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' Abstract:

Deductive techniques are presented for deriving programs systematically from giveh_g
specifications. The specifications express the purpose of the desired program without giving '
any hint of the algorithm to be employed. The basic approach is to transform the.- -
specifications repeatedly according to certain rules, until a satisfactory program is produced.'_
The rules are guided by a number of strategic controls. These techniques have been
incorporated in a running program-synthesis sysiem, called DEDALUS.

Many of the transformation rules represent knowiledge about the program'’s sub ject domain
(e.g., numbers, lists, sets); some represent the meaning of the constructs of the specification
language and the target programming language; and a few rules represent basic programming '
principles. Two of these principles, the conditional—formation rule and the recursion-—farmation'_
rule, account for the introduction of conditional expressions and of recursive cails into the,
synthesized program. The termination of the program is ensured as new recursive calls are -
formed.

Two extensions of the recursion-formation rule are discussed: a procedure—formation rule,
which admits the introduction of auxilliary subroutines in the course of the synthesis process,
and a generalization rule, which causes the specifications to be aitered to represent a more
general problem that is nevertheless easier to soive. Special techniques are introduced for the
formation of programs with side effects. :

The techniques of this paper are illustrated with a sequence of examples of increasing
complexity; programs are constructed for list processing, numerical caiculation, and array.
computation,

The methods of program synthesis can be applied- to various aspects of programming:
methodology -- program transformation, data abstraction, program modification, and structured
programming.

The DEDALUS system accepts specifications expressed in a high-level language, including |
set notation, logical quantification, and a rich vocabulary drawn from a variety of subject
domains. The system attempts to transform the specifications into a recursive, LISP-like target -
program. Over one hundred rules have been impleniented, 2ach expressed as a small program
in the QLISP language. : '
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_ Introd_uction . 1

| INTR_O_D_UGT]__ION L

In recent years there has been mcreasmg act1v1ty m the fteld of program vertftcatton The

| goal of these efforts is to construct computer systems for determmmg whether a gwen program

is cortect. in the sense of sattsfymg given specxftcatlons These attempts have met with

~ increasing success; while automatic proofs of the correctness of Iarge programs may be a long

way off, it seems evident that the techniques belng developed will be useful in practice, to find
the bugs in fauity_ programs and to give us confidence in correct ones.

"The generai scenarlo of‘ the vertf:catton system is that a programmer W1|l present his
completed computer program along with_its spectﬁcatlons and associated documentation, to a -
* system which will then prove or dlsprove tts correctness. It has been pomted out, [most notably

by the advocates of structured programmmg, that thls is puttmg the cart before the horse."
Once we have techntques for proving program correctness, why should we wait to apply them
until after the program is complete? Instead, why not ensure the correctness of the program
~while it is betng constructed thereby developmg the program and its, correctness proof "hand in
hand"?

The pomt is partlcularly well taken when we consader that program venftcatton ‘relies on
automattc theorem-—provmg techntques These techntques embody prmcrples of deducttve
reasoning, the same principles that are apphed by a programmer in constructmg the program in
the first place. Why not employ these principles in an automatic synthesis system, which would
. construct the program instead of merely proving its correctness? Granted, to construct a

. program requires more ortgmahty and creativeness than to prove its correctness, but both tasks

require the same kind of thinking. .. e

Sttuctured programmmg 1tself made an early conmbutton to the automattc synthesrs of
computer programs in laymg down prtncnples for the development of programs from their
specifications, These principles are intended to serve as guidelines to be followed by a human
. programmer. However, they are not formulated precisely enough to be carried out by a
machine. Indeed, the proponents of structured programming have been most pesssmtsttc about
the posstbtltty of ever .automating thetr techmques. Dijkstra. has _gone so far as to say, that we -

_ shouldn't automate programming even if we can, because we would taLe away all our

_ 'enjoyment of the task

~ Programiming is a challenging fask, and its automation is a part of artificial intelligence. A

_System to construct computer programs must have a broad range of knowledge about

programmtng languages programming. techmques, and the SubJect domam ol‘ the program to

o _be constructed Furthermore, it must have the abthty to retrteve the relevant components of its

' knowiedge and to combme them to perform the task at hand Programmmg is among the mast

} . demanding human acmrtttes and lS among the ]ast tasks _computers will do- well Nevertheless

the intrinsic interest and practlcal 1mportance of the programmmg task have mottvated many
researchers to consider the possibility of automating it. ‘




2 " introduction

Several years ago, we began our research on automatic program synthesis by considering a
large number of simple programming tasks. In examining the derivations of programs to
achieve these tasks, we observed certam regularmes. steps that are performed over and over
"'agam ina variety of subject domalns and that therefore can be regarded as representing basic
' progremmmg principles. We have Specrfred these prmcrples precrsely, and have applred them
- to the constructron of less trmal programs o

In this paper, we present some of the ‘basic principles to be incorporated into an alitomatic
program-synthesis system. Such a system accepts specifications that express the purpose of the
program to be constructed, without gwmg any hint of the aigorithm to be employed With no

* further human mtervennon, the system attempts to transt‘orm these specrﬁcatrons into a

:'program that achieves the expressed purpose. This program is guaranteed o be correct and

o wlll aIWays termmate f‘or the most parr, we wrll not be concerned wrth 1£s effrcrency

~The specrt‘lcatlons are expressed in a’ specaf‘ ication language rich with constructs from the
"subJect dornain ‘of ‘the application. - Because the specification language does not need to be
executed, it can afford high-level constructs close to our way of thinking about the sub ject.
Specifications represented in such a language are likely to be easy to formulate and to
'correspond correcrly to our mtennons The details of ‘the parucular target language—-the
_ language in which the program is to be constructed--are not rmportant In our examples we
' employ a srmple LISP like language

" Our" basic approacn is to" transform" the specificatiotis ‘repeatedly - according ‘to  certain
transformation rules. - Guided by a number of strategic controls, these rules attempt to produce
an equivalent description composed entirely of constructs from the target language. Many of
the transformation rules represent knowledge about the program’s subject domain; some
ex plrcate the constructs of the specrflcanon and target languages, and a few rules represenc basic
. programmmg principles.

Some of these techniques have been’ incorporated into an experimental program-synthesis
“system’ called’ DEDALUS (the ' DEDuctive ALgorithm Ur-Synthesizer).  The purpose of this.
‘system is not to be applied iri practice but rather to festour program-synthesis ideas. Most of
the ‘examples included in this paper have been carried out by the DEDALUS" system.
However, the emphasis of the paper is not on the details of the DEDALUS implementation,
but on the_basic programming principles it incorporates, which can be applled ln any system.

‘In’ the past ‘few ‘years, there have appeared several ‘varieties of programming’ methodology,
e.g., structured programmmg, program transl‘ormanon, and 'data abstraction.” These d:scrplmes
“recommend systemanc approaches to program’ construction for making the programmmg process
“simpler “and more reliable. " The techmques of program ‘synthesis” serve ‘ta” facrlltate the
'apphcatron of “each ‘of these disciplines. In EhlS way, program«-syn:hesrs research can be of
““'valué long before its ultimate goal'is achreved -
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In this paper, we present the basic concepts and principles of program synthesis, we extend -
these methods to allow the synthesis of programs with side effects, and we apply these
techniques to various aspects of programming methodology. Historical remarks, comparisons
with other approaches to automatic programming, and notes on the DEDALUS implementation
are reserved for a final section,




4 " "'Concepts

A -S;T?eci:ficatiéﬁg_._ B o

The first requirement of a specification language is that it should allow us to express the
purpose of the desired program directly. In other words, once we have formed a precise idea of
what the program is intended to do, we should be able to formulate the specifications
immediately, without paraphrase. Furthermore, it should be easy for the programmer and
other people to read and understand the specifications and to see that they are correct.

For this reason, it is necessary that the specification language contain very high-level
constructs, which correspond to the concepts we use in thinking about the problem and which
are endemic to the subject domain of the target program. Such constructs are typically not
included in a conventional programming language, because it may be impossible to find a
uniform way of computing them or because they may not be amenable to efficient
implementation.

Because a specification language should have a large number of constructs, and because
these constructs are particular to the subject domain, we do not attempt to define a complete
specification language. Instead, we present the specifications of some of the programs we will
use as examples later in this paper, to illustrate some of the most useful constructs.

Suppose we want to construct a program, called lessall, to test whether a given number x is
less than every member of a given list / of numbers, and to output {rue or false accordingly.
This program can be described as

lessall(x l) <== compute x < ali{{)
where xis a number and
! is a list of numbers .

Here, the expression % < ali{!) denotes the condition that x is less than every member of the list
4 its value is true or false depending on whether or not the condition holds. The expression
compute ., . is the output specification; it provides a description of the output the target
program is intended to produce. The expression where ... is the inpur specification; it gives
the conditions the inputs x and / can be expected to satisfy.

To specify a program maxlist to compute the largest element of a given list [, we write

maxlist(l) <== compute some z: 2z ¢! and z 2 all{l)
where ! is a nonempty list of numbers.

Here, the construct "some z ¢ P(z)" denotes any element z satisfying the condition P(z), and « ¢ v
means that # is a member of the list (or set) .
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Another example: the greatest common divisor {(ged) of two _nonnegative integers is the
largest integer that divides both of them. To specxfy a program to compute the gcd of x and y,
we write

gcri(x y) <== compute max{z zlx and z[y} o
where % and y are nonnegative mtegers and
¥x#Q0ory=0.

Here, max S is the largest element of the set S. The input condition x = 0 or 'y = 0 is included
because if both ¥ and % are zero, then any integer divides each of them and the set of all their
common d1v1sors is mﬂmte and has no largest element '

" The Cartesian ‘product cart of two sets s and ¢ is the set of all pazrs whose first elément
' "belongs to s and whose second element beIongs to ta program to compute it is spec:f;ed by

cart(s t) <mm compute {(x y) ¥esand yet }
: where s and t are finite sets, -

‘Here, (x y) denotes the pair whose'elemeh:s are x-and g

B. The Target Language
The techniques we employ in this paper are not dependent on the pert.i.cﬁiar:choi.éé' of a
target language, the language in which the desired program is to be expressed.. However, for

. the sake of definiteness, we will represent the target programs:in this paper in a fixed, LISP-
like language, which should be readily understandable.: Lo

For numbers, the target language includes such familiar operations as x +§, ¥ —§, ¥s ¥y,
etc. For lists, we assume that the target language contains.the usual LISP: pr:mmves

/zead(l) the f:rst elemem: of the nonempty hst l
o fdif({) :. _t_he; st 4 _qf__ eii_but ;he_fifst_eleme_nt_ of the 'nb'r{er'np?:'y hst Z
cons(x {) : the list formed by inserting the element ¥ at the begmnmg of the list £ .
Furthermore, we include the common conditional expression:

if Pthenxelsey: x if P istrue,
y if P s false.
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Fmally, we emp]oy recurswn for examp[e, a program f(l) may be defrned m terms of a recursive

call f{tailD)).

Of course, we can use any of the target- ianguage constructs in formulating the specifications.
Thus, the target-language may be consrdered to be a subset of the specrf ication language.

A segment of a program description that consists entirely of target-language constructs will
_be called a primitive segment.

" At times we will choose to add new primitives to the target language. Thus, if we want to
write a program in a new subject domain, we will add the primitives appropriate to that
domain. If we want to express a program in terms of some given set of procedures, we will
treat those procedures as prrmrtrves In the section on srde eff‘ects (Sectron 4), we will include
constructs such as assignment staterents and arrays in the target language

By the same token, for certain tasks we may. choose to delete primitives from the target
language. For instance, to construct a more efficient program we may delete certain time-

consuming primitives. The DEDALUS system allows the user to add or delete constructs from
its primitive set for a particular task.

C. Tra.nsformatxon Rules

- Qur basic approach to program synthesns is to: employ a Iarge number ot‘ rransformatmn

rules,: which. replace.one segment of a program description. by another, equivalent description.

The task of program synthesis is then reduced: to applying these rules to the given specification
repeated]y until a pnmrtwe program is produced

Some tr ansfor mation rules express the prmclples of the underlymg semarntic domam (e.g, the
properties of the integers or list structures). Other rules express the meaning of the constructs.
in the specification and the target languages (e.g; {x : P(u)} in the specification language and
head(l} in the target Ianguage) Still others represent a formulation of basic programming
techniques, which do not depend on'a’ partrcular “subject domain’ {eg., the introduction of
conditional expressions and recursion). o

We use the notation
t=>t’

to denote a transformation rule that an expression of form ¢ may be replaced by the
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corresponding expression ¢'. The transformation may be ‘applied to any subexpression ¢ of the
current program description. It is not to be applied in the reverse direction unless another rule’
of form ¢’ => ¢ is given explicitly.

For example, the rule. ...
true and Q => @

means that any expression of form true and Q may be replaced by Q.. By applying this rule, we
may replace a program description

max{z : true and. zly}. .
by the description

max{z : zly} .

A rule
. r=>t, lf P PR

denotes that the transf‘ormatmn testfcan be appllEd only if'the cond:txon P is true Thus the
rule - R o :

~ulp =>true:. if w is an integer and v = 0.

denotes that a program segment ufv can be replaced by rrue if u is known to be an integer and
v to be zero whenever the segment is executed. Thus, this rule can: be applied to transform a
program description

ify=0
then xiy
else . . .

Jinto

ify=0
then true
else . . .,

where x is known to be an integer.

Often, more than one rule can be applied to the same program description or even to the
same segment. For example, the logical rule -
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CUPand Q= Qond P
and the. r.lu.i.‘nf.er.ic;l rule
uly and ufw => ulp and ulw-v if u,v,and w are ihtegers-'-“' SRR
can both be apptlied to the program description
“max{z ; zlx and zly} .

In such cases it must be decided which rule is best to apply. This difficult problem must be
faced in any transformation-rule system. We prefer to postpone such:considerations until after
we have presented some concrete examples. (See Section 2D on "Strategic Controls.”)

D. Derivation Trees

In applying a transformation rule to a given program description, we obtain a new program
description, which we regard as a subgoal of the first. To this subgoal we apply additional
transformation  rules. repeatedly, until a primitive program. description is. obtained. This
description is the desired program.

The top-level goal is obtained directly. from the program’s specifications. Thus, if the
program f is spec:f:ed by

f(x) <a= compute P(x)
where {x) ,

the top-level goal will be
Goal: compute Plx).

(Here, Q(x) is a condition but P(x) may be any expression in the specification language.) For
example, in deriving the ged program, we are given the specifications

ged(x y) <== compute max{z: zjx and zly}
where x and y are nonnegative integers and
x=0ory=0.

IActually, the DEDALUS system does not Use this rile explicitly; the same’
effect is achieved by a different mechanism. Ses "lmplementation,”
Section 68.



Qur ;op-_-l_ev_e] goel i_s_._thu.s:.. e n
Goal 1: compute max{z zlx and zba}
By applymg the transf‘ormanon rule -
) Pandan»QandP !
\.Qe' obtam ':
Goal 2: compute max{z : zjy and zlx}.

If a transformation rule imposes a condxtxon P whach must be true if the rule is to be
applied, a subgoal of the form

Goal: 'p’r_o\?e P o o
must be achieved before the rule can be' applied. For'example, in developing the program
lessall(x 1) ta test if a number is less than every element of a list of numbers we begm with the-
top-level goal -

Goal 1: compute x < all{l) .-
In attempting to apply the rule

P(all()} => true " if {'is the empty list,”

which states that any property P holds for every element of the empty list, we generate the
subgoal

Goal 2 prove l is the empty Ixst

To accomphsh such a task, we must appiy transformatlon rules repeatedly to'the expression to
be proved, until the expression frue is produced. If, instead, false is produced, or if we
encounter a situation in which no rulé can be applied, the goal of proving Pis aborted, and
the attempt to use the rule that imposed P as a condition is abandoned.

 If no rule applies to a given subgoal, backrmckmg occurs; we seek alternate rules to apply to
“previois subgoals Backtrackmg wnl be dlscussed further in the sectxon on "Strareg:c Contro]s“
(Section 2D). o : '

"By the pracess we have just outlined, a tree of goals and subgoals is generated. We will call
this structure a program derivation tree.
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2. ELEMENTARY PROGRAMMING PRINCIPLES
A, The Formation of Conditional Expressions
To illustrate the formation of conditional expressiens and recursive .calls, we en:fzfoit a single
simple example. The program to be constructed, lessati(x ), is intended to-test whether a given

number x is less than every member of a given list / of numbers, and to output true or false
accordingly. The specifications, as indicated in Section 1A, can be expressed as =~~~ ~

lessall(x !) <== compute ¥ < all(l}
. where x iS a number and
lis a list of numbers .

Note that the output description uses the e/l specification construct, which is not primitive;
therefore, we attempt to apply transformation rules to paraphrase the output description using
_only primitive constructs of the target language.

We assume we have at our dispdsel":'t'we.'fu.l'esx'thet'ex.pl:i:céte t.h'e'el.l .c..onsfr_u.:c':t:”.;_ o
Q@ The vacuous rule
Plali(l)) => true  if { is the empty list
says that any property is true of every element ef_ the empty list. . ..
© The decomposition rule
P(all{l)) => P(head(l)) and P(ali(tailil))) if ! is a nonempty list

states that a property holds for every element of a nonempty llsr if it holds for the first element
- and for ali the rest.. . STTIR S

Our top ievel goal is formed dlrectly from the programs spec:f:cauons
Goal 1: compute X < all(l)

In thls diSCUSSlOt‘I we w:li no: con51der how to select the ruie to be apphed we w:ll assume for.
" the time bemg ‘that the approprlate rule mag:caily appears when it is relevant

One tr ansformatxon rute that apphes to the current output description lS the vacuous rule,

Plall(l)) => true if { is the empty list",
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This rule would allow us to reduce our output description to’ true if only we could achieve the
subgoal v

Goal 2:  prove ! is the empty list .

