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N INTHODUCTION

Our purpose 1n thls paper is to descrlbe a large computer program'
.called PROSPECTOR that is belng developed to prOV1de active consultation
on problems of mineral exploratlon and resource evaluation. Three
 pr1mary considerations motivated us to develop PROSPECTOR: the need for
.continuing exploration for mineral resources, the difficulty of staying
- technically abreast of an expanding technical discipline, and the
desirability of bringing to bear the knowledge of several specialists on
& given resource problem. Recent advances in computer-based
-consultation systems provided the technical basis for believing that a
'osystem like PROSPECTOR can contribute to solving these phoblems.'
"/ We envision two different modes of use for such a system. In the
: fifet”mode,-an expioretion geolOgist-etarts-by“teliingethe'progrem the
‘characteristics of a partieular.prospeot of interest -- the geologic
setting, structural controls, and kinds of rocks, minerals, and
-alteration products present or suspected. The program compares these
 observations with models of various kinds of ore deposits, noting the
‘similarities, differeﬁces, and missihg information. The program then
. engages the geologist in a dialog to obtain additional relevant
: information and to make an assessment of the mineral potential of ‘the -
Qpboeoect' Dur goal here 13 to provide: the geologlst witha serv1ce
_fcomparable to g1v1ng h1m telephone access to authorltles on many

:dlfferent kinds of ore dep031ts._ In many cases), the maln ‘benefit of theJ:

_ 'oonsultatlon may be o alert the geologlst to unsuspected p0531b111t1e3,e' B
"“-gﬁand to establmsh the addltlonal observatlons that would be most Valuable

':feeefor further exploratlon. :

In the second mode, the program would "talk“ not to a: person but to'

"f _a large data base desorlblng mlnerallzed propertles. Here the goal

"would be to sereen the data base, elther to seleot for partlcular ];'



commodities or to make regional assessments of mineral resources.  In
':general thlS is a more dlfflcult mode of operation, primarily because
f”:the facts recorded 1n ‘data bases often requ1re 1nterpretat10n 51mp1e
'mechanlcal acce331ng may fail to prov1de an answer “even though a:
'tralned geologlst would recognlze "that relevant 1nformat10n was present
-Thus, although we recognlze ‘the value of this ‘mode of use, we' have begun

iby addre351ng the problem of providing interactive consultatlon to an -
'exploratlon geologist.

“The ability of PROSPECTOR to provide expert consultation rests on a
base of knowledge about economic geology. This "knowledge base" has
several components, the most important of which are the models that
contain geological (and eventually geochemical and geophysical)
information relevant to exploration for various classes of ore deposits.
The program currently contains three different exploration models, one
.for Kuroko'type massive sulfide deposits, one for Mississippi-Valley-
'type carbonate lead/zine dep051ts, and one for a- maaor class of near-
contlnentalumargln porphyry copper dep031ts.. The’ models are stored in .
the’ computer in a speclal way, to be described later, that enables
‘PROSPECTOR to use them_to reason about geological data. In addition,
'thefoverallISystem'hasaﬁeen designed in such a way that its competence

- can be continually improved'by the incorporation of additional models.

Mineral exploratlon 1s perhaps as much art as science, and the
j_state of this art does not admit the construction of models ag rigorous

“and complete as, say, those of Newtonian mechanics. This state of

'.aaffalrs has two 1mp0rtant effects on the de51gn of PROSPECTOR : First,

'*the system must accommodate plausmble or probablllstlc styles of _
'; reasonlng Second the models often reflect the subaectlve Judgements

.:'of expert economlc geologlsts more than obgectlvely derlvable facts.t°0f

':;course, the use of subgectlve Judgements and probabllltles to make .

._ftechnlcal evaluatlons is’ not unlque to PROSPECTOR SubJectlve i
:Eprobabllltles have been used in resource evaluatlon [Harrls et al.,
1970; see Harrls, 1977 for a comprehensmve treatment], while panels of

';experts have’ been frequently used in Delphl studles [Llnstone and -



Turoff, 1975; Ellis et al., 1975] to forecast technological events.
What is unlque is PROSPECTOR's combination of plausible and logical
',reasonlng u31ng & "knowledge base" supplled by experts to provide a

oomputer~based consultdtion service..

As the foregolng desorlptlon suggests, ‘three dlfferent groups of

"-:jpeOple are ‘involved ‘in' the de31gn and use -of PROSPECTOR: computer

'301entlsts, who de51gn the ‘computer programs that ‘provide the framework
. of the system; expert economic geologists, who provide the knowledge
base for the system; and the end-users of the system who are seeking
odnsultation about particular prospects of interest to them. We should
emphasize here that the end-user is expected to be a trained geologist,
not a layman. PROSPECTOR cannot make direct observations and must

therefore depend upon the skill of the user in this regard.

