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" Abstract:

‘Techniques derived ‘from ‘mathematical logic promise to provide an alternative to the
conventional methodology for constructing, debugging, and optimizing computer programs.
- Ultimately, these techniques are intended to lead to the automation of many of the facets of the
programming process.

This paper provides a unified tutorial exposition of the logical techniques, illustrating each
- with examples. The strengths and limitations of each technique as a practical programming
aid are assessed and attempts to implement these methods in experimental systems are discussed. -
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l It't'troci'uot.io'n :

i June 1962 the first Amerrcan sPace probe to Venus (Marmer I) went off course and had to i

'_-"be destroyed because of an error in one of the gu:dance programs in its onboard computer'

.One statement of the program, though syntacttcally correct, ‘had 2 meaning altogether d:fferent .-
" from that intended by the’ programmer. | ‘Although few bugs have such spectacular effects,

er rors in’ computer ‘programs are frequent and infiuential.’ ‘There has been substanttal effort |

L recently to apply mathematical rigor to the programming process and to enable the accuracy of

' the machine to compensate for the error- prone human mind,

' the late nineteen_th and eariy twentieth century, mathematics underwent a process of

formalization and axiomatization, partially in an effort to escape from paradoxes and logicat ' -~
" errors encountered by previous generations of mathematicians. A similar process is underway

in the development of a logical theory of programs. This theory has already madé our

- understanding of programs more precise and may soon facilitate our conhstruction of computer '
- programs as well. Logical techniques are being developed to prove programs correct, to detect
- - programming errors, to improve the efficiency of program operation, to extend or modlfy"-

< existing ptograms ar:d even to construct new programs satisfying a given speciﬁcation many of .
_ these techmques have been rmplemented in ‘experimental programming systems. In the! last -

* “decade, this field of research has been extremely active; it.now has the potenttal to exert a deep"-

.. influence oh the way computer programs are produced

T avatlable techmques are a!ready descrrbed in the hterature but the relevant papers are
* _scattered through many technical journals and reports are written in a vartety of mcompatlble :
notations, -and are often'unreadable without'some background in mathematical logic. ‘In this ~
| paper, we attempt to present the principal methods within a unified framework, conveying the
intuition behind the methods by examples, and avoiding the formal apparatus of the logicians. -

To facilitate- a comparison between the various techniques, we use a' number of differ'ent" EEIRE
R Ialgo: ithms fOl performing the same task: . to’ compute the greatest common d:vnsor of two T
- integers.- These algotithms are simple enough to be readxly understood but subtle enough to _- e

.'-_demonstrate typtcal dtfﬁculttes S e T

"'The g: eatest common dmsor of tWO nonnegative mtegers x and y abbrewated as gcd(x y), 1s B

_ ::the latgest mteger that dwxdes both ¥ and 4. For mstance gcd(Q 12)=3, gcd(l2 25) =1, and___-'_ L : S
B gcd(O 14) = 14 When and y . are both zero there is 'no greatest common . divisor, because. R

. every mteger dtvides 1er0 on the other hand when x o y is not zero, a: greatest common_” e

dwrsor must extst

'A naive algouthm to compute the gcd of X and y m:ght behave as fo]iows Make llsts of all::' =t

the drvrsors of‘ E: Aand of all the dmsors of y then make a thlrd list of ail the numbers that' =
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appear in both t:nts (these are the common d:vrsors of x and y 3 fmally, find the Iargest

"'number in the third list (this is the greatest common divisor of x and 'S The cases in which
% Tor' g is zero must be handled separately This aigouthm is - stratghtforward but mefﬂcrent e
E _'because it requires an expensive operation, computmg all the divisors of a given number and O R %
- -because it must remember three’ hsts of mtermedrate numbers to compute a smgle number S

_'A more subtle but more effrcrent a]gonthm to compute the gcd of two numbers can be devxsed L
- Until the first number is zero, repeat the following process: -if the second number 'is greater" S
'than or equat to the first, replace it by their difference -- otherwise interchange the two'_ L '
“humbers -~ and continue. When theé first number becomes zero, the answer is: the second -
number. This answer turns out to be the ged of the two original numbers. ‘The new algorithm =~

- is more efficient than the naive one, because it only needs to remember two numbers at any one /.
. - time and to perform the simple minus operatlon _ - ' .