Of course,:we cannot prove. or disprove this condition: { is an. input that is known to be a
list, but that may or may not be empty Th:s is: an occasion for applymg the conditionai—
Sformation rule. '

Conditional expressions are introduced into programs as a result of
hypothetical reasoning during the program-formation process. If we fail to
prove or disprove a subgoal of the form

prove P,

the conditional-formation rule allows: us to introduce a case analysis and -,
consider separately the case in which P is true and P is false. Suppose we
succeed in constructing a program segment s; that solves olir problem under-
the assumption “that' P i§ trile, and another segment 5, that solves the -
problem under the assumption that P is false Then we combme the two_
segments into a conditional expression '

CUif Pthen s else sy,
which solves the problem regardless of whether P is true or false. Note that
to ensure that this expression is primitive, we apply the conditional-~

formation rule only when P itself is a primitive logical statement,

Let us return to our example Havmg failed to prove Goal 2, that Lis empty, we attempt to
construct a program segment that will solve our problem under the assumptxon that / is empty.

Case ! is empty: In this case, we are jUStlfIEd in applymg the s vacuous rule
P:(all(!)') o> true  if I s theemptyltst, |
to Goal |, compute x < glill), yielding the primitive program segment frue. This segment

solves our problem in this case.

We have yet to consnder the case m wh:ch l is nonempty Thts reqmres the f‘ormatxon of a
recursive call, which will be discussed in the next section. However, at this point, we know that
the program will have the form
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lessall(x 1) <= if emptyll)
then true
else ... .

Case. analysis in' theorem: proving: has.been-emphasized: by - Bledsoe and.

.. Tyson [1977). . Other. program-synthesis.. systems that form. conditional
expressions by case analysis have been implemented by Luckham and.. ...
Buchanan [1974] and Warren [1976] '

B. The Formation of Recuf;iﬁ:é .Ca..ll.s o

We illustrate the formation of recursive calls by continuing the construction of the lessall
program. Recall that it remains to consider the case in which ! is a nonempty list.

Case ! is non_e_mpty:_..ln.this case. we fail to achieve (_j'oal: 2',_tq:.prove.' that / is empty, and
therefore we look for some alternate means for approaching Goal 1, compute x < ali().

Another rule that applies to Goal 1 is theall deeo'fhpp_éi:t;on' rule N
Platl{D)) => P{head(l)) and Plali{tailll)) if !_ is a no.ne.mpty_ list .
This _ru_!e imposes the condition
" "Goal"S: : pi'ové Lisa n:cin:e'mp'ty li'st"""' -

which is satisfied lmmedlately because we have assumed m our case analysxs that lis nonempty
"I‘he rule therefore transforms Goal I mto o

Goal 4 compute X< lzead(!) and x < all(tar.l(l))

To compute the truth value of x < kead(l) is 51mple, because x and ! are mputs and fead is
a primitive construct. It remains, therefore, to achieve :

Goal 6:" ‘compute ¥ < ali(tail(l)) "

Note that this subgoal is an instance of our original Goal I, to compute x < a!l(l) with inputs »
and / replaced by % and’ razl(!) Thls :s an opportumty for applymg the recurswn—formauon

©rule.
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In general, suppose we are to develop a program whose spec:f xcauons are
of form

f(x)' <== coroooté P(x)
where () ,

~in which Q{x) is a condition but P(x) may be any expression in the:
specification language. Assume we encounter. a subgoal

".'comp'uté' 'P(t.)' |

that is an instance of the output specxflcauon compute P(x) Then we can_
" attempt to achieve this subgoal by forming a recurswe calt (1), because the_' 3

program fx) is intended to compute P(x) for any ¥ that satisfies Q{x). To

ensure that the intreduction of this recursive call is legitimate, we must
verify two conditions:

® The inpdi'ébhditibn',' Q(t), which establishes that the argument ¢ of the
recursive call flt) satisfies the required input condition of .the desired
program; otherw1se, the program f is not guaranteed to yield the expected
output.

© A termination condition, which ensures that the recursive call cannot
~ ¢ause an mﬁmte computatlon A recurswe call can fail’ to terminate xf its

- execution leads to another recurs:ve call, whach leads to another, and so on"
mdef:mtely '

The termination condition is expressed in terms of the "well-founded
set” concept, which will be explained in a later section devoted exclusively
to termination. In the meantime, we will appeal to intuitive arguments to

establish. termmatlon. .

Note that to ensure that the recursive call f{z) be primitive, we apply the
recursion-formation rule only when the argument ¢ itself is primitive.

Let us return to our example. The recursion-formation rule observes that Goal 5, to
compute x < all{tail(l)), is an instance of our output specification, x < af{l), with inputs x and !
replaced by x and tail{l); therefore it proposes that we achieve this ‘goal with a recursive cail
lessall(x tail(!)). For this purpose, the rule imposes two conditions, the input condition

 Goal 6:  prove tailll) is alist,

“and the termination condition -
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“Goal 71 prove lessalll tailll)) terminates.
The input condition that zeil{{) is a list can be proved directly by invoking a transformation
tail{d) is a list => true if I is a list,

a basic ‘rule -describing list structures. To''achieve the. termination condition is also
straightforward, because the argument tail{l) of the recursive call is a proper sublist of the
input /; therefore only a finite number of recursive calls can occur before the second argument
is reduced to the empty list. Consequently, we are permitted to introduce a recursive call
lessall(x tail{!)) at this point. This satisfies Goal 5 Goal 4 is then satisfied by the program
segment x < head(l) and’ lessal[(x tazi(l)) Thzs segment lS composed enttrely of primitive
constructs of our target language ' ' :

We have succeeded in finding primitive program segments that solve our problem in both
cases, whether ! is empty or not. Therefore the conditional-formation rule combines the two
program segments into a conditional expression. The final program is

!essall(x [) <== if empty(l)-
. then true . .
else x < head(l) cmd lessatl(x ratl(l))

The above technique causes the formation of a recursive program. If we are working in a
target language that does not admit recursion, it is necessary to transform the program further,
to reptace the recursmn by another l‘EpEtlthe construct. In many cases, a recurswe program can
be transformed into an iterative program of comparable complexity. In the worst case, we can
always replace a recursive procedure with an iterative equivalent by the ex phc:t introduction of
a stack.

" The above racursion-formation rule is the same as the “folding” rule of the
Burstall and Darlington [1977] system for the transformation of récursive
~programs. Their system doses not check the input and termination conditions.

C. Termination =~

Inthe preceding example we relied onintuitive arguments to establish the termination of -
the program we constructed. In fac, for that example. the termination argument was quite
straightforward. In this section, we will consider 2 ‘general mechanism for proving the
termination of a recursive program at the same time as it is being constructed. K We will
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ﬂlustrate this mechanism wnth an exampte for whtch the termmat:on proof is somewhat more

subtle.

The program we construct is intended to compute the greatest common divisor, ged(x 3), of
two nonnegative mtegers x and y. The specifications, as indicated in Section 1A, are expressed

as

gcd(x y) <== compute max{z zlx and ziy
where x and ¥ are nonnegative mtegers and
x=0o0ry=0.

Recall that the input condition ¥ = 0 or § » 0 is imposed because the ged is not defined when
both its arguments are zero.

_ The output specxf:catlon is expressed in terms of the set constructor {u P(u)} whxch is not
primitive. We therefore attempt to transform lt mto an equwatent pnmmve descrlpnon

We assume that the following rutes about the mtegers are included among the
transformations of our system:

ulp => tr'ug_ _'_r._if u.. 0
(every integer divides 0)
uly and ulw => ulp and ulw-v
(the common divisors of v and W are the same as those of u and w— v) and _
| max{u Pufe} s> v | 1f visa pos:tlvo integer
(every posmve mteger is its own greatest divisor).
As usual, our first goal is denved d1roctly frotn the ou.tput soeoif ication: |
Goal 1: compute max{z z!x and zly}

_ There are at least two rules that match the subexpressxon zix and z[y they are the logical
rule.

Pand Q=>Qand P
and the numerical rule

ulp and ulw => uly and ujw-v
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“ Fither rule will Tead to a successfui 'pfogram'; su'ppose we attempt the Io"g'i'c“al rule first. Tﬁén we
develop the subgoai IR

Goal 21 ‘compute max{z : 2ly 'ahri'zi&}

Goal 2 is an instance of Coal 1 itself, with x and y replaced by y and x; therefore, the
recursion-formation rule attempts to satisfy Goal 2 with a recursive call gcd() .c) To ensure
that this step is Iegmmate. the rule xmposes an mput condmon ' :

Goal 3: prove yand x are nonnegative integers and
- 0 or x 0

obtained by replacing ¥ and 9 by 9 and x, respectively, in'the input condition of the
specification. This condition is easily establxshed because it is an equivalent form of the given
input condition itself. Furthermore, the recurs:on-formatmn ruie lmposes a termination
condition, to ensure that the proposed recursive call terminates :

‘Goal 4:  prove gedly x) terminates.

We will begin by attempting to use the same sort of informal argument we employed in the
previous example proving the termination of this recursive call. Later in this example, we will
be forced to introduce the more formal and general apparatus. . To establish termination, it
suffices to achieve S

Goal 6: prove y <x,

because x and y are both known to be nonnegatwe mtegers (by the mput condmon) and
because y is the first argument of the recursive call. :

If we establish Goal 5, only a finite sequence.of. recursive. calls can occur before. the first
argument is reduced to zero. However, we cannot prove or disprove Goal 5 x and y are both
input variables, and we have no way of knowing if one of them. is bigger than the other. As
before, the conditional-formation rule causes a case anatySis to be mtroduced

Case 3 < x : Here, both the input condmon and the termination condition for introducing
the recursive call’ ged(y x) are satisfied: We have thus completed” one” branch of the case
analysis; we have yet to consider the alternate case. However, at this stage we know that the
final program will have the form

gedx y) <== if y <x
then ged(y x)
else... .
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Case x <y : Here, it is not legitimate to introduce the recursive call ged(y x} to achieve
Goal 2, because the termmatson condition is not satssﬁed Assummg that no other rules succeed
in reducing Goal 2o a pnmmve segment we are led to consider alternate rmeans of achlevmg
the original Goal 1 in this case.

Ré(:éll_ 'th:ét ahﬁbhg o_th:ei"ri_l_te's th'a:t_: ap'pfied' to Goal | was the nljifnef_i';;l ifulg_ o
Culy and ulw =5 u[v and u!w v - |
Th.ls.ru.h.a causes the generation of a new g.o.at
Goal 6: compute max{z zlx and z{y—-x}

Thls goal has the same form as the or:gmal Goal 1 bu: with the mputs x and y replaced by
x and y~x; the recursion-formation rule suggests satisfying Goal 6 with the recursive call

gedlx y—x) .
To ensure that the arguments x and y-x are legitimate, the rule imposes the input condition
- Goal T:.- prove x and y-x are nonnegative integers: and :
X Oory—x# 0;

to guarantee that the proposed recursive calt wm termmate the rule also imposes the
termination condition. -

Goal 8; p'rbve__ ged(x y-%) terminates.

Let us examine Goal 7 first: that x and y-x are nonnegative integers follows from the
original input specification and the case assumption % < ; the condition

x.u.Oory—x # 0
leads us tc.)'.;att.erﬁptl fo .prove-either'
| ” GO:-':.III .9:... .pl.'bv.e.:. % a-f 0 ...
or
Goal 10:prave s 0,

We fail to:prove or disprove Goal 9; therefore, the conditional-formation rule introduces a
case analysis. . - : .
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) Case X 0 Here the mput condition for the proposed recurswe call gcd(x y-x) is.
"'sausﬂed ;t remams to show the termmanon condntxon (Goal 8). '

If this were the only recursive call in the entire program, its:tefminétidh would be easy to
establish. After all, we know in this case that x is a positive integer and that y-x is a
nonnegative integer; furthermore, §—x is strnctty less than the second input y. ‘Thus, each
execution of this recursive call reduces the second argument, and only a finite number of
exectitions can occur before the second argument is reduced to zero. However, the program we
are developing already contains another recursive call ged(y x); we must consider. the possibility
that an infinite computation involving both recursive calls m:ght occut.

This is a real possibility, because the recursive call gcd(y x) actualiy increases the second
. argument. We therefore must treat-both recursive calls at once, and: this requires a more
sophisticated mechanism for proving termination conditions.

- In- general, to prove termination we employ- the: concept "of ' a well—
founded set, one whose elements are ordered in such a way that no infinite
decreasing sequence of elements can exist. For example, the nonnegative
integers, under the usual less-than ordering, constitute a well-founded set,
whereas the entire set of mtegers does not.

To prove the termination of a recursive program f(x) w;th recursivecalls <
e, flg), .., ftg), we show that x, 1y, fa, ..., Iy all belong o some

well-founded set W, ordered by a relation <, and that
tl <3-' ,'.tz {x ,.. [N .,.a.nd fn '<x .

This condition suffices to ensure termination, because if there were a
nonterminating computation, it would contain an infinite sequence of
recursive calls, whose arguments would constitute an- infinite decreasing:. :
sequence in the well-founded set. But a well-founded set contains no
infinite decreasing sequences. R o

By the method we have just described, to establish the termination of a
program f(x) with many recursive calls fir}), fta) ﬂtn) we must show

that each argument ¢; is less than the original 1nput % under a smgle well-’

founded ordering <. This implies that, during the synthesis of. the program,
whenever we introduce a new recursive call f{¢;) we must show that ¢;. <% -

under the same ordering < which we have used to establish the termination
of the recursive calls f¢;), flts), ..., ft;_y), introduced previously. If we
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| cannot, we must modlfy the well-founded set W and the ordering < so that_ N
't <%, while ensuring that the relations t < X, tz < x, '..., "z—]:_< x are

still satisfied.

If the program has more than one argument, the ordering < of the well-
founded set may need to compare pairs or tuples of arguments. For this
purpose it is convenient to use the lexicographic ordering between tuples.
For pairs of nonnegative integers, for example, this ordering is defined as
follows: ;

ey ) <y 9 ifxp <y, orif xp =y and %y <y, .

Thus, the second components are i'gno_red_' unless the: first éo_nﬁ;:on_en_cs.are i
equal. This lexicographic ordering can be shown ta be well-founded: there.
exist no infinite sequences of pairs of nonnegative integers that decrease
under this ordering. A general notion of lexicographic ordering on
arbitrary tuples of elements can be defined in a similar way.

In the gcd example, we have aiready proved the termination condition of the recursive call
ged(y %) by showing that the first argument y of the recursive call is less than-the first input x;
in other words, we have used the ordering < defined by

(u, uz) < (U[ Uz) if U <.

This is a well-founded ordering between pairs of nonnegative integers. Thus, in proving the
termination condition for the proposed new recursive call ged(x y-x), we attempt to show that

(x y—x) < (x %)

under this ordering, i.e, that ¥ < x. This attempt fails; the first argument-is not reduced by the
proposed recursive call. We therefore try to modify the ordermg <{to estabhsh the termination
condition for the second recursive call as well. BERREE SR

- The first argument x of the proposed recursive call ‘ged{x y-x} is' nonnegative and is
identical to the first input x; we have also seen that the second argument §—x is a nonnegative
integer (since we have assumed that x y) and is less than the second input y (since x is
pOSlthElnthlSC&SE) T TILT T TV SN SOU L

This suggests that we modify the ordering < to be the lexicographic ordermg Thns ordering
will allow us to prove the termination conditions for both recursive ca!ls )

The use of the recursive cafl ged(x y—x) has begn: jUs_ti_fii_ed' in this case, because its input
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condition” (Goal 7) and’ its termmanon cond:tlon (Goal 8) have been estabhshed The partial
program we have constructed so faris

gcd(x y) <== ify<x
then ged( y %)
.oelse ifx s 0.
then gcd(x y-x)
e!:e :
We have yet to consider the case in which x=0.

Case x = 0: In this case, the recursion-formation rule fails’to introduce the recursive call
ged(x y-x) because we cannot establish its termination condition; indeed, if we did introduce
this- recursive’ call, the program would cerramly not terminate. Instead ‘we look for some
alternate means’ of satlsfymg Goal 6, - ' '

s ‘compute max{z-: z)e and zbl-x} ,
which, since x = 0, is reduced to )
“Goal 1 1:. compute .méx{z. z|0 aﬁd z[y}
By application of the three rules |
ulp => true ifv =90,
rueand P o> P, and
maxfu : ufp} => v if v is a positive integer
-"in. succession, we obtain
Goal 12: computey.
. The last rule could be applied because in.this case ¥ = 0; and thus 9.=.0 (since x = .0 or y = 0),
.andy>0 (sincey is nonnegative).. . i

Now y is a pnmltsve program segment that solves our probiem in th:s fmal case The
complete ged program is

gcd(x y) <mm ;fy <x .
‘then gcd(y x)
Celse ifx =0
then ged(x g-x)
elsey.
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~ This is a version of the "sub;ra;ti\fg_f'_ ged algorithm.