To the best of our knowledge, PROSPECTOR represents the first
attempt to bulld a computer system able to consult actively on problems
50f mineral exploration. The general notion of a- computer- ~based
" ‘consultation system, however has been’ explored before. Procedures for -
performlng the requlred plausible and logical reasoning have been
developed through computer science research on artificial intelligence
[Nilsson, 1971; Raphael, 1976]. These procedures have been applied in
- several fields, with the most advanced development being in the field of
' medicipne. In particular, computer-based consultation systems have been
developed for infectious diseases [Shortliffe, 1976], for glaucoma
f{Nelss et al., 19771, for kidney disease [Pauker et al.,. 1976], and for B
;a substant1a1 part ‘of internal medicine [Pople, - 1977] While these

'.-systems are rather recent and are still experlmental some have already

"f:attalned levels of oompetence that 1n thelr spe01alt1es rlval the’

' performance of expert phy5101ans._ These successes prov1ded an _ _
ﬁaddltlonal motlvatlon for us to achleve slmllar performanoe 1n the aPea' -

“Tof mlneral exploratlon._f:ﬁ

The remalnder of thls paper is organlzed as follows Seotlon II
_presents an example of an interactive computer session W1th PROSPECTOR

as it ourrently exists, calllng attention to some’ of the features of the



design. Section III describes some technical details regarding the form
in which geological knowledge is stored and the mechanisms for drawing
plausible infependes from spééifié.dbsef#ations; Seetion'IV'conéludes
'With’somé éompafiSGnsiﬁitththér appfoadhéé o' the génébalﬁprébiém; and

.-some obsServations on current and prospective work.



II AN EXAMPLE

" This section contains an:exémple.ef'en interactive Session with the
JeUPfent”PROSPECTOR'systém.3'The'data ﬁbESented reflect an actual
prospect ‘in Canada; however, our purpose in presenting this example is
ﬁot to discuss the geology of the particular prospect, but rather to
‘1llustrate as simply as possible some of the features of PROSPECTOR.

The transcript of the consultation session has been lightly edited
in the interest of brevity. The user's input is underlined, and some

‘explanatory comments (enclosed in square brackets) have also been added.

[After logging on to the computer and requesting access, the user
" receives the following.]

' PROSPECTOR ...... Mark II ...... Version 2
13-0ct-77 10:06:26

Do you want instructions? YES

PROSPECTOR, an experimental computer based consulting system, is
designed for use both in searching for ore deposits and in evaluating
the mineral potential of large geographic areas. Being in the early
research stages, PROSPECTOR is based on only three models, C. F. Park's
model for Kuroko-type massive sulfide deposits, N. Campbell's model

- for a class of Mississippi-Valley-type lead/zinc deposits, and
. ‘M. .Einaudi's model for: a class of near-contlnental-margln porphyry~
"copper deposits.
o in using: PROSPECTOR, you Wlll be asked to -answer questlons about
‘theé existence of various kinds of evidehce. -Answers to most questions
'will -be numbers from -5 to 5. These numbers indicate the certainty of

ff.your response; with'5 1ndlcat1ng ‘that the requested evidence is

N jdeflnltely present <=5 that it is deflnltely absent and O that YOu have'e
~.no oplnlon one way or the other.--__ S : . a

: In addltlon to supplylng answers ydufcan'respond at'any’time-With
‘the" folloW1ng commands:

' 7 =-- Prints a rephrased ver310n of ‘the questlon, often w1th

.o 7 additional comments or suggestlons.. e

- . WHY -- Prints the reason that PROSPECTOR asked the questlon."

' SUMMARIZE -- Prints a summary of the conclusions at this point in the
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- consultation.
VOL -- Lets you volunteer 1nformatlon to PROSPECTOR

" “CHANGE =~ Lets you change your answer to a previous questlon

COMMENT —~'Lets you_type comments-whlch.W1ll appear-ln-your o
v . ‘transeript file. (Two consecutive carriage returns will
end the comment.) : S

. WAIT w- Ihterfuﬁts the session to allow modification of the
: program. (Should be used by gqualified users only.)

QUIT -- Terminate execution of the program.
HELP -~ Prints this explanation.

Do you wish to see intermediate results? NO
Do you want to volunteer any information? YES

When you are finished volunteering, please type DONE
Do you want to see the instructions? YES

PROSPECTOR can accept certain simple English statements that
- deseribe the prospect. You can name the types and ages of the rocks
present, and the minerals and alteration products that are present or _
‘suspected. You can indicate uncertainty either through wording such as
MThere might be sphalerite," or by a more terse statement such as

"Sphalerite, 3." When you are finished volunteering, please type DONE.

1:THERE ARE CARBONATES
{CARBONATES) (4) [{The computer acknowledges the first

volunteered evidence; the certainty
is taken to be 4.]

2:THERE IS DOLOMITE
(DOLOMITE) (4)

. 3’THERE'is GALENA

(GALENA) (u)

V-.a THERE MIGHT BE SPHALERITEI-
(SPHALERITE) (2) '

_--5 DONE S i e T
 [The user is finished volunteering .
" evidence, and PROSPECTOR takes the .
_1n1t1at1ve ]

e o AR U by o o e it e S L8 i it



Models are (PCDA MSD MVTD) {Thése'ére-ébbreviatiOns of the three
current models. ]

‘[A few 1n1t1al questlons pursued hypotheses (1 8. models)
_5that were ruled out. We continue ‘the session with the
" hypothesis that proved to be the bést one available.]

