GRAOIENT ALONG LINES
SHDOWN IN FIGURE 11



FIGURE 13 A RURAL ROAD WITH FIGURE 14 OUTPUT OF GUIDED TRACING FIGURE 15 GUIDED TRACING OF SEVERAL
GUIDELINE ALGORITHM RURAL ROADS

FIGURE 16 GUIDED TRACING OF SEVERAL FIGURE 17 AUTOMATED BOXCAR COUNTING

URBAN STREETS Lines indicating track [ocations were

traced interactively in this example
but could have been obtained by
putting image in correspondence with
a three-dimensional map of the
railyard, as in the ship example of
Figure 18. Statistical operators are
flown along tracks to detect dark
transverse lines that are characteris-

tic of gaps between boxcars. Boxcars FIGURE 18 AUTOMATIC SHIP MONITORING

are indicated by dots whenaver the The guidelines indicating known
spacing between hypothesized gaps berth locations were obtained for

is consistent with knowledge of bath images from the same three-
standard car lengths. dimensional map of Oakland Harbor,

based on determination of viewpoint
for each image. The light, wiagly
lines beside the berths indicate
regions of high edge content,
characterisgic of ships.
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