Well-founded orderings were first invoked fo prove properties"'t')f c
recursive programs by Burstall [1969] The theorem-proving system of
Boyer and Moore [1977} also constructs Iex:cographlc ordermgs

The particular program- we obtain depends an the transformation tules’we have at our
disposal and the choices we make during the derivation process. For example, if we had the
add1t1onal ruies

- ged(u vy =5 2 gcd(ul? vl2) rf wand v arr. even;
- ged(u v) => gcd(u!‘z I 1f u is even and vis odd and- B
ged(u v) =:> gcd(u vl‘éjz xf u is 06& and » iS e'v'eﬁ,
we r..bu'ld have obtained the "'bihéry": gcd prog'ranim”

gcd(x y) <== if even(x)
~ then if even(y)
then 2. ged(x/2 9/2)
else ged(xf2 y)
. else if even(y)
then ged(x 9/2)
elseify<x .. .
 then ged(y %)
else if x » O
then ged(x y-—-x)
elsey

©This program turns out to be quite efficient for implementation on a binary machine, in which
division and multiplication by two can be represented: as right and: left shifts, respectively (or
vice versa, depending on which side of the machine we are standmg on). Of course. nothlng in
the techmq ue guarantees that an efficient program will be’ denved '

D. Strategic Controls

Up to now we have developed programs by applying transformation rules to’ goals without
considering how to select the rule to be applied; the proper rule seemed to appear by ‘magic
when it was relevant, If we have hundreds of rules at our ‘disposal, how do we retrieve the
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applicable ones? Of the many rules that ¢an be applied in a given situation, riot alt will lead to
a primitive program. If more than one rule applies to a goal, how do we decide which to
attempt?

If the program is being deveioped by hand we <an reiy on the programmer s knowledge and
intuition. However, if we expect this process to be performed by an automatic synthesis system,
the basis for our strategic decisions must be made explicit. In this section, we will discuss some
. strategic methods for directing the transformation rules. '

The strategic controls that we have incorporated into our own program-synthesis 'Sysrem may
be outlined as follows. When a goal is proposed, the rules that seem applicable are selected by
pattern—directed invocation. Of all the selected rules, one is chosen according to a given rule
ordering; this rule is attempted first. Each rule may be provided:. with a.number of strategic
conditions, which prevent it from being applied foolishly. If the strategic conditions are not
satisfied, or if the rule does apply but does not lead to a primitive program, we backtrack and
consider the next applicable rule chosen by the rule ordermg Let us dxscuss each of these
methods in more detail, :

® Partern—directed invocation: The rules are indexed by the patterns to which they can be

applied. For example, the all decomposition rule .
P(ali(l)) => P{head(D)) and Plali(tailll)}} iflisa nonempty list

is classified according to its left-hand side, P(al{{!)). When a new goal is proposed, ali those
rules whose patterns match the goal are retrieved. Thus, the above rule and the vacuous rule

Plall{l)) => true  if | is the e:mpty list,

_would both be invoked when the goal compute x. < all{l) is proposed. This method of
- retrieving a-rule when it seems apphcable is termed patrern—darected invocation. .

° Rule ordenng It often happens that more than one transformat:on ru]e W111 match the same

goal. However, sometimes we can decide a priori that one rule should be attempted before
another. For example, if the vacuous rule

Plall(l)) => true if { is the empty list
and the recursion-formation rule both match the same goal, the vacuous rule should always be
_ attempted firsg the recursion-farmation rule [imposes the input and termination conditions,

which may be time-consuming. to vent‘y Furthermore. if both. ruies do appiy, the program
:segment frue is p:eferabie to a recursive cali

On the other hand, if the decomposition rule
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Plalll)) => Plhead(D)) and P(all(tailll))  if [ is a nonempty list

~and the recursion-formation rule both match the same goal, we prefer to attempt the recursion-
' for manon rule first; the decomposatlon rule produces a nonprlm:tlve subgoal more compiex
than the or iginal goal, while the recursion- ~formation rule is guaranteed to produce a primitive
recursive call.

© Strategic conditions: We have seen that a transformation rule may impose logical conditions,

which must be satisfied to ensure a valid application of the rule.. By the same token, a rule
may have strategic conditions, which prevents it from being applied foolishly. For exa'mpte, in
introducing a conditional expression if P then $| else s or the recursive call f{t) we imposed
the strategic condition that the condition P or the argument t be pnmmve thxs was to ensure
“that the resultmg express:on woutd 1tself be pnmmve

Two more examples: if we introduce the logical rule
Pand Q=>Qeand P,
or the integer cule- R
uly and uly => uii} and ulw-v

we must give them each strategic canditions to ensure that they are not applied répeatedly to
the subexpressnons that they themse]ves produce otherwise, we may obtam an endless sequence,

"eg
Pand Q, Qand P, PandQ, ...

Good strategic conditions improve the general performance of a system, but they may
prevent it from finding some trickier, less intuitive solutions.

. ©..Backtracking:. If applying one rule to a goal fails to.lead to a primitive program segment,
‘the system will.-backirack, and atternpt to apply other applicable rules to the same goa.l. :

| F'or.' 'inst:a.ﬁcé, in coost‘x-octih'g'f:th'é' gc'd .progx.'ain'a.. wle o;.:pl.ied'the: fuie
PandQ=>Qand P
to ob'gl 1,’"
comoute man{z zlx end z[y} i

to form Goal 2,
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compute max{z : zly and zlx} .

In the case in which ¥ sy, we failed to der:ve a primltlve program segment from Goal 2;
theref‘ore, we backtracked and conszdered other rules that matched Goal 1 As :t tumed out,
" the rule’ B

uly and ulw => uly and ufw-v
E apphed to Goal 1 to yxeld Goal 6,
compute max{z zlx and zly- x}

In addltlon to these generai strateg:c methods for controtlmg transformauon ruIes there are
special strategic techniques associated with particular rules. One of these techniques is the
sub ject of the next subsection.

Pattern-directed invocation was introduced as a f.eetui'e of tne .PLANNER
programming language for artificial-intelligence research (Hewitt {19713.. . ..

The Redundant-Test Strategy
The conditional-formation rule will introduce a case analys'is when we fail to prove or
disprove a condition P. We consider separately the case in which P is true and the case in

which P is false, construct program segments s, and 55 to handle each case, and combine these
segments into the conditional expression

if Pthen s, elsesy.

However, it is possible that otie of these segments, say s,; does not depeénd on the corresponding
case assumption, that P. is false. In this:situation, the segment sy itseif. will solve our problem
regardless of whether P is frue or false. constructmg the other segment :1 would be a waste of
effort. - : ' '

The redundant—test strategy prevents such irrelevant conditional expressions from being
formed. According to this strategy, in introducing a case analysis we always consider first the
negative case, in which P is false. If we then succeed in constructing a program segment $y that
solves our problem without ever using the case assumption that P.is false, then this segment
solves the entire problem. We do not consider the positive case, in which P is true, and we do
not generate a conditional expression. Do :
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We always consider the negative case first because in the positive case, the assumption that
P is true will always be used by the rule that imposed the condition; therefore, we can never
escape considering the negative case.

For example, suppose, in constructing the ged program, we are given the rem rule
uly and wlw => ulp and upremlw v}  ifv=0
instead of the minus rule
uly and wjw => uly end ufw-v ,

where %, v, and w are nonnegativé integers. (The rem rule states that the common divisors of
v and w are the same as the common divisors of » and rem(w v).) Recall that in developing our
previous ged program, we introduced a case analysis on the condition ¥ < x in an attempt to
introduce a recursive call ged{y x). Now, according to the redundant-test strategy, we will first
consider the negative case, in which ¥ s 9. In this case we will apply the rem rule and
- eventually develop the program segment

ifx=0
then ged(rem(y x) x)
else 9

without ever using the case assumption that x < y. Consequently, we need never consider the
positive case, in which 9 < x. The above segment solves the entire problem, so our final
program is simply

gedlx y) <== if x # 0
then ged(rem(y x) x)
else .

This is a version of the Euclidean ged algorithm.

In describing a program derivation in which a case analysis is intreduced and later
eliminated by the redundant-test strategy, we will often omit mentioning the case analysis
altogether. For example, in developing either of the above ged programs, we introduce a case
analysis on the condition 3 « 0 as well as on the condition x = 0; this case anaiysis ony=0is
eliminated by the redundant test strategy, and never appears in our discussion.
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8. BEXTENSIONS OF RECURSION FORMATION

A, Generahzatmn

Recursive calls have been introduced” when -a new ‘subgoal is discovered' to be a precise
instance of the top-level goal. But what if the subgoal is an instance not of the top-level goal
but of a somewhat more general expression? In such cases, it may be advisable to construct a
new procedure {or subroutine) to compute the more general expression, and to achieve our
original goal by a call to the new procedure ‘Although the new procedure attempts to solve a

more general problem, that problem may nevertheless be easier to solve.

Generalization is aiready commonplace in the theorem- pr'ovihg' context:” ﬁéfadbkitéﬂy, it is
often necessary, in proving a theorem by mathematical induction, to prove a more general
theorem, so that the induction hypothesis will be strong enough to prove the inductive step. In
program synthesis, induction is analogous to recursion: we' attempt to construct a program io
compute a more general goal so that the recursive call will be strong enough to achieve the
desired subgoal

As before, we will expiam the method in the context of an example.- We will not follow the
precise order dictated by the strategic controls in constructing the program. Because we have
considered a similar program, lessall(x 1), previously, we will' be a bit more brief in our

exposition.

- Suppose we want to construct a program headfail(!) to test whether the head of a nonempty
list { is less than every element of its tall The specxﬂcatmns for th:s p:ogram may be expressed

as
lzeadmcl(l) <== compute Aead(l) < all(taal(l))
where!lisa nonempty list of numbers.

«Our top-level goal is then-..

Goal 1:  compute head(l) < ed.f('zeil'(i'));..' o
Recall that we have introduced two rulesthat 'eiéf;:iéaté tﬁe all constru::t ..t.he.vacuous rule
P(all)) => true if { is the empty list,
and the decomposmon ru]e
Plall(D)y => P(fzead(i)) and P(all(md(l)) if { is a nonempty list.

These rules, together with the conditional-formation rule, account for the introduction of a case
analysis into our derivation, and the subsequent formation of a conditional expression in our
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final program.- In the case that tail{l)-is empty, the vacuous: rule reduces the goal to the
primitive segment true; in the other case, in which tail(?) is not empty, the decomposition rule
reduces the goal to computing the conjunction of two expressions:

. Goal 2: = compute head(l) < head(tailll)}
N and '
' Goal3:  compute head(!) < alltailitait())) . o

Goal 2 is already a primitive expression. We have yet to consider Goal 3; however, the
_program cqnstructed so far is
headtail(l) <== zf empty(taz[(l))

- then true -
. else lzead(!) < head(tazl(l)) and

An attempt to satisfy Goal 3 by the recursion-formation rule fails, because Goal 3 is not a
. precise instance of Goal |,
.' _ corﬁhdté .h'gad(l) < qfl(td_il(l)) .;__: . o

the { on the left-hand side of Goal [ corresponds to ! in the subgoal, but the { on the right-
hand side corresponds to tail{{). However, Goal 3 is an instance of a more general goal,

 Goal 1'."'(é'enérél'i'zéd):i .'cé'm:p'u.te head(l,) Q:'a'lt'(.fa.'i.l'(Iz))
obtained from Goal 1 by introducing new variables !, and p in .place of the left- and right-

hand occurrences of {, respectively. This suggests that we attempt te consiruct a procedure
headtailgen{l; l5) to achieve the generalized Goal 1 instead of the original version. Thus, the

output specification for the new procedure wm be
/zeadratlgen(l ' la) <== compute heaa'( ,) < al!(:aal(lz))

This procedure will test whether the head of ¢, is less than every element of the tail of /5, where
{; and {5 may be distinct lists. I .

We can now set aside our original derivation, and satisfy tﬁe.'brig.iriai Goal I.”by' a call to the
more general procedure instead; the resulting keadtail program will be simply -

headtail(l) <== headtailgen(! l) .
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It remains to construct the more general procedure feadtailgen, ie. to achieve the
generahzed Goal 1. The derivanon of the generahzed goal will ateempt to mn-ror the original
derzvauon our hope is that this time the top-level goal is general enough $0 that the previous
obstacle encountered in 1ntroducmg the recursive call will be overcome.

In general suppose we are deve!opmg a program whose specxﬁcanons
are of form

" flx) <== compute Pla(x)) -
where ({x) .

Then our top- Eevel goal is of t‘orm
Goal A: . compute P(a(x)) |
._ Sup.pose' that i.n.:ele\:reloping. ._*.he prog.ra;:m we enc.ou.o.tex.': a sub.g'oa-l .
B Go.a.I'EB:__:.. .c'om.pu'te' F(b(x))_:

that is not an instance of Goal A, but that is ah instance of the more
general expression

o ooﬁout'e 'P"(y).'

" Then the generalization rule propases that we attempt to construct a new
' procedure whose output specification is’ - -

g(9) <== compute P(y) .

We can thus satisfy the ongmal Goal A by a cail to the new procedure the
" resulting program f will be

Six) <m= g(a(x)) )

To ensure that the calls to the new' procedure g will be primitive, we do
not apply the generahzanon rule unless cz(x) and b(x) are pnmmve

The top-level goal of the new derivation will be the generahzed Goal A,
compute P(y). We will attempt to mirror the steps of the original
derivation; that is, we try to apply to the new goal the same rules that we
applied earlier to the original Goal A in deriving the original Goal B. Our
hope is that the goal in the new derivation correspénding to 'the original
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‘Goal B will turn out to be an instance of the generalized Goal A, and that
“ it will be achieved by a recursive call to g.” However, there is no guarantee

that the same sequence of rules will be applicablé to the generalized Goal A, - :
or that if we succeed in deriving a generalized Goal B, it will turn out to be

an instance of the generalized Goal A. If the derivation fails for either
reascn, we abandon the generahzanon and look for other ways to achieve
the orlgmal Goal B. (This is a very conservative strategy, a more
adventurous approach would be to try to use as much as poss:bIe of the
original derivation, but to seek other ways of progressing when the original
derivation fails.) '

We have postponed describing: the input specification for. the new
procedure g. Tt is to our advantage to have as few conditions in this
specification as possible, because we must check eachof these conditions
every time a procedure call to g is introduced. For this reason, rather than
attempting to formulate the new input specification in ‘advance, we prefer to
proceed with the derivation of g and add to the input specification only
those conditions that are needed to complete the derivatian. In other words,
we form the input specification for g incrementally.

Thus, if in the course of the derivation we fail to prove a desired
condition S(y), we consider adding this condition to the input specification
of g. However, every time a call glu) to the procedure g has been
introduced previously in the synthesis, we must go back and check that the
additional input condition S(u) is ;_atisfied.__lr;_pqr_ticuiér, because the main
program

flx) <== gla(x))

contains a proced'ure call "g{a(x).), we must cﬁefk :'that_;ond'iti_on S(é_(x)) is

satisfied.

Often, conditions are added to the input specnﬂcatlon sxmply to ensure

- that the output spec;flcatlon is. meanmgfut

Returning to our example we attempt to construct the more general
}zeadmdgen(l [5) that achieves the generahzed Goal I, aet

N compute izead(ll) < al!(tazl(lg))

However, [hIS goal is not meamngful unless

{; and !, are nonempty lists.

procedure
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We cannot prove this condition about our arbitrary inpuis /; and Ip; therefore, we must add it
to the input specification for the new procedure. - Because the main program-headtail(l) contains
the call headtailgen{! 1), we first check that the arguments ! and [ for the call satisfy the
proposed condition. Thus, we have to show that

{ and ! are nonempty lists.,
. : : L
l 1s a .n.onémp..c.y Izsc -
Bu_:t' c_hiis' 1s exactly the iﬁéu’t s;.)éc'i_fiéation' fo.r.'_the.ma'i.r}_ p'r'og:rér'n.._. )
We attempt to apply to the gerieralized Goal | the same sequence of rules that we applied to
the original Goal 1 earlier. Applying the vacuous rule in the case where tail(l;) is empty, we

derive the primitive program segment frue; applying the decomposition rule in the case where
tail{l5) is not empty, we decompose the generahzed Goal I into computmg the conjunction of

two expressions:

Goal 2 (generalized):  compute head(l,) < Ize.ad.ttai.l(l;).j -
and

Goal 3 (generalized): - compute Aead(l|) < allltail(tail({,)) .

The new Goal 2 is a primitive expression as before; however, this. time the new Goal 3 is a
. precise instance of the generalized Goal | :

" compute head(l,) < all(tail(l,)) ;
therefore, the recursion-formation rule proposes that we achieve the generalized- Goal 3 by a

- recursive call headtailgen(!; tailll,)) to the new procedure. The arguments /; and tail(l,) can be
.. shown in this case to satisfy the input condition that . .. SRR SRPRE

{, and tail({,) are nonempty lists,

because /; and [/, are nonempty lists {the new: input condition) and- fail(l,) is not empty (the case
assumption). The termination condition is established because the second argument tazl(zz) of
the recursive call is a sublist of the second input {,,

The camplete final program is then

headtailll) <== headtailgen(l I}
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Crwhere T T SEATH LRI A
o headtatlgen(l; o) <= if empty(tailllp))..
el Lthem true .. .G oo i e
elsehead(l|) < head(tail{ly)) and ..
headtailgen(l; taillly)) .