You told me about:
- CARBONATES (4) [The computer reminds the user of
volunteered evidence. ]

6--To what degree do you believe that:
(¥ Prospective ore body lies in carbonate sediments) ? 3

You told me about:
- GALENA’(M)

“You suspected:
- SPHALERITE (2)

Your statements imply:
- Sulfides (4)

7--To what degree do you believe that:
-(* Prospective ore body contains galena and sphalerlte) ? 2

You told me about:
- .= -DOLOMITE -(4)
- = CARBONATES (4)

'8--To what ‘degree do you beliéve that:
DT Prospectlve ‘ore body 1nvolves dolomlte) ? 2.

[The user responds to the quest1on Wlth npn and
Lal clarlflcatlon of the questlon 15 furnlshed ]

j* Assumlng that there is an ore body An- carbonate sedlments, ‘to what
"~ degree .do -you believe that_some smgnlficant dolomltlzatlon of the host

. earbonates has océurred?

{Note -the . exact type of dolomitization is not 1mportant _3



[The user responds now with a certainty measure of 3]

9——To what degree do you believe that
(* Fluid inclusion data suggest that mlnerallzatlon took place above
160 degrees C) ?.g

_ 10--To what degree do you' belleve that _ '
(* Prospective ore body contains non-telethermal alteratlon
‘products) ? 4

11--To what degree do you believe that:
(* Other evidence indicates that mineralization took place above 160
-degrees C)} ?

12-~To what degree do you believe that:
(* Evidence of metamorphism) ? WHY

[The user is interested in the reasoning behind this
question. ]

* The ev1dence of high temperature mineralization is discouraging for
the prospective ore body being a MVTD. However, if the high temperatures
were due to subsequent metamorphism, then this discouraging evidence
should be discounted or ignored. To what degree do you believe that:
" (* BEvidence of metamorphism) 7 =4
-Your statements imply:

- Sulfides (4)

13--To what degree do you believe that:
(* Prospect contains sulfide minerals other than those of Fe, Pb and

Zn) ? =3

.

14--To what degree do you believe that:
- (* Any prospect assay indicates more than one ounce per ton of -
- silver) ?

15-=To what degree do you believe that:

(% Prospect contains fragmeﬁtal-hoSt rock) 25

:16—-To what degree do you belleve that
" {* QOre mlnerallzatlon 13 stratabound) 7

'--917;;To“whét”dégree do you believe that:

" {* An unconformity or disconformity, or several of them, overlie the
 prospective ore body) ? 0 : : :



18-—To what - degree do you belleve that _
(¥ Favorable stratigraphic sequence for a MlSSlSSlppl Valley type

':dep031t) 72

{The questlon requires clarification. ]

'-* The stratlgraphlc sequence almost always found with a MVTD is as

_jfpllows.”sandstone overlain by a.carbonate sequence containing the Qfe--
“_bearing-limestonefand'dblomite,"in turn . overlain by shales or, more .
rarely, by a dense impermeable limestone or dolomite. Ignoring faulting,

erosion, or subsequent deposition of material, to what degree do you

‘believe that this deseribes the original stratigraphic sequence? 2

My certainty in (¥ Suggestive evidence for MVID) is now: 4.997
Do you want to pursue this further? YES

[The MVTD model is defined in terms of essential evidence and
Ysuggestive evidence."™ Since the belief in suggestive
evidence is nearly at its maximum value of 5, and since
PROSPECTOR realizes that subsequent guestions cannot affect
this portion of the MVID model by a substantial amount,
the user is given the option of discontinuing this portion

" of the consultation.]

You t6ld me about:
- CARBONATES (4)

19--To ‘what degree do you believe that:
. {#* Carbonate sediments containing the prospective ore body are
. shallow-water shelf-type sediments deposited under stable tectonic

conditions) ? 3

20--To what degree do you believe that:

-(* Presence of hydrocarbons) ? -5

'21—-To what degree do you believe that: _ -
{* Other evidence indicates that the prospect has characterlstlcs
- which favor hydrocarbon aecumulatlon) ?2

'-22~~To what degree do- you belleve that

(* onspect has" p031t1ve geologlc features)

* P051t1ve geologlc features lnelude domes antlcllnal folds, fore reef'
structures and ‘aft reef structures. To what degree do you believe that
sueh features are present? 3 -



My certainty in (¥ Suggestive evidence for MVID) is now: 5.0
Do you want to pursue this further? NO

[PROSPECTOR is ready to summarize its interpretation. ]

“oh a scale from =5 to'5 ,
my certalnty in (MVTD) is now: .8995

[The certainty of 8995 would be 1nterpreted as perhaps
-'mildly encouraging.]