“The .above algorithm can be expressed as a styllzed program:

Program A (ihe subtraotrve algonthm)
; mput(xo Yo) '
@y el
more: if x = 0 then goto enough -
C . ify2xtheny e y-x else(xy) (yx)
goto more
enough output(y).
The hotatioh (x 9) & (g yo)'means that the values of ¥ and § are simultaneously set to the
input values x, and 5. Thus, the statement {x ) « {y x) has the effect of interchanging the

" yalues of x and y . This program causes the following sequence of values of x and y to’ be SHas

o generated in computing the ged of the input values xo=6 and y0=3

R DU I

Hu R R R
I
o '
=

ja e Ty o NN el

BRSO 1

:'__:' & Thus, he output of the program is 3

'_:-:.'-'A!though the earher narve algorlthm was obvmusly correct because it closely followed the'_-__.-"" ShGean
"5_;-def|mt|on of gca‘ it is by ne means ‘evident that Program A computes the ged, f‘unction Frrst e

B “of all, it'is not ‘clear’ that" when *  becomes. zero the: value of § will be the’ gcd of the inputs o

' "'that thrs is s0 depends on propertres of the gcd functron Furthermore it is not obvious that x
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o Z"wm ever become zero; we might repeated’ly execute’ the if then-e|se statement forever For
o mstance consxder the program A’ obtarned from A by replacmg the condit!onal O

ify>x‘theny¢—y——x eise (xy) (yx)
e ify>xtheny+—y-x elsexe—x—y

.:.ThlS pr ogram closely resembles Program A and it actually does compute the gcd of its inputs '

. when it happens to produce an output. However, it will run forever and never produce an

output for many possible input values; for instance, if xo=0 and 9o=0, or if x4=0 and yo=%g.
" Thus, if xy=94=3, the following sequence of successive values of x and y emerges:

It

1

X RXE
"

G O3 LD O3
o4
-

Qo Q

. These programs are as simple as any we are likely to encounter, and yet their correctness is not
immediately clear. It is not surprlsmg, therefore, that bugs occur in large software . systens, -
' -Although programs ‘may be subjected to extensive ‘testing, subtle bugs frequently survive the

© testing process. ‘An alternative approach isto prove mathematlcaily that bugs -cannot possibly -

occur in the program. Although more difficult to apply than testing, such mathematical proofs -
attempt to impart absolute certainty that the program is, mdeed correct. :

.Techmques derwed from mathematlcal ioglc have been apphed to many aspects of the '.
_programmmg process, mcludmg ' : -

e correctness provmg that a glven program produces the :ntended resuits
e termma:wn provmg that a glven program wﬂl eventua]ly stop

5 j-.‘ tmnsformauon changmg a glven program into an equwalent one, often to 1mprove 1ts
ef hctency (optimzzatwn) L : : '

; 0 development constructmg a program to meet a gwen spec:ﬁcatlon

: 'These techmques are mtended to be appl:ed by the programmer usually with - some degree of

computer ass:tance Some of the techmques are falrly well understood and are already bemg ;
- incorporated * into’ experlmental programming :systems. . Others are just begmmng to e 5

- for mulated and are unlrkely to be of prar.tlcal value for some t:me
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o :Our exposnhon is dwnded between a basnc text, gwen inan ordlnary type font sl
© - and secondary notes mterspersed throughout the text in a smaller font. ' The
R ,bas:c text presents the principal logical technidues as they would be applied SAEnES
by hand, the secondary - notes - discuss - subsmhary topics, report ‘on - PR :
C -mplementatuon efforts, and include babhograph!cal remarks Only a2 few - .- S
: _references are given for ‘each toplc, even’ though we are Ilkeiy to lose some o ' S
_ good friends in this way. The hasty reader may Sklp aII the secondary notes e
: _'.'-wuthout Ioss of contmuny : - S S SR SR

In the' fel!owmg pages we wnl touch on each of these tDplCS, we begln wlth correctness, the most Cene e
“investigated and best understood of them all. : . SR
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SN Par’t’iél Correctness:

- Z'To determme whether a program is correct ‘we must have some way of specrfymg what 1t is

' '.rntended to do;- ‘we cannot speak’ of the cortectness of a program in isolation, but- oniy ‘of dts

correctness with respect to some specrf:catlons After all even an incorrect’ program performs-'.__,-'