When it is successful, the generalization principle results in the construction of a stronger
program than originally required. If the new specifications are too general, however, the
corresponding program can actually be more difficult to construct than the original. For this
reason, we must impose conservative strategic controls on the'application of the generalization
principle. For all the examples in this paper, the only generalizations required involve
replacing a constant by a variable, or one occurrence of a variable by a new variable; in
_ general, it is necessary to replace more complex terms by variables. B

For examples of theorem-proving systefis that gereralize the theorems =
" they are about to prove by induction, see Boyer and Moore [1975], Brotz: -
[1973), and Aubin [1975] . Siklossy {1974] proposed applying this technique
to program synthesis,

B. The Formation of Subsidiary Procedures .

-We form a recursive call when a subgoal is discovered to-be an instance of the: top-level
goal. But what if the subgoal is an instance, nat of the top-level goal, but: of some other
subgoal? In this section, we show how such a situation can lead to the formation of subsidiary

procedures (or subroutines) .

As before, we will consider the general case in the context of a specific example. The
program to be constructed, allall(l'm), is intended to test whether every member of a given list {
of numbers is less than every member of- another such:list:m.. The:specifications can be
expressed as

allall{l m) <== compute ali{!) < ali{m) , _
where [ and m are lists of numbers, ..

'T.'h'e tbﬁ;iééél ghc.ml. is t].‘.l.l;ls B
Goal 1:  compute all{l} < all{m) .

As before, we will employ the vacuous rule
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Plall(l)) => true  if ! is the empty list
and the decomposition rule
Plall{l)) => Pl{head(l)) and P{all(tail{l))}  if ! is a nonempty list.

In the case in which / is empty, the vacuous rule reduces Goal | to the primitive program
segment frue, in the other case, the decomposition rule reduces the goal to computing the
con junction of two expressions:

Goal 2:  compute kead{l) < all(m)
and
Goal 3:  compute ali(tailll)) < a!!(rﬁ) .

Goal 3 is discovered to be an instance of the top-level goal, with the inputs / and m replaced
by tail{l) and m. Therefore, the recursion-formation rule replaces this goal by a recursive call
lessall(tail(l) m); the input condition is easily checked, and the termination condition is proved
because tail(l) is a proper sublist of /.

We have yet to consider Goal 2; the program constructed so far has the form

allall{l m) <== if empty{l)
. them true.
Celse ... and.

adlallitaitl) my).

Goal 2, compute kead(!) < all{m), is decomposed in a manner similar to Goal |. In the case
where m is empty, the vacuous rule transforms this expression to the primitive program
segment frue. In the other case, the decomposition rule reduces this goal to computing the
con junction of two expressions: ' o

Goal 4:  compute head{l) < head(m)
.’
' ‘Goal 8:  compute head(l) < 'd!l(td_il(m))';‘ :

Goal 4 is a primitive expression that can be computed directly.” Goal 5 is an instance not of
the top-level goal but of the intermediate Coal -2, compute Aead(!) < all(m), with the inputs /
and m replaced by ! and tail(m). This suggests that' we might achieve Goal 5 by a recursive call
not to the entire program allall but to the segment of allall that achieves Goal 2. For this
purpose, we must introduce a subsidiary procedure keadall{l' m) corresponding to this segment.
Thus, the output specification for the new procedure will be
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headall{l m) <n= compute head{l) < all(m) .

(This procedure tests whether the head of ! is less than every element of m.) Then we can

achieve Goal 5,

compute head(!) < all(taillm)),

by a recursive call seadall(l tail(m)) to the new procedure. o

In general, suppose we are developing 'a program whose specifications
are of the form

flx} <== compute P(x}
where Q(x), -

and we encounter a subgo'at.' ' |
: Go.al B c.omp;rte. R(z) o |
which is an instance of some previously ge.n.e.rlated subgoal
Gﬁal At | c.on.'lput.e.;‘i.(x). . o |
We assume that Goal A is some ancestor 6f...:00:ai:'B'.othér. tha.n”t.h:e top-

level goal. The procedure-formation rule proposes that we introduce a new
procedure g whose output description is

glx) <== compute R(x), .'

so that we can’ achieve Goal B by ‘a recursive call glt). Then we set'aside
the original derivation for Goal A, and achieve the ‘goal by a call g(x) to
the new procedure,

As in the previous section, we prefer to formulate the input
specifications for the new procedure g incrementally, rather than attempting
to express this specification in advance.. Again, it is to our advantage to
have as few conditions as possible in the input specification for g, because
each of these conditions must. be. checked every time a call to. g is’

._introduced.. We add. to the new input specification only those conditions .

that are needed in the course of the derivation of g, ..

~ Thus, if in constructing the procedure g we fail to prove some condition
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3(x), we consider adding this condition to the input specification for g.
However, every time a call g(u) to the new procedure has been introduced
earlier in the synthesis, we must go back and check that the additional

_ input condition S{u) is satisfied.. In particular, because the main program f.
now contains a call g(x) to achieve Goal A, we must check that S{x} holds * -
when this call is executed. For this purpose, we may use the input
specifications for f or any of the case assumptions that occur: in the

derivation of Goal A.

Goal A, compute R(x), now becomes the top-level goal in the
construction of the procedure g. Initially, we mirror the steps- of the
original derivation; that is, we apply in the new derivation the same
sequence of steps that we applied ongmally, adding conditions to the input
spec:ﬂcatmn of g as necessary Goal B, compute R(r) w:ll agam be'

_ introduced, and will again be an instance of Goal A compute R{x}. o
time, however, Goal A is the top- -level goal 50 the recursion- formauon rule
"can be apphed to satisfy ‘Goal B wnth a recurswe call g(r) prov:ded that_'___'_ i
the input and termination conditions are satisfied. ‘This input condition for
such a recursive call is the same as usual; however the termination
~ condition is more complex, and will not be discussed until Section 3D.

We may need to achieve other goals to complete the derivation of the
main procedure f and the subsidiary procedure g. Of course, in continuing
these derivations we may introduce still more subsidiary procedures.

Returning to our allal! example, recall that we developed a s:ub.groa.l
compute kead(l) < all(tail{m))
(G'dai_'s), which we observed ro_'b_.e an instance of its ahcestq_r su_bgoa_t': .

compute lzead(!)'; :a'll(::n“)

386

(Goal 2). Therefore, the procedure-formation rule suggests mtroducmg a new procedure,

headall, whose output specification is

headall{l m) <== compute head(l) < allim) .

The partial program description derived from Goal 2 is set aside; this goal is now satisfied

by a call feadall(l m) to the new procedure. Thus, the final aellall program i

allall{l m) <== if empty(l)
then true
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dlse headallll m) and
; allall(taal(l) m)

We have yet to complete: the construction of the subsxd;ary procedure headall. The top-
level goal for the procedure is Goal 2 : :

compute lzead(z) < al!(m)-.
This expression is not well-formed unless

{ and m are lists..
and [ is not empty.

By our incremental spec1f1catlon techmque‘ we consider addmg these conditions to the input
specification for headall. Because a call headalll! m) has already been introduced in the main
program to achieve Goal 2, we must check that these conditions are satisfied when this call is
made. However, the first condition is the input specification for the main program, and the
second condition holds because Goal 2 ‘was introduced under the ‘assumption that ! is not
empty.” Therefore, thesé conditions may safely be added to the input specification for keadall.

~ To complete the derivation of the keadall procedure; we begin by mirroring the derivation
leading from Goal 2 in the original synthesis. We again introduce Goals ¢ .a.lfld 5. Goal 5,
-compute head(l) < all{tail(im)); -
is again an inst.an.ee.of Goa‘.l. 2, .
compute lzerzr.i(.l)m‘: 'au(}n:ﬁ )
However, this time Goal 2 is the top-level goal, aod tﬁe recursi.on-f.orm.ation rule can now

introduce the recursive call headall{l taif{m)): (The input and termination ‘conditions for this
call are straightforward.) The complete program we derive is thus

ad!ail(l m) <== if empty(l)
s then true
else headall{l m) and
allalf{tail(l} m) ,

where

headall(l m) <== if empty(m)... . .-
' then true
else head(l) < head{m) and
headall{l tail{m}) .
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Another Example
Using the same basic principles as in the lessall example, but employing some additional -
rules for the set-theoretic domain, we can: construct a program to compute:the. Cartesian -

product cari(s £) of two sets s and ¢. The specxfxcauons for thls program are

cart{s t) <== compute { {x¥):x¢es andy €t }
where s and { are sets.

The rules for sets employed in this synthesis are the empty-set-fb’rmation' rule, :
fu: false} => {}

(where { } is the empty set), the unianéformation rule.
{w: Plu) or Q(u)} => {u: Pu)} u {u: Qu)}

(where u denotes the union of two sets), the equality-elimination rule |
“ “’t}”m L : R

(where U and { are e'<pre551ons with no vanables in common) and the deﬂmtlon of the member -
relation € . We assume that the empty set { }, the functions kead(s) and tail(s), the union

function v, and the notations for the singleton set {s} and the pazr {s t) are among the

primitives of our target language. e

We will be very brief. In deriving the program from the specifications, we decompose the
outpuc specification into the expressmn

RECIHE x=head(s)andyet}
{{xy):xetaills)andyet},

corresponding to the case in which s is nonempty. The se.c.o.n.d subexpressmn -
{(x9):xetail(s)andyet},
can be computed by a simple recursive call cart{tail(s) ¢).
It remains to compute the first subexpression, i.e,
Goal A:  compute {(x y): x - /.zead(s)n'an"d jv;e": }

This expression decemposes further, yielding
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§ (x y): % = head(s) and y = head(t) }u
{ (x 9): % = head(s) and y ¢ tail(f) }
. iﬁ..tﬁe.:c:a.se anhICh tis nonempty '.I"hé...fir;t.su.b.ex;Jressi'on.-:-. -
{ (x y) : x - f"z'ec.z:d(:s.): and y: - /'ze.dc.i(t).:} , |
reduces directly to the primitive express'i‘o'n o
{ {head(s) head(t)) } . .
It remains to compute the second subexpression, ie,

Goal B:  compute { (x y): x = kead(s) and y e tail(t) } .

Goal B is an instance of Goal A; therefore, we introduce 2 new procedure carthead, whose
output specification is
carthead{s t) <== compute { (x 9):x = head(s)and yet} .

(This procedure computes the Cartesian product of the singleton set {kead(s)} and t.) To
ensure that this specification is well-formed, we are forced to introduce the condition . .

~$ and ¢ are sets:
and s is not empty

-as the input specification for the subsidiary procedure.. -

Then Goal A is satisfied by a call carthead(s t) to the new .procedure,.while Goal B is
satisfied by a recursive cali carthead(s tail(t)). The complete Cartesian product program is

cart(s t) <== if empty(s)
_--t!zen{.} . S
else carthead(s t)u
caritail(s) 1)} ,

where

carthead(s t) <= if empty(t) -
then{}
else {(head(s) head(t))} u
carthead(s tail(d)) .

The Cartesian-product example is derived from Darlington [1975].
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. G. The Generalization of Subsidiary Procedures

In our discussion of subsidiary-procedure formation, we introduced a proced'ure only if a
subgoal {(Goal B) is discovered to be a precise instance of a previously generated subgoal (Goal
A). We further required that Goal A be a direct ancestor of Goal B {other than the top-level
goal). However, what if Goal A is not actually an ancestor of Goal B but occurs somewhere
else in the synthesis? Or what if Goal B is not a precise instance of Goal A, but of a somewhat
more general expression? In fact, the techniques we have already introduced extend naturally
to this more general situation, as we will see in our next example. This example will also serve
to illustrate how program-synthesis techniques can be applied to transform an already-
constructed program.

Suppose we are given the following program revér:e(!) for reversing the elements of a list / :

reverse(l) <== if empty(l}
then nil .

else append(reverse(tail(l))

list{head(l))) ,

where nil is the empty list and append(l; ) is the program for appending the elements of two
lists, given by

append(l; lp) <e= if empty{l;)
then i5
else cons (head(l,)
append(rail(l,) !2)) .

This reverse program is not very efficient because its execution may involve many calls to
append, moreover, each time append is called it makes a new copy of iis first argument.

Let us consider the given reverse program to be the Sﬁeéifiéati0|1 for another reverse
program. Even though we have a program to compute the append function, let us treat
append as a nonprimitive construct. Thus, we will be forced to transform our given program
into an equivalent program that does not use eppend. Our hope is that the resulting program
will be more efficient.

We assume that we have the following rules that explicate the append construct: -,
| append(l; {p) - lo  if { is the empty list
append(l ) => cons(head(l,) S P T P T
append(tailll;) 15)) if {5 is a nonempty list,
nd append{append(l, !2)13)=> .&:.pp.en(f.(l ]..t.z.:p.p.end(lz 23)) . o
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These rules are derived from the append program itself. - In. addition, we will-use the given
reverse program as a transformation rute

- reverse(l) =>zf empty(l)
. then nil.
élse append(reverse(mal(!))
Zast(lzead([)))

We will also apply several rules based on'the properties of list structures.:
- Our tap-level goal is

Goal 1: compute if empty()
ST then nil . . :
else append(reverse(tml(!))
list{head(D))) .

The "nonprimitive” construct append appears in. the else branch of the goal. Applying the
transformation rules : RERNE

list(y, §o oo Yp) => conslyy list(yp ..o 3p)) - ifnzl-
and

list( ) => nil
to the else clause, we obtain

Applying to the subexpression reverse(tailll)) the rule for reverse, and “pulling out” the
condstlonal expressmn usmg the rule

- f(af P then s; else :2) - zf P then f(sl) else f(sz)

i we obtaini

Applying the rule.:
append(l, lo) => I if /| is the empty list
to the then clause, and applying the rule

append(appena‘(i i (2) 13) > append(l t append(lz 13))
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to the else clause, we obtain

Goal 4: compute if empty(tail(l))
then cons(head(!) nil)
else append(rever:e(taz!(taal(l)))
' ' append(hsr(fzead(faa!(!)))
~ovn cons(head{l) nil))y ..

Let us focus our attention on the e!se branch’of this goal
Goal 5: compute append reverse(mzl(tml(i)))
append(hst(ﬁerzd(razl(l)))
cons{head) nil)))..
By the rules for list, append, and cons, this reduces to
Goal 6: compute 'a"ppen'd'('re'vef:e(t'a.il(ta.i.l.(!)')).' -
. cons(head(tail(l))
" cons(head(l) nil))) .
This goal is not a precise instance of the higher-level Goal 2,
compute append(reverse(tail(l))
cons(head(l)
S 1175) SRR

because the expression. cons{head(l) nil} in- Goal 6 coincides: with: the constant ni! in Goal 2.
However, Goal 6 is a precise instance of the somewhat more general expression

compu.te a pfen.d.(fez;erse(t.cii.f(l.)). |
cons{head(l)
m)},

obtained from Goal 2 by replacing the coristant h'_i!. by a h.éw_{rar_iablé'ﬁ'z."

We have developed a suuauon in whichi a subgoal is a prec:se instance,
not of the previously generated subgoal, but of a somewhat more general
expression. In other words, we have found that

Goal B: compute R(b(x))
| and the prekusiy generated

Goal A:  compute R{a(x)).
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are both instances of the more general expression
compute R(y}.

(Note that we do not need to assume that Geai A is actually an ancestor of
Goal B, or even that both appear in the synthesis of the same procedure.)

In this situation, the extended procedure—formation. rule. proposes
introducing a new subsidiary procedure g(y) whose purpose is to achieve
both goals. The output specification for g will be

gly) <u= cdmpbte- R(y). .

We intend to achieve Goal A, compute R(a(x)), by a call g{a(x)), "and to
achieve Goal B, compute R{b(x)), by a call g{b{x)). (In the special case
where Goal A is already the topﬂlevel_'goei: of some procedure that acHieves
it, and Goal B is a precise instance ef Goal A, there is of course no need to
introduce a new procedure to achieve Goal A.)

The input speci'fica.'tibh for the new 'procedu're.'g‘.' is formed "incremen'taliy |
as before. The top-level goal in the derivation of g is

Goal A (generalized): compute"R(y). .

In_constructing the subsidiary program g, we begin by attempting to mirror.
the original derivation leading from Goal A, adding conditions to the input. -
specification as necessary. Alfl the techmques presented prevmusly can then

be applied to complete the derivation of g B e

Returning to our example, recall that the extended procedure-formation rule proposed
intreducing a new subsidiary procedure reversegen(l m) to compute the more general expressxon
Thus, the output specification for reversegen is

reuersegen(z m) <== compute append(reuerse(tazl(i))
i ' ' cons(izead(!)
m))

{Intuitively, the reversegen(! m) reverses a nonempty Ixst { and appends the resulc tom )

Now, Goal 2 in the derivation of the main program is achleved by a call reversegen(l nil) to
the subsidiary procedure. The final reverse program is then

reversell) <== if empty(l)
then nil
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else reversegen{l mil) .

It remains to complete the derivation of reversegen. The top-level goal for this derivation is
obtained directly from the output specification:

Goal 2 (generalized): compute append(reverse(tail(l))
cons(head(l)

.- To ensure that this expression is well-formed, we add the conditions: -

“and m are lists
- and { is nonempty - &

incrementally to the input specification for the reversegen procedure. We then attempt to
mirror the original derivation leading from Goal 2. We succeed in applymg the same rules as
before, ultimately obtaining ST : : :

Goal 6 (generalized): compute append(reverse(tailtail(l))
cons(head(tait{l)) . -

cons{head(l)

m)) .