In summary, the following have been observed:

The major favorable conclusions were:
- (¥ Suggestive evidence for MVTD) (5.0)
~ (* Prospective ore body lies in carbonate sediments) (3.0)
- (¥ Right hydrothermal alteration) (3.0)
- (* Prospective ore body contains galena and sphalerite) (2.0)

~ The major unfavorable conclusions were:
- - (* Right temperature of mineralization) (-3.996)

[The conclusions concern major concepts within the MVTD
model. The observations mentioned below are the more
important one supporting the overall conclusion. ]

‘The encouraging observations were:

- (* Prospect contains fragmental host rock) (5.0)

- (* Prospective ore body involves dolomite) (3.0)

~ (¥ Carbonate sediments containing the prospective ore body are
shallow-water shelf-type sediments deposited under stable tectonic
‘conditions) (3.0)
© = (* Progpect has positive geologic features) (3.0)

The dlscouraglng observations were:
_ - .= (* Prospective ore body contains non-telethermal alteratlon
_ fproduots) {(4.0)

: (¥ Evidence of metambrphism) {(=4.0)

{This type of deposzt is: a33001ated with- 1ow-temperature
“‘mineralization... The prlmary .reason for-a relatlvely low . .
- certainty of occurrence is the evidence of high- temperature
_ .mlnerallzatlon w1th no ev1denee of metamorphlsm asz an
‘ _-_"'excuse."] . Lo ) .

-.:I can not do any more with thls hypothe31s,
- Do you want to pursue another one? QUIT

10



IIT REPRESENTING AND USING GEOLOGICAL KNOWLEDGE

K. . Inference Rules

* For PROSPECTOR to make use of such models as the one mentioned
above, each model must be stored in the computer in a form different
from ordinary prose or textbook desecriptions. Instead, a model must be

highly structured so that computer programs can draw inferences by

examining the parts of the model and the relations among themn.

We have chosen to structure model information as a collection of
rules of plausible inference, termed more simply "inference rules.™" An

‘inference rule has the form:

IF E-1 AND E-2 AND ... AND E-n,

THEN (to degree LS, LN) H.

The rule is interpreted as meaning "The n pieces of observed evidence
‘E-1 through E-n suggest (to some degree) the hypothesis H." A
 probability of truth is assigned to all observations and to all
hypotheses} and the inference rules specify how the probability of an:'
-hypbthesis being true is changed by the observation of evidence. -The';
way that the two numbers LS and LN establish the "strength" of the rule
.w111 be described shortly. L

_'f If the rule mentions only’a 31ngle plece of ev1dence E we can
.represent it graphlcally as ‘shown ‘in Flgure 1. U31ng ‘the semantlc-
f_network termlnology 1ntroduced by Hendrlx (1975), we refer to the

'*ﬂrectangles as “spaces," and to the arrows connectlng the spaces as

D "ar'cs i

o " As a‘éimplé'example;:éonSidéf one rule in'6ur'pbfpher'CObpeb’modél
“‘relating to the potassic zone of a porphyry deposit. This rule states

11
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FIGURE 1 AN INFERENCE RULE

IF Abundant quartz sulfide veinlets with
no apparant alteration halos,

THEN (LS, LN) Alteration favorable for
the potassic zone.
~According to the model, observation of this evidence is quite
encouraging -- though not conelusive -- that there is alteration that is
characteristic of the potassic zone of this class of porphyry copper
deposits. One the other hand, even known absence of this evidence is
only somewhat discouraging for this conclusion. In general, we need to
be able to say both how encouraging it is to find the evidence present,
and how discouraging it is to find it absent, and this is why two

numbers -- LS and LN -- must be provided by the expert for each rule.

It frequently happens that the hypothesis of one rule mentions the
evidence of another. For example, our porphyry copper model also

includes the following two rules:

Rule 1: IF Volcanie rocks in region are contemporaneous with
the intrusive system (coeval voleanic rocks),

THEN (LS-1, LN=1) Favorable level of erosion for
porphyry copper deposit.

Rule 2: IF Favorable level of erosion for a porphyry copper
deposit,

12



THEN (LS-2, LN~2) Favorable regional environment for
porphyry copper deposit.

Because the rules mention each other, they chain together as shown
in Figure 2. In general, the rules in PROSPECTOR connect together in
various ways -- through chains, through several pieces of evidence
bearing on the same hypothesis, and through the same piece of evidence
bearing on several different hypotheses. Thus, the collection of rules
forms an inference network, such as the cne shown in Figure 3. Each
space at the top of the neﬂwork represents a hypothesis about the
existence of a particular type of ore deposit. MNotice that a typical
intermediate space such as E-5 plays two roles: it provides evidence for
the spaces above it (E-2 and E-3) and it acts as a hypothesis for the
spaces below it (E-8 and E-9).

S5A-5821-11

FIGURE 2 CHAINING OF INFERENCE RULES

PROSPECTOR attempts to evaluate the promise of a prospect by trying
to estimate the likelihood of each top-level hypothesis. In a given
case, most hypotheses will be easy to rule out, so attention will be
concentrated on only a small number of active possibilities. By the
same token, however, PROSPECIOR will overlook even a strong prospect if
it has no model, and hence no top-level hypothesis, for the type of

mineral deposit presumed present.