This time, the generalized Goal 6 is indeed an instance of the generalized Goal 2, obtained by
replacing ! with tail(!) and m with cons(kead{l) m). Therefare, we can achieve the new Goal 6
by a recursive call reversegen{tail(l) cons(head(l) m)} to the. subsidiary procedure The final
. Teverse program we obtain is thus. ' SUTERPERTR =

reverse(l) <== af empry(!)
then nil
else reversegen(l nil)

where

rever:egen(! m) <mm zf empry(rm!(l))
. : © then cons(head(d) m)
.else reversegen(tail(l) - -
. cons(head(l) m))

. This is_a better reverse program than the one we were originally given.. Not-only has the
_expensive append program been eliminated, but by good fortune the new procedure reversegen
we have obtained is of 2 spec1al f‘orm. for Wthh :he recurs;on can be :mpiememed efﬂc:ently
without the use of a stack '
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The reverse example follows Burstall ‘and Darlington {1977). Their system
does not perform the generalization auton_naticaily. _

D. Systems of Mutuélly-ﬁécursive Procedures

In the above examples we have used the.usual techniques for showing the termination of
the programs and procedures we construct. However, certain situations arise in intreducing
subsidiary procedures that require this technique to be strengthened. In particular, we can
form systems of mutually recursive procedures, ie. procedures each of which may contain calls to
the others. Let us see how such a system can emerge

Suppose that one subgoal in the derwatlon of a subsxdlary procedure gis achleved by a call
to the main program f. Then the program f will be expressed. in terms of.-a call to the
procedure g,

o eon g(u) L

while g will be expressed in terms of a call to the main program f,
g == fOh

© Such a system of. mutually récursive procedures can fail to. terminate, say if fcalls g, g calls
£, fcalls g again, and so on indefinitely. The naive approach for showing the termination of
such a system is to show that all the inputs and arguments be!ong to some well-founded set W,
and that -

udxand v <y

under the ordering < of W. However, there are systems whose termination cannot be shown by
this approach; for example, if » is x itself, then no well-founded ordering will allow us to show
u < x. Furthermore, in some systems, f and g may apply to different domams.f may apply to
lists, say, and g may apply to numbers; in: such- a: case; it may be difficult to construct a single
well-founded set that contains the arguments of both f and g.

© To show the termination of a system fiv fz, f3, "'fn"'of mumally'retui-sive-procédures,

we resart to a more general method We fmd (as before) a smgte well- founded set W with an
o:dermg <. In addmon, we find a fermination functaon T; correspondmg to each procedure fis

such that T; maps the arguments of f; into W and such that, whenever 2 call fj(t) oceurs in the

execution of the procedure f;{x), we can establish the termination condition
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Tj(f) < Ti(x) .

This suffices to prove the termination of the system, because if there were a computation
containing an infinite sequence of calls '

fdlta) v folty) fc("c) AR
the corresponding sequence
Ta(ta) v Tb(rb) N Tc(t‘:) y e

of elements of W would be infinitely decreasing, contradicting the definition of a well-founded
SEt_ . : . *

To illustrate this. method, we will briefly consider this simple example of a system of
mutually recursive procedures to compute the ged of two nonnegative integers x and ¥ :

ngO(x y) Gt i‘fx = 0
Cthemy
else ged (x y)

ged(x y) <== ifyzx
then gedy(x )
else gedalx y)

gedy(x y) <wa ged (% y-x)
gedg(x y) <== gedoly x) .

For this example, the naive approach is to show that the inputs (x y) and the arguments of
each procedure call belong to the well-founded set W of pairs of nonnegative integers, and that
the arguments of each procedure call are less than its inputs under some well-founded ordering,
such as the lexicographic ordering. This approach fails here because, for instance, the main
program gedglx 9) executes a procedure call gedi(x y) whose arguments are the same as the

inputs.

1t suffices, however, to take W to be the set of triples of nonnegative integers, under the
lexicographic ordering < Corresponding to each procedure ged; we have a termination

function T; :
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Tolxy) =(x92),
T =y D),
Tolx 9} =(x90), and

Talxy) =(x90).

Now, each time a procedure call gcdj(u v) is executed within a procedure gedi(x ) we need to

show the termination condition
| .T;j(u. v < f;i(x y}. '.
' - For example, because gedolx 9) calls ged)(x 9) when % is not zero, we have to show |
: __.(xy”_;.(xyz)'_ L L S :

which is clearly true under the lexicographic ordering. Because geds(x y) calls gedg(y x) when y
is less than x, we have to show R .

(px2)<{xy0),

which alse holds under the lexicographic ordering since y <’ :
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4. STRUCTURE-CHANGING PROGRAMS

A. Straight-Line Programs

The programs we have been developing up to now have beeri ‘structure-maintaining
_ programs: they do not alter the value of any variable or change the configuration of any data
structure. Thus, any condmon that is true before executmg such a program will also be true
afterwards. In this section, we extend the techniques we have already introduced to permit the
construction of structure-changing programs; these programs can reset the values of variables,
change the contents of an array, or alter the structure of a list or other data ob ject. (Commonly,
such changes are called side effects; this term has the unfortunate connotation that the effects
- are undesirable, rather like a headache.) In executing such a program, a condition that was
previously false can be made true, and the opposite.

For example, a program that merely outputs the maximum.element of an-array is a
structure-maintaining program; its execution does not change the contents of the array. On the
other hand, a program to sort an array in place is a structure-changing program, because the
contents of the array may be changed.

The basic prmc:pies of program construcnon mtroduced earher (such as, condxtlonal
formation, recursion formation, generalization, and procedure formation) extend naturally to the
development of structure-changing programs. In addition, we will need some basic principles
that specifically pertain to this new class of programs.

To express programming problems that require structure changing, we need to introduce
. hew constructs into our specification language. To express programs that solve such problems,
we need to mtroduce new prlmmve statements 1nto our target Ianguage

' To the specification language we add the new construct
achieve F',

where P is some condition. The meaning of this construct is that the cotresponding program
segment is to cause condition P (o become true. (Thus achieve x = 2 can vyield a program.
segment that sets ¥ to be 2) - ' :

We also extend our target Ianguage to mclude assxgnment statements, such as wvariable
. assignments, e.g., . : :

u+t,

array assignments, eg.,
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alilet,
and list assignments, e.g,
head(l) « t and tailll) « ¢ .

The effect of these statements is to change the value of the vanabte u, tﬁe conterits of the
array e!ement ali), and the head and tail of the list , respectwely B

“We will infroduce other specxfxcanon and target-language constructs’ in ' the context of
specxf ic examples -

- Let us introduce rules that explicate the achieve construct ‘and relate it to the assignment
statements. For instance: : S :

© The achieve-elimination rule
“‘achieve P => prove P'." *

This rule expresses that to achieve some condition P, it suffices to prove that Pis a]ready true.
The rule is generally apphed in conJunctxon wuh ' - -

@ The prove—elzmmanan rule:
prove true => A,

‘where A represents the empty program segment: Together, these rules allow us to remove from
the program description any subexpression of form achieve P, where P can be proven to be
true. Because prove is a nonprimitive construct, a program segment containing a
subexpression prove P must be transformed until the subexpressmn is eliminated, ie., until we
prove that P holds when control passes through the corresponding point. ..

. 9 The variable~assignment formation rule
achieve P(u) => prove P{1)
uet for some ¢

_ where u is a variable and 7 is an expression. This rule expresses that if: the condition P(¢) is
true, we can achieve a condition of form P(u) by the variable assignment u « ¢.

Let us illustrate how these rules can be applied to construct a program (0 achleve x = 2.
T he specifications for the program are o -

maketwolx) <== achieva x = 2,
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Qur top-level goal is therefore
- Goal 1:: achievex=2. =

_ Two of the above rules match this goal. The achieve-elimination rule transforms this goal into
the subgoal '

‘Goal 2: '.'pro.\'le'x.a 2,
“which fails. The variable-assignmient formation rule, on the other hand, leads to the subgoal

" Goal 3¢ “provet=?2
‘xeto forsomet.

Applying the rule for equality,
Us=u => true,

forces us to take ¢ to be 2 itself: we obtain

Goai 4; prove true
Xe2.

Finaily, the prove-elimination rule yields the ultimate program

maketw_o(x) <== X« 2.

B. Conditional Programs

Let us illustrate how the conditional-formation rule extends to allow the introduction of tests
into structure~changing programs. For this purpose, we will construct a program sort2(x y) to
sort the values of two variables x and 9. We will assume that the target language contains the
new instruction interchange(x y), which has the effect of exchanging the values of the variables
x and . This instruction is described by the interchange rule. .

achieve P{u v) => prove P{v u)
interchange(u-v)., -

where u and # are variables.

The output specification for the sort2 program is
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sort2(x y) <== achieve x s § and perm{{xg yo)(* 3))-.

Here, perm{(xg yoXx %)) means that the values of x and y are a-permutation: of their original
values xg and yo. [In the following, we will abbreviate this condition as perm{(x y)).] This
“condition is necessary because, were it omitted, the sort2 program could achieve x <y simply by
resetting x and y, say to | and 2, respectively. However, the output specification” for this
program is to achieve two conditions at the same time; such goals require special treatment and
will not be discussed until the next section. The purpose of this section is merely to illustrate
__conditional formation in structure~changing programs. Consequently, we will ignore the
bermutation property and pretend that the output specification has only the one condition,
achieve x < y. We will ensure that the permutation property.is preserved by temporarily
allowing interchange(x %) to be the only structure-changing primitive in our target language.

Cur top-level goal is therefore
Goal 1:  achievex <y.
The achieve-elimination rule,
achieve P => prove P,
transforms this goal to form the subgo‘al
Goal 2: provex <y

We can neither prove nor disprove x < § -~ x and y are inputs == 50 we introduce a case
analysis based on this condition.

Case y < x: Here, we cannot achieve Goal 2, so we seek alternate ways to achieve Goal
1. Qur interchange rule,

~ achieve P(_z_i._ v) => prove Plv u) _
el ] interchange(u vy,

‘causes us to transform Goal I'into "

Goal 3: proveysx
interchange(x y) .

However, we are assuming that 4 < x in this case. . Therefore, the subexpression prove y < x is
eliminated by applying the rule

uso=>true ifu<vy,
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followed by the prove-elimination rule, Consequently, we generate the program segment.
' interchange(x y) '
in this case. It remains toc consider the alternate case.

- Case ¥ : < y Here, Goal 2 prove EE: b2 1s achxeved by the prove ehmmauon rule and
"we are Ieft with the empty program segment A

Our final p'fograr'h is therefore
sortx y) <mm ifg<x

then interchange(x ¥)
else A

or, equivalently,

sort2{x y) <== if y < x
then interchange(x y)

C. The Weakest-Precondltxon Operator

+1n f‘ormulatmg the specxf:cat:ons for the sort2 program in"the previous: section, we avoided
1nclud1ng in the output specification the condition- perm((x 9)); otherwise, the top=~ level goal
would have been

achieve x < y and perm{(x 3)) .

Special difficulties arise in approaching a simu!taneous-—ééal prab!em, i.e.,. a goal.o.f the form
achieve P and P5, | S

where P and P are to”holci si’mt..ltté.n'e:ot.m]y:; .We cannot always dec.olmglaﬁse.. such a goal into a

sequence of two goals

achieve P,
achieve P, ,

or

achieve P,
achieve P,
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becalise in the course of making the second condition’ true we may very well make the first
false. For instance, in the sort2 problem, we can achieve ¥ < y by setting ¥ to ] and y to 2, and
we can achieve perm{(x y)) by setting ¥ and % to their original values, but no concatenation of
these two programs will sort x and .

To handle such simultanesus-goal problems pmperly, we need to analyze whart effect a
given program segment ‘has on the truth of a given condition. For this purpose, we define the

concept of the weakest precondition; we will then use this concept to forniulate a program-
" modification technique that will serve as the basis for our simultaneous—goal principle.

If S is a program segment and P is a condition, we det‘me the weakest precondatmn wp(S P)
to be the condition P’ such that

P’ is true before executing §
if and only if
P is true afterwards.

(We will assume throughout that § terminates) We will also cal'i'wp(S P) the result of passing
P back over S. Thus, the weakest precondition for the execution of the program segment
¥ « x+] to achieve the condition x 2 2 is x+1 2 2, i.e, x 2 I. In other words,

wp{x ex+l x22) is x21.
We can represent the properties of the weakest-preconditibn operator by transformation
. rules. Some of. these rules tell how to compute the. weakest precondition for particular
specification- or target-language constructs: . -
wp(A P)=>P
wplu«t Plu))=> P(t)
wp( interchange(u v) Pl v) ) => Plou)

w;b( :,fq then Si else Sz P} => (if q then wp(S, PY) and B
{if not ¢ then.wp(S, P))

wp( if gthen S P ) => (if q then wp(S P)) and
(if not ¢ then P)

wp( S8, PY=>wp(S, wp(Sy P))

wp( achieve Q P ) => true  if Q implies P .
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The weakest-precondition rule for the recursion construct does. not tell.us how to compute
the weakest precondition, but only how to prove by mathematical induction that a given
condition is indeed the weakest precondition for a recursive call. Suppose that f{s)is a cail to a
procedure - : :

fix) <== B(x),

and that < is a well-founded ordering. Then, for any condition P(x) , we have

wp(fis) PGsH = PY(s) '
if we can prove

wp(B) P - P
under the inductive assumption that
wplfe) P(t) - P

for any ¢ such that ¢ < %, (Often; < is taken to be the well-founded ordering used to prove the
termination of f.}

~ In addition ‘to rules that give the weakest preconditions for the various 'p:fdgramming-
" language constructs, there are rulés for computing the weakest precond:tlons for specmc
conditions. For example,

wp(S true) => true,

Cwp(S fa[se) => falie,

wp(S Pyand Po)=> wp(S Pl) and wp(S P2)
wp(S Py or Po) => wp(S P} or wp(S Po), and

wp(S not P) => not wp(S P) .

When a new construct is defined in terms of other constructs, we can often deduce the
weakest-precondition rule for the new construct. For examiple, sort2(u v) is the program

ife<u
then interchange(u v} . .- ..

Therefore,
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cwp (sort2uwv) Pluw)) v o

= wp (if v < u then interchange(u v) - Pluv) )

= if v < u then wplinterchange(u v) Puv)) and:
if u<wvthen P{uv)

= if v < u then Plv u) and
if u<vthen P(uv).

We thus obtain the sort2 rule” =~

wp( sort2(u v) Pluw) ) =>(f v < uthen P(v u)) and
(if u s vthen P(uv)).

On the other hand, if we introduce a new construct into our specification or target language
that is not expressed in terms of other constructs, we must also provide weakest-precondition
rules for the new construct. For example, we have used the construct perm(l) to denate that the
values of the variables in a list { are a permutation of their ongmal values; we must therefore
introduce rules such as

wp( interchange(u v) perm(l) ) => perm(l) if u and v belong to ..

In. other words, interchanging the values of two of the variables of the list does niot affect the
permutation property. Similarly, we will introduce the construct only [ changed to denote that
no variables other than those in { are changed by the program segment; we will also mtroduce
the cor respondmg rule

wpluw«t onlylchanged ) => only L changed ifuel.

The weakest-precondition operator is used to express many transformation rules that
manipulate structure-changing programs. Two regression rules are obtained directly from the
definition of the weakest precondition:

S w> prove wp(S P) - .
prove P S '
and
$ o achievewpls”)
achieve P S.

That is, to prove or achieve a condition P after a program segment §, one may just as well
prove or achieve the weakest precondition wp(S P} before S.
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We have two additional rules for pushing goals back into conditional expressions:

(i ¢ = ifg

then 8, then 3,

else So) achieve P
achieve P else 5 o
o achieve P

and (consequently)

fq => ifq
then S} then S,
achieve P - achieve P -

else achieve P .

Let us see how these concepts can be applied to obtain a systematic program-modification
technique, which will eventually be used in the simultaneous-goal rule. .

_ The weakest-precor\d:tion operator of Duksh’a [1975] was motwated by
“the program-verification technique of Fioyd {1967] and Hoare [1969].

D. A Program-Modification Technique

Imagine that we have a program segment § that is a concatenation 35, of two instructions.
Suppose we wish to alter § to achieve some new condition P. The most straightforward
approach is to add new instructions to the end of § that achieve the new condition; we may
. describe the desired modification as
5

5y
achieve P .

__However according to the regressaon Tule of the prevxous ‘section, we may JLISC as. well add new-
' mstruct:ons to achleve wp(Sz P) before Sz. ie, we can pass P back over 82, yleldmg o

© achieve wp(82 P)
S2.
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Similarly, we can pass wp(S, P) back over 8| : . -

achieve wp(S; wp(S, P))
S
Sz

Thus, we can make modifications at any point in  to achieve the desired condition.
For example, suppose that § is a program segment

yex
4« g+l

and that we want to modify § to achieve the relation y 2 this.mod_iﬁcation task may be
expressed as

yex

y <yl .

achievey22." « =~
We can certainly achieve the new condition by adding an instruction {e.g.,  « 2) to the end of
the program. But, by the regression rule, we can also transform the above task into

yeX
achieve y 2 |
4« 9+l

and then into

achieve x 2 | .
yex
Sy eyl

[In the first transformation, we relied on the fact that wp(y«y+l 9= 2 )isg+1 22 ie,92 1;
the second step relied on the fact that wp(y « x y2 1) isx 2 1.} Thus, we can also perform
the required modification by adding instructions in the middle of the program (eg.y « 1yorat
the beginning {eg., x « 1) .

_ Of course, a program segment modified by the above techmque may no longer achieve the

' pu: pose f t‘o: which it was or lgmai[y mtended Suppose that a program segment 3 was orlgmaily
intended to achieve some condition P, and we want to modxfy S to achieve a new condition Py
as well as the original condition Py. To ensure that the modified program still achieves its
original purpose, we protect P, at the end of § during the.jm_odiﬁcatioﬁ_ process. This
modification task is denoted by
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s e
achieve P,
protect Py .

The purpose of the protection condition protect Py is to block any modification that does not
allow us subsequently to prove the protected condition P,. Let us see how such a protection
condition is checked.

Returning to the previous example, suppose in modifying the program segment

yex
Y e+l

to achieve the new condition § 2 2, we want to protect the condition x < y that the program
originally achieved. Our task can thus be described as

Goal 1: 9yex
y e g+l
achieve y2 2
protectx <.

We have seen that we can achieve the desired condition y > 2 by introducing statements at the
end (e.g., y « 2), the middle {e.g, y « 1), or the beginning (e.g, ¥ « 1) of the program. To check
the protection condition for a proposed modification, we try to prove that the protected
condition still holds in the modified program. Thus, to see whether iniroducing y « 2 at the
end of the program violates the protected condition, we establish the subcroal

Goal 2: yex
y(—y+]
y«2
prove x <y,

This means that we must prove that ¥ < y holds after the execution of the modified program.

In fact, we fail to prove this condition, so the proposed modification is rejected. Similarly,
we cannot achieve the desired condition by inserting the statement 9 « | in the middle of the.
program, because we fail to establish the corresponding subgoal o

Goal 3: 9yex
yel

yeytl
prove x <y.
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However, the third proposed modification, to insert x « 1 at the beginning of the program, does

maintain the protected condition:

Goal 4: «x « l
y«-'-'y-l-l'
prove x <¥y.

Let us see in more detail how such a proof is conducted. *

Applying the regression rule

S => prove wp(S P)
prove P S,

we develop the subgoal

Goal 6: x e}
yex
prove wp(y « y+1 x <y

e g+l C

‘The weakest-precondition rule for assignment statements,

Cwpluet Pu))=> P,
eliminates the weakest-precondition operator:
Goal 6: x« |
yex

prove ¥ < 9+
P eyl .

Again applying the regression and assignment rules, we obtain

Goal?t el
prove ¥ <'x+} -
Jex

g e+l

The condition prove x < ¥+1 can now be established by the rule -

i < t+l => true if u is a number.
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~Having verified the protection condition, we obtain the program . .

y - y + I,
wmch ach:eves both the or:gmal condmon X< y and the addnmna] condltxon y 2 2

The previous discussion neglected the strategic aspects of our program modification
technique. How do we divide our time between altering the program to achieve a new
condition P, and ensuring that a protected condition P, is still achieved? The most
adventurous strategy is first to complete the modification necessary to achieve P, and then to
_ check that Py still holds. This can be wasteful, however, because we may need to do a lot of
~work modifying the program to achieve Pz before we discover that Pl is not achieved by the
modified program. A more conservauve strategy is to check that the protecuon condmons are
maintained each time a new instruction is inserted during the modification process; thus a
. proposed mocimcatlc_m that does not achieve P may be rejected quite early. For example, if P,
is the permutation property. perm{l), that the values of the variables in the list / are to be a
permutation of their original values, we wili admit. modifications that interchange the values of
variables in /, but reject modifications. that attempt to assign new values to these variables.
This conservative strategy is adhered to by our implemented system; it is a bit too restrictive,
-~ because a modification that satisfies the protection condition: only at the final stage may be
rejected if its protection condition is checked prematurely. :

The above madification technique. allows' us to insert-new instructions into the program
segment, but not to alter or-delete ‘any of the instructions that are already there. Such
modifications may sometimes be necessary, but they are beyond the scope of cur technique.

The protection concept was used by Sussman: [1975] as an approachitoi
plan formation by the successive debugging of nearly correct plans.

k. Th;é. .Simult.‘.al..m.aous-Goall. Priﬁciplei
We have remarked that when faced with a simultaneous-goal pmbleiﬁ '
achieve P, and P,,
we cannot decompose the goal into the linear sequence.

" achieve Py
achleve Py
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because, in the course of making P, true, we may be making P, false. Forthe same reason, it
is not enough to reverse the order in which the goals are achieved. However, the program
modification technique of the previous section gives us a way of solving such a problem. To
apply this technique, we first construct a program that achieves Pj; we. then modify this
program to achieve P2 while protectmg Pl The samu!taneaus—goal rule that represents this

approach is

achieve Pl and Pz => achieve’ P; _
' ~ achieve Py '
protect Pr.

“(Of course, the roles of P, and P can be reversed) This rule éxtends naturally to the more
general problem of achieving many conditions simultaneously; we consider’ P; to be one of the
'condmons and Py to be the con_;unctxon of all the others -
Thé'simuitanebm—'gcal:'prih'ciplé does not dicate which:'c'ondit'ioh'we':'a'ttempt' to achieve
first.- In general, if we discover that one ‘of the conditions is already true, we prefer to "achieve”

that condition first, protect it, and go-on to achieve the others.- Furthermore, we may have rules
“for spec1f1c sub ject domdins that cause these conditions to be reordered. '

Let us see how the srmultaneous—goal rule apphes to a new sortmg prob!em this time we
wish to sort three variables x, 9, and z..The problem can. be specified by.

sort3(x y z) <== achieve x < y and y < z and. perm{{x § z)}
where x, -y, .and z are variables with numerical values.

We will introduce the program sort2(u v), which we constructed in the previous section, as a
primitive in the target language. Because the sort2 program was construcied to achieve the
condition u < », we can include the sori2—formation rule.

achieve u < v => sort2u v)

in our set of transformation rules. Because sorr2(x v} was specified to maintain the condition
perm{(u v)), we can add the sort2-perm rule . . :

wpl sort2u v) perm(l) ) => perm(l) . . if « and v belongto!.
The top-level goal for the sort3 derivation is
Goal 1: achieve ¥ < yandy s zand perm({xy2))..

We apply the simukaneous-goal principle; because the condition perm((x 3 z)) is already true, it
is the first to be "achieved™:
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Goal 2: . achieve perm{(x y z))
achievex syandysz -
- protect perm((x y 2)} .

Because perm({x y z)} is true 1nmaliy, we can ehrmnate the flrst task achscve perm((x ¥ z)) by
applying first the achieve-elimination rule s SR

achieve P => prove P,
and later the prove-elimination rule
prove frue => A .

We obtain

Goal 3: achievexsyandysz
protect perm{(x y 2)) .

The first task, achieve x < y and § < z, is another simultaneous-goal problem; we again
apply the simultaneous-goal rule, arbitrarily attempting ta achieve the condition x < y first.

Goal 4: achievex <y
achieve y £ 2
protectx < ¥
protect perm{(x y 2)) .

A pplying the new sort2-formation rule
achieve u < v => sort2(u v)

to the first task, achieve x <y, yields

Goal 5:  sort2x y)
achieve y s z
protectx <y
- protect perm((x y z))

..We fn*st attempt to apply the same rule to the second task, achleve y sz yleldmg

Goai 6 sort?(x y)
sore2(y z)
protectx sy
protect perm((x y z)} .
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However, in executing the instruction sort2(y z) we may violate the protected condition x < § .
(In particular, if z was initially the smallest of the three values, then sorting y and z makes y the
smallest: x and y will now be out of order.) Therefore; we are forced to backtrack and consider
alternate means for achieving Goal 5.

By applying the regression rule

S => achieve wp(S P)
achieve P S,
we derive

Goal 7: achieve wp( sort2(x y) ysz)
sort2(x ¥)
protectx <y
protect perm((x y 2)) .

We have already derived the weakest-precendition rule for the sort2 instruction; it is

wp( sort2i vy Pluv) ) => {if v <u then P{v w)) and
(if u s v then P(uv)).

A pplying this rule produces

Goal 8: achieve (ify<xthenx s2)and
(if xsythenysz)
sort2(x y)
protect x <y
protect perm{(x y 2)} .

Intuitively, the first task of this goal,

achieve (if y < x then x < z) and
(if x<ytheny sz,

is to achieve that the value of z is the largest of the three values:. if this condition holds before
sort2(x y) is executed, we know that the desired condition 3 < z will be true afterwards. This
task is still another simultaneous-goal problem, and: is achieved by another application of the
simultaneous-goal principle. We will not describe in detail how this task is accomplished. The
resulting program segment is ' AT R

if 3 < x then sort2{x z)
if x < y then sort2(y 2) .
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The corresponding goal is

Goal 9:  if y < x then sort2(x z) -
if x sy then sort2(y z)
sort2(x y)
protectx <y
protect perm{(x y z)) .

It remains to check the protecuon conditions. Intumvely. the first condmon x < y is sansf;ed
' because it occurs 1mmedlately after the sort2(x y) instruction, which achieves this relation. The
‘second condition perm{(x y 2)) holds because it is true initially and it is preserved by the three
sort2 instructions in the program. In practice, these conditions would be established by
application of the regression and weakest-precondition rules. (As we remarked, our
implementation checks these conditions repeatedly while the program is being modified rather
than waiting until the end of the derivation.)

~

The final program we obtain is

"sort3(x y 2} <== if § < % then sort2(x z) -
if x <9 then sort2(y z)
sort2x y) .

T his concludes our discussion of the simultaneous-goal rule; we wiil see further ap'p'Iicétions
of this rule in the next section, in the synthesis of a somewhat less trivial program.

An extended discussion of the simultaneous-goal problem appears in
Waldinger [1977]. A similar approach to the problem was devised by Warren
[1974], but he did not use the weakest-precondition operator. Other. methods
have been applied to the problem by Sacerdoti [1975] and Tate [1975].

J O Recursive Programs

The structure-changing programs we have constructed 50 far contain no recursive cal]s.
Our next example illusirates how the recursion-formation techniques- we have introduced
earlier can be applied to structure~changing programs

We are asked to construct a program to fmd the maximum max(a n) of an array segment
al0 : n), the list of n+1 elements @[0]," al1], .., aln). The specifications for this program may
be written as S it e e
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max{a n) <== achieve all{al0:n]) <zand
z e al0:n]and
only z changed - -

where ¢ is an array of numbers and
7 is an integer and
Ozn.

Recall that only z changed means that no variable other than z can be changed by the program;

"ih particular, this condition ensures that the final program will ‘have no surprising side effects,
and ‘that it will not satisfy its specxhcanons perversely, say by settmg z and ali the elements of
' the array segment to zero.

-~ Qur top-leve! goal is thus

Goal 1: achieve al!(a[o n}) <z and
zeald:nland
only 2 changed .

This goal has the form of a simultaneous-goal problem. The third condition, only z changed, is
of course true initially, so we decide to "achieve" it first; it will then be eliminated by the
achieve- and prove-elimination rules. The other two conditions may be approached in either
order. We obtain
Goatl 2¢ achieve all{e[0:nly <z~

achieve z € 2(0: n}

protect all{a[0: nly < z

: protect only z changed .

Assume that we have the followmg chree transformatlon rules that reiate the ail construct
and the array segment: ' : :

@ The vacuous rule
Plalllalu: w)) => true ifu>w
(any condition is true for every element of the empty segment)
: 0 The s;ngleton rule L ) | .
P(all(e[u w])) > P(a[u]) 1f Uew o

(a condmon is. true. of every element of a smgleton segmen: 1f the condmon holds for that
segment’s sole element), and
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@ The decomposition rule

Plall{alu : w])) => Plall{afu : wQEj)) and 'P(a[w]j if U<w

'(a condition’ is true for every element of a segment contammg two or more elements if the
condition holds for the final element of the segment as well as for every element of the initial
segment).

We focus our attention on the first task in Goal 2:
Goal 3: achieve all{a{0:nl)<z.

The three alf rules each match this goal. The vacuous rule requires that the segment be empty;
we know this is false by the condition 0 < n in the input specification. The singleton rule
requires that the segment have but one element, ie, that 0 = n;, we cannot prove or disprove
this condition, so we make it the basis for a case analysis.

Case 0 = n (i.e, 0 < n) : Here, the singleton rule fails, but the decomposition rule, which
actually requires that- 0 < m, succeeds in decomposing the goal into the conjunction of two
conditions. These conditions may be treated separately by the simultaneous-goal. principle,
yielding

Goal 4: achieve all{a[0:n-1]} 52
achieve a[n]l < z
protect all{ai0 : n-1)) = z...
We will consider the three tasks of this goal in turn. The first task, to achieve
all(al0: n-1) < z,
is an instance of one of the conditions of the top-level goal; therefore, the recursion~formation
rule proposes achieving it by means of a recursive call max(a n~1).. The input and termination
conditions for this call are straightforward.
We now focus our attention on the second task of Goal 4, ©
Goal 5: achievea[n]sz.
Before attempting to achieve a condition, the achieve-elimination rule always tries to detetmine
whether that condition is already true; we can neither prove nor dxsprove it, 50 we make it the

basis for a further case analysis.

Case z < alnl: In this case, we must seek alternate means to achleve Goal 5 Recait that we
have a variable-assignment formation rule- '
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achieve P(u) => prove P(1)
wet  for some_t

~ where u is a variable and ¢ is an expression. Taking P(u) to be a[n} Su, ttobe a[n] and u
 to be z. ‘we can achleve Goai 5 by the amgnment statement '

z «aln],
because a[n] < alnl.
[Note that we could also achieve Goal 5 by the array-assignment rule
alni« z >
01; the cort2 instructioﬁ
sort?(a[n] 7} ;

these solutaons would be re Jected however, because they v:olate the protected condition only z
changed.] . :

" Case a[n] < z: Here, the condition of Goal 5 is already true, and can be "achieved" by the
empty program. or -

We have achieved Goal 5 in both cases; the conditional-formation principle yields the
program '

if z < aln] then z « aln] .
We have thus comp]eted the second task of Goal ‘i
- We now proceed to consider the thu‘d task, which-is o check the protecnon condition -

Goal 6: mex{a n-1)
if x <aln]
then z « aln]
prove all(a[0: n-1]15 2.

Applying the prove-regression rule

.S o =>..pcovéw'p(3. P)
prove P 3,

the weakest-precondition rule for the if-then construct. ... -
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wplif gthen S P )=> if g then wp(s P) and
ifnotgthen P,
and the weakest-precondition rule for the assignment statement
wplu et Plu))=> P@),
we obtain

_Goal 7: .max(@ n-1) .
prove if z < aln] t/zen a!l(a[O a-11 ¢ a[n} and
if aln] s z then all(al0 : n-1]) s 2
if z < aln)

then z « aln] .
Note that max{a n) was speeified to achieve the 'cendition
au(a[o:n]).s.z.: R R e
therefore. by mathematical mducnon, the recursive call max(a n-1) ca.n. be assumed to achieve
au(a[o n—i})<z S : o . .
The second condition we are asked to p.ro‘:ve.
if a[n] < z then all(a[O n-i}) sz,
follows .at once. The fxrst condltlon
zf z < afn] rlzen all(a[O n-l]) s a[n}
follows directly by the transitive rule.

This completes the final task of Goal 4, and thus we' have achieved the condition of Goal 3,
that a/f(el0 : n]) < z, for the case where 0 < n. The remaining case is more easily disposed of.

Case n = 0 : Here, the segment af0 : n] has only one element, and the singleton rule
reduces Goal 3 to the following:

Goal 8: achieveaf0}<sz "
“This conditlon is achleved by the ass:gnment statement
zZ e a[O]

as before
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We have constructed program segments that 'a_'ch"i'eve Goal 3 in each case; the resulting
conditional segment is o

ifn=20

then z « al0)

else maxia n—-1)
if z < aln]
then z « aln] .

There are three additional tasks in Goal 2 that we must’ pérform: We must achieve the
condition " o o

zeal0:mn);

this condition is already true, and may be proved by application of the regression and weakest-
precondition rules, Next, we must check that the protected condition

all(af0: n)) s 2
'is satisfied; this is true, because we have just constructed a segment that achjeves this condition,
and in “achieving" the additional condition z ¢ a[0 : n] we made no changes to this segment.
Finally, we must ensure that the protected condition
only z changed
is satisfied; this is true, because only assignments to z occur in the program we have constructed.
Having established the protection conditions, we are left with the final program
max{a n) <== ifn =20
then z « af0]
else max{a n—1)

o dfr< aln) .. .

thenzcaln] .

G. The Modification of Recursive Programs .

The program-modification technique we. introduced. for loop-free. programs. extends
naturally to permit the modification of recursive structure-changing programs.

Assume we are given the program max(a n) constructed in the preceding section; this
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program finds the value of the maximum element in an array. Suppose that we wish to extend
that program to obtain a new program maxindex(a n) for finding the index of that maximum
element as well as its value. In other words, we want to modlfy the program max (o achieve the
new condition : Ce -

elyl=zand 0y <n
while protecting the original condition o
all{afl0: n)) < z and z ¢ a0 : n}

that the program was intended to achieve. Note that we do not protect the condition only z
changed that the program ongmaliy achieved; this is because we want to change the value of y
as well as z. Instead, we include

only ¥, z changed
among the new conditions to be achieved by maxindex.
Our modification task is thus specified as follows:

maxindex{a n) <== ifn =0
then z « a0}
else maxindex(a n-1) =
if z < aln]
then z « aln]
achieve alyl = z and 0 s y < n and only y, z changed
protect all{al0: n]) s 2 and z ¢ al0 : n]

where a is an array of numbers and
7 is an integer and
O<n.

He:e we have replaced the recursive catls to max the old program by recurswe calIs to the
extended program maxindex. Goal 1 is formed dlrectly from these spec:ﬂcat:ons and will not
be copied here.