13
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B. Probabilistic Reasoning

An inference network of the form shdwn-in'Figure 3 is used to
repfeSent an important part of the knowlege PROSPECTOR has about various

- types'of ore deposits. When engaged in consultation about a particular

'-_;assoc1ated with ‘each space in the network. To use our earlier example,_'

: -DfQSbébt,?the'sYstem-also needs to record geological evidence as it ‘is

o pré?ided by'theUQSeb. This eV1dence is stored as probabilities that are_ﬁ

suppose that the user tells the system that "pillow structures are
certainly present." PROSPECTOR records this by setting the probebility
of the space "pillow structures" to one. At any point in the
consultation, some spaces will not have been given a probability based
on the user's observations. These spaces have "default probabilities"
that are initially provided by the expert geologist at the time the
model is constructed. Such probabilities, known technically as prior

probabilties, are available for every space in the network.

The principal form of reasoning in PROSPECTOR is'the propagation of
probabilities through the inference network. As an example, suppose in

Figure 3 that the user provides some geologic evidence regarding space

‘E-U by changing the probability of that space to a new value. This

change should have an effect on the probabilities of spaces E-1 and E-2,

which in turn should change the probabilities of the top-level
hypotheses H-1 and H-2.

Propagation of probabilities is accomplished through the

- application of a form of reasoning known as Bayesian decision theory

e [Raiffa, 1968]. This theory prescribes a method for propagating a

7'5_'probability from the evidence E of a rule to the hypothesis H.

'7lbeepagation throughout the inference network is then a matter of

":f_fitereting this procedure. We shall briefly describe the basis of the

"fff'theory called Bayes rule._ For our purposes, the soncalled odds-

efmethod for the simple case in. Whlch there is only a’ 31ng1e piece of
}jev1dence E relevant to an hypothe31s H. The general case, Wlth an - -

'3:jfextended dlseu331on,-1s glven in Duda et al., 1976

" Bayesian inference is based on an elementary theorem of probablllty*egff'”“'""::

15




likelihood form of the rule is most convenient. This form relates three
quantities involving E and H: the prior odds* O(H) on the hypothesis,
‘the posterior odds O(H|E) on the hypothesis given that the evidence E is
observed to be present, and the sufficiency measure LS mentioned

'.pfeviously. By Bayes rule, we can write
O(H B) = Ls x 0(H),

' -where LS is defined by

P(E}-H)

where P(E|{H) is the probability of obtaining the evidence E given that
the hypothesis H is true, and P(E{-H) is the probability of obtaining

the evidence E given that the hypothesis H is not true.

The quantity LS has a standard interpretation in statistiecs, and is
called the likelihood ratio. Thus, Bayes rule tells how the odds on the
hypothesis of a rule are updated by cobserving the presence of the
evidence for the rule: the prior odds are simply multiplied by LS. An
analogous formula tells how the odds on the hypothesis are updated if
the evidence is observed to be absent: in that case, the prior odds are

multiplied by the necessity measure LN.

Direct application of Bayes rule leads, therefore, to simple

formulas for updating the probability of a hypothesis given that the

. user observes either that the evidence is definitely present or that it

is definitely absent. In practice, as was illustrated in the

. interactive example session, the user is often unable to make such

'::definite statements. Typically, the user is prepared only to indicate a

' "f“degree of confidence that the evidence scught is present. In this case,

'*._a formula for updatlng the probablllty of the hypothe31s can be derlved

'-VJLthat effectlvely interpolates ‘between’ the two extreme ‘cases of perfect

'“:Q'certalnty

T e e s e o s i

: ¥ The odds on any'ev1dence (ér hypothé31s) are just the ratio of the-

' 'jlprobablllty in .favor of the evidence to the probability against’ the

~j _ev1dence. "Probabilities and odds are therefore freely 1nterchangeab1e
_through thls 31mple relatlon.-'~“' : e i .

16



Bayes rule thus gives a theoretically sound method for propagating
odds (or the equivalent probabilities) through an inference network. In
'praetiee,'however,.certain difficulties arise that require a

modification of the purely theoretical solution above. The principal

' '_diffiCultY'Stems froﬁ the fact that all the probabilities involved are

.subJeetlvely prov1ded by people rather than being mathematically
derived from some abstract, objective calculation. These subjective
:fprobabllltles are almost always internally inconsistent, and application
-of the theoretical formulation above can lead to nonsensical results,
such as the computation of probabilities greater than one. These
difficulties, their resolution, and a number of generalizations of the
method to cases of practical importance, are all treated in Duda et al.,
1976. Most of that treatment is primarily of technical interest. One
significant finding of our work, however, is of general interest and is

worth mentioning here.