Note that it is quite necessary to protect the condition all{al0 : =]} < z; otherwise, we could
achieve the new conditions by perversely resetting z to al0] and settmg yto 0. The second
candition, on the other hand, is actually redundant; if aly] = z and.0 < y < n, then certainly
z € a[0 : n). Applying the usual regression and weakest-precondition rules, we derive
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Goal 2: zfn =
S then aChIEVe a[y] = a[O} and 0's y s n and Only y, z changed
-z« al0]

else maxzndex(a n—l)
if z < aln]
then achieve aly] = a[n] and O s y < n and only ¥, z changed

z « a[n]

else achieve alyl = zand 0 s y < n and on!y 9,2 cizanged

protect all{al0 : n)) < z and z € [0 : ] .

The task
" achieve aly) = a[O._] and 0 s ys n_.aq'd: anly y,'"z_@_f_z;rir_lge@ .
which occurs in the branch for which » = 0, is found to be achieVe& by. the assighment
ye0,

by application of the simultaneous-goal principle and the variable-assignment formation rule.
Similarly, the task

achieve aly] = aln]l and 0 < y < nand only y, z changed ,

which occurs after the recursive call in the case z < aln], is found to be achieved by the
assignrent

yen,
Finally, the task
achieve alyl = zand 0 Sy s n and only y, z changed,

occurs immediately after the recursive call maxindex(a n-—I) in the case a[n] < 7. The recurswe

- 'calt can be assumed mductwely to achleve the condmon )

a[y] =zand 0 <y < n~-land only 9,2 cftanged;
o thus the desired COﬂdlthﬂ is already true.”
| : The protected condmon

| all(a[O n]) <z a‘nd z€ a[0 n]

which was achieved by our original program max(a n), has not been affected by any of our
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_ modlﬂcatlons the only instructions we have added are ass:gnments to y The final maxindex
' program ‘we obtain is thus '

mamndex(a n) <=n zf ne
: then y «0"
Z a[O]
else maxindex{a n-1) .
if z < aln]
then yen
z «aln}.
The modification of recursive programs can be initiated by the simultaneous-goal principle
'if the program constructed to achieve one of the goal conditions happens to be recursive.

However, modification of a. given: program may also be regarded as an independent
programming task; this application is discussed further in Section 5C.
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5. IMPLICATIONS FOR PROGRAMMING METHODOLOGY

In program synthesis as we have defined it, a person formulates the purpose of the program
he wants without indicating a procedure to achieve that purpose. In practice, even the most
computationally naive user of a program-synthesis system is likely to have some idea of an
algorithm that could be employed by the desired program. This algorithm may not be entirely
satisfactory: it may not achieve all the desired conditions, it may be incompletely specified, or it
may lead to an inefficient program. Nevertheless, it would be foolish to prevent the user from
conveying this information to the system, because it is easier to derive a program from a
_ partially specified algorithm than. from a specification that expresses only the program'’s
purpose. In this section, we will show how the program-synthesis techniques we have already
introduced can be applied to transform a partially specified procedure into a complete program.

Actually, we have already seen some examples in which the Specification's had a p'fo'c'edural
component. In the maxindex example (Section 4G), our specifications were given in the form of
a complete maex program with some additional conditions to be achieved. In the reverse
example (Section 3C), the specifications were composed of a complete reverse program, which
was transformed into a more efficient equivalent. These examples were introduced to illustrate
particular program-synthesis techniques. The emphasis in this section will be on the actual
task performed.

We will consider separately three ways in which the procedural components of a
specification can be presented.

© Program transformation. The specifications are given in the form of a clear--perhaps

inefficient--program, which is then transformed into an efficient--perhaps unclear—-
equivalent.

© Data abstraction. The specifications are given in the form of a complete program that

operates on certain abstract data types, siructures (such as sets, stacks, or graphs) whose
properties are expressed precisely but whose machine representation is unspecified; the
program is then transformed to replace each operation on the abstract data types by a
corresponding concrete operation on a chosen machine representation.

© Program modification. We are given a complete program that performs one task successfully;

we wish to extend the program to achieve an additional condition, while still performing
its original task.

Although we consider each of these topics separately, the same techniques can be applied to
transform a procedure whose description is subject to ali three modes of imprecision. In other
words, the given specifications could present an inefficient procedure, expressed in terms of
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abstract structures, that needs to be extended to achieve additional conditions. Of course, there
are other ways in which the description may be imprecise besides the three we will discuss here.

A Transformation: Programs =5 Better Progrmms

Often the clearest, 51mpiest program f‘or a given. task may not be the most’ eff‘xcxent if we
attempt to construct an efficient program for the-task at once, our result is likely to be unclear,
and perhaps incorrect as well. It has been suggested, therefore, that we construct our program
in two stages: we begin by setting efficiency considerations aside for awhile; we construct as
clear and straightforward a program as possible. We then transform this program to make it
more efficient, possibly losing some clarity during the process.

It is argued that the programs prodiiced_ in’ this way' are more likely to be correct than
programs produced by the conventional one-phase method. The first version is likely o be
correct by virtue of its clarity; the second  version is ‘produced by the application of
transformation rules that preserve the correctness of the flrst version whlle lmprovmg its
eff1c1ency :

We have already seen program-synthesis techniques applied to a transformation problem, in
Sectxon SC In that example we were gwen the follownng program for reversmg a list:

reverse(l) <==zf empty(l)
- then nil . RS
else append(reuerse(tad(!))
list{head(l)} ) .

Cappend(l L) <= if empty(l))
then !2
else cons(head(i )
append(rail(! ).

Treating this program itself as the specifications, we developed the following system of two
programs for performing the same task: - . .

reverse(l) <== if empty(l)
then nil
else reversegen(l nil) ,

where
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' reversegen(l m) - <a= zf empry(mz[(l))
o then cons(head(ly m)
else reversegenitail(l)
cons{head(l} m)} .

The original reverse program is quite inefficient: each execution may require many calls to the
append program; each of these calls to append produces a new copy. of its first argument. On
the other hand, in the final system of programs, the expensive append operation is replaced by
the economical cons. Furthermore, the recursion is of a special form that can be evaluated
without the use of a stack; in fact, this system can be converted to the following iterative reverse
program by application of a recursion-removal transformation. rule

- reverse(z) <==zf empry(l) _
then output(nil)
else m« nil o
while not empty(tail(l))
do m « cons(head(d) m) o
! e tail(l)
output{cons(head(l) m)}

'B'y expibiting the pfopé(ties of the 'o"perétions' in the origin'al reverse prdgram, wc have
managed to transform it to a more efficient program that achieves the same purpose by a
. fundamentally different method,

In this éxample. our sp'eci'fic'ati'd'n's were gii’en in the form of a compiefe progrér'n', with no
other indication of the purpose to be achieved. We were fortunate to perform the same task by
an entirely different and more efficient method. In general;. if the specification of the program
is purely procedural, such radical improvements are difficult to achieve; in omitting any
statement of purpose from the given specific’étibn,' we are biased toward adopting the algorithm
of the given program, instead of seeking to achieve the same purpose in a new way.

For example, suppose that we want to construct a progi'am to sort a list of numbers. Qur
description of the desired program might be =~~~

sorz(l) <== zf empty _
“then mil '
else merge(head(l) sort(tazl(l))) v

where '
merge(s 1) <== if empty(l)
then list{x)
else if x < head(l)
then cons(x {)
else cons(head(!)
merge(x tail(l))) .
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. The sorting method . employed by this program is intrinsically inefficient, The program
_contains no explicit statement that the fist it produces is intended to be order ed. ‘Without such
a statement, it is difficult to imagine a system stumbling across a more efﬁc:ent sorting method

A more practxcable approach wou!d be to have the user speczfy the purpose of the given
' piogram along w1th the program itself. The system would then apply correctness—preserumg
'tmnsformatwns which could alter the gwen program to achieve the same purpose in a
fundamentally different way.

~ The pure program transformataon approach has been “advocated by
Burstall and Darlington [1977], Knuth [1974}, Standish ‘et al. [1976], and
others, Gerhart [1975) introduces” a - systew of ‘correctness-preserving
- transformations. An experimental system to improve programs by successive.
transformation was implemented by Darlington and Burstall [1976].:

‘B. “Abstract Data Structures
Out of the different diagnoses of the causes of our programming ills, there arise different
therapies. One school of thought attributes much of the difficulty of ‘programming to the

process of encoding high-level data structures in terms of the constructs available in the target
programming language. '

. According to this school, we design an algarithm in our minds in terms of abstract data
structures, structures such as sets, queues, or graphs whose properties are specified but whose
precise implementation is undetermined. In these terms, the “mental algorithm" is

.. straightforward and easy to formulate,

The difficulty arises when we attempt to express our mental algorithm in terms of the -
primitive constructs of the target language, such as arrays or lists. Because the machine
representations at our disposal do not correspond precisely to the abstract data structures of our
mental algorithm, an act of paraphrase is invoived in the programming process. We must.
simultaneously formulate our algonthm and express it in terms of machine operations.
Furthermore, there are often many possible. implementations for ihe same abstract data
structure; only after we have completely described our aigorithm in abstract terms, and can see
what operations are to be performed on the structure, can we decide which implementarion will
lead to the most efficient program. : ' '

1t has therefore been proposed that we construct our progr:ini in two s't.ages:. we begin by
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constructing a clear program in terms of the abstract data’structures of our mental algorithm;
“only then do we choose a"representation for'the abstract data’structures, and transform our
“program accordingly. For instance, we would first express our algorithm in terms of high-level
ope:auons such as popping an element from a queue or addang an element to a set; then we
would decide how to represent the queue or set, as an array or list, ‘say.” Facilities might be
| prowded to perform the reqmred transformations automatlcally, or at Eeast to ensure that they
are done correcily.

The transformation process may be regarded as a program-synthesis task. The specification
for this task is the program expressed in terms of the abstract data structures; the operations on
these structures are consndered to be nonprimitive constructs. The propemes of the abstract
data structures and their operations are stated as transformatmn ru!es The final program will
be equivalent to the orlgmal but all the nonpnmmve abstract operauons will have been
refarmulated in terms of primitive target-language constructs.

For example, suppose we are writing a program that deals with queues as an abstract data
structure. We may have three operations on a queue: a push operation, which inserts an
element at the end of the queue; a top operation, which produces the first element of the queue;
and a pop operation, which removes the first element from.the queue.. . Informally, we can
represent the properties of these operanons by the rules

-.pus}z(y queuelx; .. xn)) => queue( xn y)
;e.p(c.gueue(y.x, an)) u:;:y | x;“. qﬁeee(y Xy . .. ns ie ﬁohemﬁtf_..
pap(queue(y x, xn)) => queue(x, :xp) o if quenely x, ... x,) is nonempty.

'Now',- suppose that we have'written our proéeene" i.h 4tér'm§ .of as.stract (.q.u'e.t.xes'.. | .b'u't that our
target programming language requires us to represent our queues in terms of lists. The obvious
repre.senta.tion_ie ;o _enche. the q.uel.fe d1recn1y asa Ii_s;,_ i.e..,

encode (quetie(x; :'.'. 2 '-:§ listley oog) .
A n 'alte.rr.zate" rep'resent'ati'o'ri is to eﬁceﬂ'e’ the queqe' ei.s'a. list with the elements r'e\{'erse:d.' i:.e..,"
.en'code2(queu'e(xi L .'xh))';'s .h's.t(a.:ﬁ G E i | _—
‘Assume that Wé'h'e'v'e th.'o's'e'n the first encoding. -
To our encodmg operanon encodel there corresponds the opposxte decodmg operatmn

decadel(!m(xl . xn)) w> queue(x, e Xp)
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Our synthesis task is now to construct concrete operations on lists that correspond under our
chosen encoding to the abstract pusk, top, anci pop Operatlons ie, '

push iy &) <== encode l{push(y decode 1))

top 1{{) <== top(decode1(l))
where decodel{l) is nonempty

pop I{l) <== encode l(pop(decode ()}
where decode 1(0) is nonempty,

where [ is a list. We can consider these descriptions as specifications for a synthesis task in
which push, top, pop, encodel, and decodel are all regarded as nonprimitive constructs. By
including the rules describing the properties of these constructs among our transformation rules,
and applying our usual program-synthesis. techniques, we obtain the" following: concrete
implementations:

puslzl(y 1) <==if empty (I}
- then list(y).
else cons(head([) ,
pushly tcul(l)))
top1(l) <== head(l) ,
 popIl) <= taill) .
The final program is then obtained by replacing the abstract 'c.up'eret.i:en_s push, top, and pop
by the concrete implementations pusil, topl, and popl in the given program.

In this implementation, topl and popl may be executed directly, but pushl involves
searching down the entire queue. Therefore, we might choose this implementation if the rop
and pop operations must be performed quickly, but the pushk operation is perm:tced to take
more time.

If the .everse s:tuauon xs the case and pus/z is the more crmcal operatson we may choose
) '_the aItemate representanon, in wh:ch the etements of the queue appear on the hst in reverse
orderle S

" encodequene(x; ... %)) => listGe, L vy

The corresponding implementations that result are
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' :pzés?z2(y 1) '<.== '610'?.15(33 l)

10p2(l) <== if emptyltail(l))
then head(l)
else top2(tail(l)) ,

and

pop2(l) <== if empty(tail(l))
then nil
else cons(head(z)

pop?(tazl(l)))

-In thzs representanon the push operatlon becomes qmte econom:cal but the top and pop
operations become correspondingly more expensive.

The problems that arise in translating abstract data structures into concrete representations
require all the synthesis techniques we have considered. However, these. problems are of a
more limited scope and require less invention than the more-general synthesis problem. It is
likely that program-synthesis techniques will become practical for such relatively restricted
problems long before the general problem is solved.

The data-abstraction methodology has been investigated exiensively (see,
for example, Liskov and Zilles [1975] and Guttag, Horowitz, and Musser
[1976]). Systems in which the representations for certain abstract data
structures are selected automatically have been lmplemented by Low [1976]
and Schwartz [1974] Our queue example foliows Hewltt and Smlth [1975] at

A safe distance.”: '

' C. Program Modification

It is often remarked that programmers spend more of their time in modifying old programs
" to achieve addmonal purposes than in constructmg new programs These mocliflcauon tasks
are conceptually far less challenging than the’ ong;nal programming effort. However a
programmer is especially prone to err in modifying a program: For one thing, if the ongmal
program is complex, it may be difficult to find all the points at which changes must be made.
Furthermore, the programmer may not know or remember how the program works; he may
interfere with its original functioning in introducing the required changes. *
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Thus, the difficulty of program modification may be attributed o its complexzty as a
bookkeepmg chore rather than to its challenge. as a creative endeavor. For this reason,
program modification is another area in which program-synthesis techniques are hkety to find
their earliest applicati_on.

We have already introduced a program -modification technique, using protected conditions,
as a basis for our simultaneous-goal principle in program synthesis. This technique can also be
applied directly to the program-modification task. ‘Thus, we modify the given program to
achieve a new condition, while protecting the condmon the program was originally intended to
achieve,

We have seen one example (in Section 4G) in which our program-modification technique
was applied to extend a program for finding the value of the maximum element of an array, to
also find the index of that element. The original program, '

max{a n) <== ifn=0
then z « al0]
else max(e n-1)
if z < a[n]
then z « aln] ,
was constructed to achieve the condition
ali{al0: n]) < z and z ¢ a0 : n) and only z changed.
This program was then modified to achieve the additional condition
z=a[yland 0 sy < n and only y, z changed
while still maintaining two of the original conditions,
all(al0: n]) and z < al0 : n] .
This modification task was specified as
maxindex(a n) <== if n =0
then z « af0]
else maxindex(a n-1)
if 2 < aln]
then z « aln]
achieve alyl=zand 0 <y < nand only y,z changed
protect all{a[0:nl) < zand zeaf0:n].

The achieve task ensures that the modified program will fulfill its new purpose, and the
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~ protect task guarantees that in modifying the program we will not interfere with its original
Cfonctioning, i Mogtyie e P Tem T Leriere TR B R

From the above specification, we obtained the modified program

© maxindex{g n) <es ifn =0
o Cthenye 00
: z « a[0] :
. else maxindex(a n~1).
' if z < aln]
then y « n
z «aln] . _
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6. LOOSE ENDS

A. A Footnote on Structured Programming

In program synthesis we att’empt to reproduce by machine the same process that is carried .
out by the “structured programmer” by hand. However, the bas;c programming principles we
.employ in this paper are not merely machine lmplementatmns of the prmcxples of structured

- programming. Let us briefly examine the derwauon of a program in the style of a structured—

programming practitioner, to illustrate some of the essentxal dlfferences

The program exp(x y) we construct is intended to set the value of the variable z to be the

exponential xJ of two integers x and y , where x is positive and 9y is nonneganve We assume
we are given a number of properties of the exponentijal function, including.

u?=1 ifuwOandv=0,
Ve (uew?¥2  if uis even, and

w? = welwew)?’*2 ifwisodd;

where %, v, and w are any integers. Here, + denotes integer division. Written in our notation,
the top-level goal of a structured-programming derivation is

Goal A; . achieve z=x¥ . =

(where the exponential furiction u? ns considered to be nonpnmnwe) This goal can be
decomposed into the con junction of two condat:ons ) -

Goal B achieve z-_xxJ’J’_ =D andyy=0.

'The motnvatxon gnven for thls step 1s that, lmtsally. we can achxeve the fxrst condltxon

zexxd) = ) easily enough (by settmg x¥ to %, yy to 9, and 2t ) if we manage to achxeve the
second condition yy = O subsequently, while maintaining the first condition, we will have
achieved our goal.