We have found, almost without exception, that people have great
difficulty in assigning numerical values to subjective probabilities.
For example, suppose we ask the user a question of the form "Is E
present on the prospect?" and suppose that the user seriously doubts,
but cannot rule out, its presence. Ideally, we would like the user to
indicate this state of affairs by giving a probability to the system,
say 0.1. Unfortunately, this might be higher than the prior probability
assigned to this observation by the expert, and the system could
interpret the user's response as indicating the possible presence of the
f evidence. In general, neither the expert nor the user can be relied
upon to assign accurate probability values to situations, particularly
'.wheﬁ'the situations are rare events. For example, is the prior

: probability that an ore body exists on a prospect one in a thousand, one

e _ln a m1111on or somethlng else entlrely?

These dlff1cult1es are 1ntu1t1vely 1mportant and a more extended

'ffdlscu551on could p01nt out themr consequences in detall To overcone

"fthe problem we have set up arbltrary scales that avoid the need to

”ff:speclfy probability numbers. Thus, users can indicate their degree of _:“:-;”f-f

17



belief that a piece of evidence E is present by using a scale of -5 to
5, as shown in the example case earlier. With this scale, a positive
response will always lead to a probability higher than the prior
probability, and a negative response will always lead to a probability
lower than the prior probability. Analogously, experts can indicate the
prior odds on hypotheses by using terms such as Y“very rare" or

: ﬁabundant.“ PROSPECTOR converts responses on these arbitrary scales to
:probabilities, and all internal calculations use probabilities and odds.
By using these arbitrary scales, PROSPECTOR can effectively calibrate

all external communication on one common probability scale.

C. Detailed Representations of Rules

The foregoing sections describe how PROSPECTOR stores models of ore
deposits as collections of inference rules, and outlines the Bayesian
computation of probabilities that allow the effect of a piece of
evidence to be propagated through an inference network. If these were
the only mechanisms employed by the system, it would be seriously
deficient in several ways. Many of these deficiencies would relate to
the fact that the system would have no "understanding" of the content of
the rules, much less of the whole collection. Of course,
"understanding" is a subtle concept to come to grips with (for people or
for computers), but a small start can be made by noticing that each rule

can be broken into parts and the parts related to each other.

To motivate this discussion, consider evidence requested in two
. very simple hypothetical rules:

_Rﬁle 5: IF pyrite in veinlets is present,
THEN  H-5,
Cand
 _Rﬁle 6: IF '.sulfides afé'ﬁféSenﬁ,.'
THEN  H-6.
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A user able to observe pyrite as requested in Rule 5 has sSurely
alsoc observed the presence of sulfides, while a user unable to observe
any sulfides will surely be unable to observe pyrite. PROSPECTOR needs
two mechanisms if it is to deal with this sort of elementary but
Spervasive reasoning. Obviously, some sort of taxonomy of minerals will
 be needed in order to infer that pyrite is a sulfide. Less obviously,
the rules must be stored in such a way as to reveal the meaning of their
parts. In this example, the internal representation of "pyrite in
veinlets" must permit the system :0 notice that "pyrite™ is part of the
statement. (Notice, incidentally, that it would be unsatisfactory for
the system merely to scan for the key-word "pyrite," for then incorrect
inferences would be made from such statements as "absence of pyrite® or

"morphology of pyrite.")

We address the general set of problems alluded to here by
representing the details of rules by a network structure. This kind of
representation is called a "semantic network", and has been developed
‘through work in artificial intelligence for just such purposes. 1In
their full generality, semantic networks are a complicated subject in
their own right, and even a modest exposition of the topic would be
beyond the scope of this paper. However, it is easy to see from Figure
4 how a semantic network can be used to solve our example problem, and

‘thus to appreciate how semantic networks are employed in PROSPECTOR.

Each heavily outlined space to the left in the figure corresponds
to a space of an inference network, as discussed up to this point. Each
~of these spaces, though, now has an internal structure. The evidence
spaee for Rule 6 shows that the evidence sought is the presence of
anything composed of sulfide minerals. The evidence space for Rule 5

shows that whet is sought is the'presehce'of anything composed of pyrite

 in the form of veinlets.. To the right in the figure is a portion of a

taxonomy of minerals, whmch allows the system to make the elementary

_ deduttion that pyrlte is a member of the: sulflde group The ‘structure
' dlSplayed then, allows PROSPECTOR to make the inferences needed in this

'_example._ For a full-SQale systen, the'semantie'network would be much
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larger, with many hundreds of spaces and arcs, and a much elaborated-
taxonomy that includes not only minerals and rocks, but also other

concepts such as "geologic ages" and Ygeologic forms."

D. Control of Focus of Attention

We have thus far described how geological models of ore deposits
are represented in PROSPECTOR, and how plausible reasoning can be
accomplished using Bayesian decision theory as a foundation. For
PROSPECTOR to bring this reasoning process to bear on a particular
problem, it must have a way to decide at any point what the promising
hypotheses are; and what evidence to seek to resolve these hypotheses.
This topic is an example of a very general issue in computer science
that is often referred to as "flow of control." Many elaborate control

strategies are possible in our case, but we have decided to use a rather

straightforward one.

Our control strategy rests on partitioning the operation of
PROSPECTOR into two stages. In the initial stage, we assume that the
user of the system has volunteered a set of initial observations. The
first task of the system is to match these observations against the set
of stored rules. When a match with a particular evidence space is
found, the system propagates the effect of that evidence through the
network. When this has been done for all volunteered observations, the
system inspects the probabilities of the top-level spaces (i.e., the
Spaces corresponding to the various models of ore deposits) and selects

the most probable model for further work.

At this point, the system enters the second stage of operation.
Ali'fules that bear on the selected hypothesis are examined, and the
rules are ordered on the basis of their significance. (We use-a measure
of 31gn1f1canee that computes the expected change in the probablllty of
the hypothe31s if the user were asked for the’ ev1dence requ1red by the
erule }. .The 'most 31gn1flcant space is. selected -as the current focus of

:_attentlon and the’ proeess is repeated 000351ona11y a dlfferent top-' '

"Vg'ﬁlevel hypothe31s may become more probable than the one currently belng _jﬁ,ﬂ_f
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worked on. When this happens, the new hypothesis is selected for
further investigation and the process of ordering incoming rules is

repeated.

E, Explanations and Evaluations

There are several ways in which PROSPECTOR communicates its
findings to the geologist using the system. The most direct form of
result is simply the probability associated with each top-level
hypothesis corresponding to the presence of a particular type of ore
deposit. The user can request this information at any time during the
consultation session, but often the most useful information concerns not
the specific probabilities but rather the reasoning process that
produced them. Fortunately, the structure of the PROSPECTOR system
makes this reasoning accessible. In particular, the system can examine
the influence of any given piece of field data on the probability of any
hypothesis. This ability makes it possible to provide two very useful
types of information to the user. First, the system can call attention
to the most significant evidence, both favorable and unfavorable, that
the user has provided. Second, by performing "hypothetical™
calculations, the system can tell the user what additional field data
should be obtained. The "summarize" feature illustrated in Section II
depends on this ability. Advice of this sort, which can be very
valuable in making efficient use of field time, is analogous to the

suggestions that might be made by a chief geologist reviewing a project.

The ability to examine chains of reasoning also in principle allows
PRGSPECTOR to show the user the specific rules of inference that were
- needed to reach a given conclusion. Since economic geology contains an
important judgemental component the user may not necessarily agree with
. the expert-provided rules, and may accordingly wish to modify the
cdnclusion reached. This capability has not yet been 1mplemented 1n the

‘_.current ver31on of the system, when 1t 1s, it Wlll 1ncrease the extent

. ”to which PROSPECTOR alds, but does not. control, the explor'atlon proeess.'_' TR
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IV DISCUSSION

We have given a generél view of a computer-based systém designed to
aid people in problems of mineral exploration and resource evaluation.
In this concluding section, we contrast our approach with some more
traditional alternatives, describe the current status of the system, and

outline some plans for future developments.

A. Other Inference Methods

The methods used by PROSPECTOR to draw inferences are by no means
. the only way of associating hypotheses with related evidence. To the
conirary, there are many general approaches to this problem, ranging

from the most elementary common-sense methods to highly mathematical
ones,

Perhaps the simplest aid for associating observed evidence with
tentative conclusions is an ordinary checklist. However, this paper-
and-pencil method is able to deal with only the most elementary sorts of

situations, and is not ordinarily suggested for serious work.

4 more useful technique involves decision-tree structures such as
the one shown in Figure 5. Each node in the tree corresponds to a piece
of evidence sought. For example, E-1 might be "Is the prospect in a
.voleanic province?" Depending on the answer, either E-2 or E-3 would be
asked next, and so on until one of the bottom nodes was reached. Each
of these bottom nodes would correspond to a hypothesis -~ say, the
presence of a particular type of ore dep031t

 Decision trees have some attractlve features not the least of
whlch is thelr 31mpllclty, but for problems of any complex1ty they
ﬂpresent dlfflcultles that may not be obvmous at flPSt glance. “Fdr-5

  example, they are not readlly adapted to 31tuat10ns 1n whlch the user 1sf_~f
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uncertain about the answer to a particular question. An "incorrect®
' answer may lead to questions from the system that are recognized as
obviously inappropriate. If this happens, it is difficult for the user
to backtrack through the tree to decide which answer to change. In the
same vein, decision trees usually do not permit the user "I don't know"
. responses. Deciszion trees also are unable to accept volunteered
evidence from the user. If the user wants to tell a decision-tree-based
system about a piece of evidence, he simply has to wait until he is
 asked. In contrast, we have seen that PROSPECTOR can easily deal with a
wide range of user responses, including "don't know's" and degrees of

certainty, and can accept evidence volunteered by the user.

One of the most serious problems with decision trees is the
difficulty with which they are modified, since any change or
restructuring of a node can affect the logical flow of questions
throughout the tree. This deficiency is particularly eritical when
dealing with a massive and changing body of professional knowledge. By
contrast, PROSPECTOR represents knowledge as rules of inference
specifically because these modular portions of knowledge can be easily
modified or supplemented. It is worthy of mention that although a user
of PROSPECTOR is asked a sequence of guestions, and therefore may
suspect that a decision tree-methodology is being employed, in fact the

design of PROSPECTOR rests on entirely different principles.