For this purpose, we establish an iterative loop, whaose invariant is z. xx)) = ) and whose
exit condition is 9y = 0; the body of the loop must brmg 3y closer to zerg while maintaining the
invariant. :

By exploiting the known properties of the exponential and other arithmetic functions, we
are led ultimately to a final program, eg,
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expl(x 9) <==  (wx 992) e (xly-' n-
while yy = 0
do_if evenlyy)

U then (xx ) «  (xxo yy-&?)
e!se (et 39 2) & (exeexx 2 X z).
"“The weak point of this derivatiori seems to be thé'p'a?ssage' from Goal A to Goal B. This
" stép is niecessary to provide the invariant for the loop of the ultimate program. However, how
do we know to use this invariant unless we already know the final program in advance? Why
should we generate this'goal instead of one of the following, equally plausible alternatives;
' GoalB,: achievez+xxXW e andwx=0

[to be initialized by (xx 992} « (x 3 0)],

Goal Byt achieve 290 = andyy = |
(to be initialized by (yy 2} « {3 x)], or even

Goal Byt  achieve (z.xx)) = &J and xx = gy = 1

- [to be initialized by (xx yy z) (xy 1)or by (xx o) z) « (1 y x)}?

Each of these steps can be motwated by the same consxderatxons that Justlf :ed the generatxon of
Goal B, but none of them leads to an exponential program so readily.

Qur instructors at the Structured Programming School have ‘urged us to find the
appropriate invariant assertion before introducing a loop But how are we to select the
successful invariant when there are so many promising candidates around?

The corresponding derivation of the same program by the program- synthesis techniques of
_thls paper requires no such precognitive ms;ghts By using the same properties of the

arithmetic functions that were explonted in the structured programmmcr derwmon we can
reduce : -

Goal A: compute xJ
- to the two subgoals.
Goal B:  compute (x. x)J*2

“{in the case that ¥ iseven)and =
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_ Goal C: compute.x_-(x-x)y"’2 .

(in the case that y is odd). Only after we observe that the subexpression (e» 22 | which
occurs in both subgoals, is an instance of the expression x¥ in the top-level goal, do we actually
decide to introduce a recursive call exp(x-x $+2) to compute these subexpressions. The
resulting program is - S

explx y) <== if 9= 0
then x
else if even(y)
then explx.x y+2)
else x-explx.x 9+2) .

This is a recursive version of the previous iterative exponential program, and can actually be
transformed into that program by standard recursnon removal techmques

The recursive calls in the above program- arose natura]ly from the tree of goals in the
derivation, and the structure of the final program reflects the structure of that tree. In conirast,
the derivation tree for the iterative program had to be forcibly manipulated to'induce the
mvanant to appear

Recursion seems to be the ideal vehlcle for systematic program construction; its Use accounts
for the relative simplicity of the above derivation. In choosing to emphasize iteration instead,
the proponents of structured programming have had to resort to mote dubious means.

The principles of structured prqgrammi_ng have br_a:en des_gribe_d_ often in the
literature, e.g., by Dahi, Dijkstra, and Hoare [1872], Wirth [1974], and Dijkstra
[1976]).

B. Implementation

It is difficult to develop or evaluate heuristic techmques w;thout expenmemmg with an.
implementation. The DEDALUS (DEDuctwe ALgorithm Ul—Synthesuer) system s a '
laboratory tool rather than a pracncal product. The system is lmplemented in QLISP (Wilber
[1976)), an extension of INTERLISP (Teitelman [1974)) that includes pattern-matching and
-backtracking facilities. In this section, we wili describe some of the special characteristics of our

_ implementation wathout gomg into very much detall
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The specifications are expressed in a LISP-like notation. Thus, the output specification for

the lessall program, which we wrote as
| | x <._rzll_l(i): - o
' is represented in the DEDALUS system as’

(LESs X (ALL L).
The output specification for the ged program; which we wrote as

max{z : z]x and zly} ,
. is represented as
(MAX (ssifc#"""'z' (AND (DIVIDES Z X)

(DIVIDES Z Y))).

.- II_T.;he .targ.,.‘e::;.prbgr_z.lm 15 a.is.d ex pressed in LISP .sy'ntax:._.._ .

_ The transformation rules are expressed as programs in the QLISP programming language.
_ For example, the rule that we denoted by '

. p andtme => p .
is represented by the QLISP program

(QLAMBDA (AND, «P TRUE) 8P).
The rule we Qrote as

ujp => true  if u is an integer and ¥ = 0

is expressed as

' (QLAMBDA (DIVIDE «U V)
" (INSIST (PROVE (' (INTEGER QU))))
T NSIST (PROVE [ (EQUAL sv 0))))
TRUE) '

*Although' the reader ‘who'is unfamiliar with the QLISP language may not understand all the
details of the above programs, he may still observe that they are similar in form to’ the rules
that they represent; the features of the QLISP language make this representation fairly direct.
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Because rules are represented as progran"xs, we are allowed the full power of the programming -
language in expressing each rule. -

_ The DEDALUS system currentiy contams more than a hundred such transformatmn rules.
In expandmg the system to handle a new subject domain, we sxmpiy mtroduce new rules

The rules of the system are classified according to their pattern, their left-hand side. This
pattern describes the class of subgoals to which the rule can be applied. Thus the rules

ufp =>';'me'_ if L
and
ulv =>' u[i:—u : n“ .:..
both have pattern ulv and can be’ apphed to goals such as
| compute x |y+z |

When 2 new goal is generated, the system retrieves those rules whose-patterns match the form
of the goal. This retrieval is facilitated by arranging the rules in a classification tree according
to their patterns; thus the two rules above would be classified on the same branch of the tree.
This mechanism allows us to avoid matching every rule in the system agamst each newly-
generated geoal.

If no rule matches the entire expression of a goal, its subexpiessioris are established as
subgoals. If no rule matches any subexpression of a ‘given-goal, a failure occurs, and
backeracking is invoked; the system attempts to find an alternate transformation that applies to
a previous subgoal.

The QLISP pattern-matcher has special provisions for matchmg commutative functxons
Thus, because the and operat:on is commutative, the rule L :

P and true => P s
represented as the QLISP program
(QLAMBDA (AND «P TRUE) §P),

can be applied to goals of farm "true and P" as we_il___és_ _"P_gnd true". For this. reason,
comimutativity rules such as '

Pand Q => Q and P
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are not necessary in the DEDALUS system.”

This kind of matching also occurs in the recursion-formation rule in determmmg whether a
new ‘goal is an instance of some earher goai For example in the actual synthems of the ged
program, the top-level goal

' 'compu_te:max{z : 2lx and 2y} -

was regarded as an instance of itself with the roles of x and y reversed, because the and
function is commutative. The recursion-formation rule, therefore, was able to propose the
recursive call gea{y x).

Currently, the DEDALUS implementation incorporates the principles of conditional
formation, recursion formation {including the termination proofs) and procedure formation, but
not generalization or the formation of structure-changing programs. The techniques for
deriving straight-line structure~changing programs were implemented in a separace system (see
Waldinger [1877)). :

Representative samples of the programs constructed by the current DEDALUS system are
the following..-.

Numencal Programs L .
© the subtractive ged algonthm

© the Euclidean ged algorithm
@ the binary ged algorithm _
- @ the remainder of dividing two mtegers

L.ist Programs:
@ finding the maximum element of a list
O testing if a list is sorted _ : . L A
€ testing if a number is less than every elemem of a lxst of numbers (Zessalt)_ :
© testing if every element of one list of numbers is less than every element

of another {(allall) i

Set Programs:
@ computing the union or intersection of two sets

© testing if an element belongs to a set
© testing if one set is a subset of another
@ computing the Cartesian product of two sets (cart) .
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C. Historical Remarks
In this section we trace briefly the history of the deductive approach to program s.yn.'th.esis.

The early fheuristic compiler of Simon [1963] constructed si'n"iple straight-line list-processing
programs from descriptions of the expected input and desired output; the system was based on
the General-Problem-Solver approach. . :

A later group of systems was based on the resolution tﬁéorem—prdvihg a'p'pro'ac}z: the
specifications for the desired program were translated into an equivalent theorem-proving
problem, and the desired program was derived from the corresponding proof. (See, e.g, Green
[1969], Waldinger and: Lee [1969]}, and Lee, Chang, and Waldinger. {1974]) These systems
could produce conditional programs, but their loop-formation: ability was- rudimentary; the
required mathematical-induction proofs were awkward to perform in the resolution formalism.
Efforts to improve the synthesis of loops within a (nonresolution) theorem- provmg approach
are described in Manna and Waldinger [1971]. - SR

A prog.rém—s;y.nthesi.é .s.y'sterh based oh.tﬁe p.rog.ram-.vériﬁcat.ion fdrmali.sm ._of . .Hoa.re [.I 969] is
described by Buchanan and Luckham [1974). Their system was implemented using some of the
facilities of PLANNER (Hewitt [1971]); it required that the loops be specified in advance by
the user.

. The more recent: work in program -synthesis: is: too. extensive -and  too: varied to be

summarized here. Papers related to aspects of the deductive approach are mentioned in the
appropriate sections of the text; some of the other approaches are discussed in the next section.

D Other Approaches

The program synthes:s approach we have f‘ollowed requlres that we, ptowde complete
specifications for the desired program expressed in an artificial language. It has been argued
.- that these specifications are difficult to provide, and many alternate approaches have been built
around different specification schemes..

_  ° Sample mput—outpur pcur: In this approach (eg, see I—Iardy [Iq75} Summers [1977]), the.
. program is described by giving typscat inputs and the correspondmg outpucs T‘hus

(ABC)=>(CBA), (A (BC)D)=>(D(BC)A)

suggests a program to reverse a list. Such specifications are natural and easy to formulate.
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However, in constructing the pairs one must be careful to avoid ambiguities; for instance the
pairs

(54)_=>2, (137 =>6, @31y =>10

" ¢ould represent either the subtraction or the remainder program. Furthermore,‘the approach
demands that the system be able to generalize from examples; not- always an- easy- task; for
mstance, it is not immedlately obwous that

(2 2) a4, {(36)u>6 (7 1) => T, (14 21) => 42+

K denotes a Ieast—common multnpte program Moreover. the generahzamon task is redundant the
system is trying to guess a relation that the user knows perfectly well, but is unable to express
. directly in this notation. - - : :

° Sample execution traces. In this approach the. user .p.rovides a detailed__'trace“ of the
performance of the desired program on some :ypical mputs (See, eg, Biermann and
' Knshnaswamy {19‘76]) Thus, the trace.” - e SRR

(12 18) > (6 12)-*(0 6)-»6

indicates the Euclidean algorithm for the ged function. Here, the possibilities of ambigu.ity and
the burden on the system are reduced, but the user himself is requlred to des:gn the algorithm
. to-be employed. : : : : : - :

° Predicate—logic language. This is a direct descendent of the theorem-proving approach.
The specifications for the program are expressed as resolution-style clauses; the system then
transforms these clauses into another, equivalent set of clauses, which can be regarded as the
desired program. (See, eg., Kowalski [1974), Clark and Sickel [1977).) We question whether
the clause form has the notational flexibility to serve as a suitable specification language; for

example, many of the constructs we use in our spemﬂcauons would not usually be permlcted in
Ca predlcate logu: clause SR - -

Q- Synthesis by debuggmg ‘Human' programmers produce their programs by the ‘successive

debugging of nearly correct programs. It has been”proposed ‘that-a synthesis systern could
benefit by imitating this process. In this way, it could focus its attention on the main features
“of a problem, postponing consideration of the details until afterwards. Such techmques have
been applied "to" the' construction “of robot" plans (Sussman' {1975]) "and' electronic ‘circuits
(Sussman [1977]), for example, but not to the solution of more typical programming problems.

e Syntlzem by analogy It is unusuai for a programmer to construct a program from its
specxf ications by a purely deductive process normaliy. he attempts to apply techmques extracted
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from previous solutions to mmtlar problems. Thus, he might compute the square root of a
number by a binary-search technique extracted from a previous program io. dxvxde two
numbers. Most of the work on this approach (e.g., Manna and Waldinger [1975], Dershowitz
and ‘Manna [1977], and Ulrich and Moll [1977)) requires that a close syntactic correspondence
be found between the specifications for the two programs; this correspondence then provides a
basis for transformtng the previous program to solve the new problem To be more effectwe
_these techniques must be strengthened to take advantage of Iooset Slmllalltles

© Automatzc progmmmmg It has been claimed (eg, see Balzer [1972) that, for a complex

p:ogrammmg task, it is unrea]:sttc to expect the user to formulate comp]ete correct
specifications for the desired program. In spec:f‘ymg an airline-reservation system, an operating:
_system, or a spacecraft-guidance system, for example, we are unlikely to anticipate the desired
behavior of the system in every possible situation. In some systems, the specifications for the
. program are formulated gradually through an extended dtalogue between the user and the
system. (See, eg, Green [1976), Barstow (1977}, Balzer et al. [1977), or the survey of Heidorn
(1978]) The dtalogue is continued durtng the program-construction process so that the user
can 1e<o!ve any. amb:gu:t;es or mconsrstencres the system- mtght discaver. Typtcally, these
systems attempt to play the role of an expert programmer ~consultant, and they tend to rely more
on built-in knowledge than on deductive processes. By admrttmg natural Ianguage as a
communication vehicle, automatic-programming systems avoid the necessity of specifying
programs in an artificial formalism; however, they add to the problem of program construction
the not inconsiderable difficulties of natural-language understanding. -

A survey of variots approaches to automat:c program construct:on cany be
found in Btermann [1976] : foee :

E Unsettled Q.uestxons

Many of the techmques we have presented in this paper bring to mmd questtons that have
- not been adequately answered... Some of these are mentioned here. :

@ Conditional-formation. We have introduced a case analysis, and consequently a conditional |
expression, when we failed in an attempt to prove or disprove some condition. -This attempt,
however, may be somewhat time-consuming; as it involves exhausting all the rules that might

apply to the condition.: Moreover, there are certain situations in-which we can see in advance

that the theorem-proving effort is doomed to failure. For example, if we can find a legitimate
“input. that will cause the:condition to be true, and another that will cause the condition: to be

false, it is.clear that we can neither prove nor disprove the condition. Is is possible to recognize
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some of these srtuat:ons qu1ckiy. ‘thus’ avoldmg the expense of a pomtless theorem provmg
' effort? : -

O Generalization. We formed a generahzed procedure when we discovered that two subgoals

were an instance of a "somewhat” more general expression.” For ail the examples in"this paper,
‘the only generalizationis we require involved replacing a constant'by a variable, or replacing
ane occurrence of a variable by a new variable. In some cases, however, it is necessary to
replace a complex term by a new variable. On the other hand, if the specifications for the new
procedure are too general ‘it may be rmposmble to construct a program that satisfies them.
' What limits shall we set on the extent of generahzatron we permit? '

@ Termination. In formi'ng simple’ recursive programs, it is always possible to establish

termination by fmdmg a well-founded' ordering between the input of the program and the
“arguments to its recursive calls.” Methods for finding this well- founded’ oxdeung during the
derivation process have been discovered and implemented in the DEDALUS system. However,
we have seen that, to prove ‘the termination of systems of mutually recursive plocedures it is
necessary 1o fmd ‘termination functions that ‘map all the inputs and arguments into a single
well-founded ‘set. How are we to f‘md these termmat:on functrons and the related well founded
_ set duung the synthesns process? ;

' °:'List-man'ip'ulatihg programs. We have introduced techniques’ for forming programs that
manipulate data structures. In our examples, however, the only data-structiire manipulation we
perform is the assignment of values to variables. The same techniques can be applied in a
straightforward way to construct array- mampulaung programs. Can these techniques be
extended to develop programs that change the structure of lists, graphs and other complex data
objects? The in-place list-reversing program and the Schorr-Waite garbage collection
algorithm are programs within this category.

@ Simultaneous goals. The techniques we develop for achieving more than one goal

simultaneously presuppose that the transformation rules at our disposal can. focus:on only one
goal at a time, so that the various goals must be achieved, and protection conditions checked, in
- separate stages.. Couldn't we devise: transformation. rules. that, while trying. to. achieve one
condition, consider what conditions have been protected, and what other conditions have yet to
be achieved? Thus, a rule that was about to introduce an assignment statement into the
program might check whether it is permitted-to- change the variable: oot ;

:° Strateg:c controls. _ We have mtroducecl strategxc controls to prevenc the derwat:on tree

from growing unmanageably. In the derivation trees constructed by the DEDALUS system, the
unsuccessful branches at- least: represent plausible and well-motivated . attempts to solve the
problem.. Will this mechanism stiil be adequate when we increase the number of rules from one
hundred to one thousand, or the size of the target program from a few lines to a few pages?
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© Efficiency. The techniques we have introduced are not concerned with the efficiency of the

programs they produce. However, if program-synthesxs methods are ever to become practical,
. they must take efficiency considerations into account.  This is not to say that a synthesis system
will need to perform a mathematical analysis of the program being constructed; it would suffice
to find crude estimates of the running time to guide the derivation: (cf. Wegbreit [1976], Kant
[1977D). -

< Speclflcatlons The only specxf:cat;ons we have allowed descnbe the relatlonships between

the expected input and the desired output of the program to be constructed. Such "input-
output specifications” are inadequate to describe certain classes of programs. In particular, in
“specifying, say, an' airline-reservation system or an operating system, which are never intended
to terminate, it is necessary to express relationships between the inputs' it accepts and the
outputs it produces at intermediate stages in the computation. Can the techniques we have
“used  with - input-output specmcanons be extended to allow the construcuon of such
"continuously operating programs? . '
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