Probability theory and statistics furnish a classical body of
techniques for drawing inferences from uncertain evidence. While
'applicable £o a wide range of problems, a traditional limitation on
their utility is the explicit or implicit need to specify joint
probability distributions over all evidence and hypotheses that will be
considered. These distributions either must be assumed or must be
-estimated from samples. For problems of moderate size, and with

sufflolent data, reasonable estlmates may be made. Minefal exploration

'_sand resource evaluatlon are so complex, however, that dlrect estlmatlon i

-._:of the resultlng hlgh-order probablllty functlons 13 1mpraetlcal
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Faced with this difficulty, purely statistical approaches usually
make assumptions that either reduce the problem to one of estimating a
number of parameters, or that allow the'high—order probabilities to bhe
partitioned into a number of low-order ones. These low-order
probabilities may then be estimated or, as in PROSPECTOR, they may be
subjectively obtained from experts. One major difference between
PROSPECTOR and more traditional statistical approaches is the
"vocabulary" provided for linking together these low-order
probabilities. Classical approaches allow only probability functions
(conditional probabilities are most often used) to_specify these links.
PROSPECTOR, in contrast, admits the much richer language of arbitrary

rules of inference coupled with special logical structures such as

taxonomies.

Another important difference between PROSPECTOR and classical
statistical methods is the ease with which explanations of reasoning can
be produced. PROSPECTOR can examine its own chain of reasoning, and if
need be can display the inference rules used, in order to expose the
basis of its coneclusions to critical evaluation. In contrast, purely
statistical methods are unable to do much more than "replay" the formal

‘computations that have been performeq.

B. Current Status

PROSPECTOR is in a rather early experimental stage., If is
implemented in the LISP programming language, a language specially
- designed for work of this sort, on a Digital Equipment Corporation PDP-
10 computer. A consultation session on this computer, using our
existing models, generally would cost no more than a few dollars.
Hardware developments in microelectronics continue to reduce the cost of
computation by a factor of perhaps 10 every seven years, so computation
costs can be expected to remain low evén'though PROSPECTOR will grow in

'size. 

We currently have three ore depos;t models 1nstalled in the system.

-TThe flPSt model was of Kuroko—type massive sulfldes and was provided by - ..
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Prof. Charles F. Park, Jr. The second model installed was of
Mississippi- Valley-type carbonate lead/zinc deposits, and was provided
by Dr. Neil Campbell and Dr. Alan Campbell. The most recent model is of
a subtype of near-continental-margin porphyry copper deposits, and was
provided by Prof. Marco T. Einaudi.

Since we are still in an experimental stage, it is worth examining
our experience in eliciting these models from senior members of the
economic geology community. Each model is considerably more refined
than its predecessor, in terms of both its geological content and the
sophistication with which it is used. As a measure of this, the
porphyry model is roughly twice as large and complex as both earlier
models taken together. This increase is related in part to the large
amount of work that has been done on porphyry deposits, but is also a
consequence of the experience we have gained in structuring models of
ore deposits. About 50 hours of interviewing time was required to

‘define the porphyry model in terms of inference rules.

C. Future Plans

Our immediate plans call for increasing the quantity and quality of
ore deposit models. We plan in the near future to add models of
stratiform chromite deposits and of nickel sulfide deposits.

Ultimately, a practical system may have on the order of 25 to 50

different models.

A second extension of PROSPECTOR will be in the direction of
accepting and using additional types of field data. We plan in the near
future to incorporate within PROSPECTOR a computer program for
statistically comparing geochemical characteristics of a prospect with
those of known producing districts. This program, based on the work of
Dr. Joseph Moses Botbol of the U.S. Geological Survey [Botbol et al.,
© 19761, will enable us to deélfwith quantitative geochemical data, and
~-also illustrates the nondoctrinaire design philosophy we have adopted.
Most of our’ discussion has centered on the use of PROSPECTOR as an

. exploration tool. As wWe mentioned in the Introduction, an importaﬁt
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additiénal use of the system would be to aid in tasks of regional
resource assessment, and here several possibilities are present. One is
to concentrate on the analysis of data bases representing properties
With mineral potential. Such databases, which have become increasingly
prominent in the past several years, contain geologic and other data on
properties with presumed mineral potential. PROSPECTOR could screen
Ssuch a database, property by property, and assess the likelihood of a

deposit for each.

A second possibility would be to follow the more common practice of
partitioning a region into a grid of cells and applying PROSPECTOR to
the task of assessing the potential of each cell. It would be necessary
to select a cell size such that at most one deposit could occur in it}
the cell probabilities would be combined to form an estimate of the
number of deposits in the region. Of course, PROSPECTOR could be given
data on the general geologic characteristics of the region so that
manually entered data would need specify only those cell characteristics

that differed from the general geologic picture.

Both possibilities lie in the future but illustrate the potential
utility of a computer-based system that can aggregate geological
knowledge from a team of experts and can actively apply that knowledge

to specific exploration problems.
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