: -':some computat;on correct!y, but not the same computatlon that the programmer had m mmd

'-"For mstance for the gcd program we can specrfy that when the program haits the variable 9 is"
_mtended to eq jual the greatest integer that divides both inputs x%g and yo; in symbolic notatmn

o y = max{u : ulep and ulyo) -

. (Here, the expression {u : p(w)} stands for the set of all elements u such that p(u) holds, and the

- expression ulv stands for "u divides v .") We call such a statement an output assertion, because
it is expected to be true only when the program halts. Cutput assertions are generally not
~ sufficient to state the purpose of a program; for example, in the case of the ged , we do not
~ expect the program to work for any xo and yo, but only for a restricted class.. We express the

- class of ' Iegal 1nputs of a program by an mput assertwn -For the subtractwe gcd algorrthm o '

3(Program A) the mput assertion is
Oandyo>0and (xouc Ooryo » 0)

_ We 1equ1re that at Jeast one of the mputs be nonzero, because otherwrse the gcd does not exnst 3.'
- We do not state explicitly that the inputs are mtegers but we will assume throughout this paper '
: 'that vanab!es always assume integer vaiues. : : : '

. 'We have expressed the spec:ﬁcat:ons for Program Aasa panr of mput—output assertions.. Our' '::_' L

task now is to show that if we execute Program A on any input satrsfymg the input assertlon,

| the program will halt with output satisfying the output assertion. If so, we say that Program A~

~is totally correct. It is sometimes convenient, however, to spht the "task of proving total

" correcthess of a program into two separate subtasks: show:ng pamal correctness, that the _
S output assertion is satisfied for- any legal input if the program halts and showing termmatwn,.; JEoe
L 'that the program does mdeed halt for all }egal mputs : : L T

The language in whnch we wr!te the assertions is different from the programming ianguage' i
3 f”itselt‘ Because the statements of thls assertion language are never’ executed 1t may ‘contain .

L much’ h:gher level constructs than the programmmg language For 1nstance we have found the - i

-~ set constructor ’ { ..} useful in descrlbmg the purpose “of Program A, even though this -
S potation is not a: construct of convenhonai programmmg languages ertten in such a highw' )
"f-*levei ianguage the assernons are far more concnse and naturally expressed than the program-.:.'.'i

o ltself‘
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It w:il be convenient for us to ignore the problem of termmatron for a whlle and dea! only Wlth h

part:al correctness. In’ proving pamai correctness, it he!ps to know -more about the program

o than just the input-output assertions. After all, these assertrons only tell us what the program'_' i

s expected to achieve and grve us no mformatnon oh how it is to reach: these goals. “ For
_"nmtance in’ understandmg Program A it is . helpful to- Know that whenever control passes'. o
~through the label more, the greatest common divisor of ¥ and ¥ is intended to be the same as =~

' -_-fthe greatest common’ divisor of the inputs xo and o’ even though x'and y° themselves may

- have. changed Because this relationship is not stated explicltly in either the input-output SRS
~“assertions or the program itself, we include it in the program as an tntermediate assertwn, '
_ exptecsed in the assertion language : e

 max{u  ulx and ulp} = md_x{tt : ulrg and ulyp} - o

Another -intermediate assertidn states that whenever we pass through more, the program
" variables, ¥ and 4, obey the same restrictions as the input values xo and 9 , i€, :

x>0andy>0and(x=¢ Ooryw 0)

_ _We rewrlte Program A below, annotated Wlth its assertrons (w:thm braces "{ ... 1) Note that .~
~the assertions are not intended to be executed, but are ‘merely comments expressing relattonships S
:that we expect to hold whenever control passes through the correspondmg pomts '

. Prograrn A (annotate'd):
input(xg o)
o x0>0andy020and (xo > Ooryo # 0)}
o fx ) e (o 30)
- ‘more: -{szandy>0and(x¢00ry¢0) :
. rand max{u : ulx and uly} = max{ulxo and ulyo} b
S 1) x = 0 then goto enough L
_ ify>xtheny¢—y-—x else(xy) (yx)
SR goto more - :
enouglz {9 = max{u: ulxo and u[yo} }
B output(y) ' :

.-'Otn goal is to prove that if the program is executed wrth mput satrsfymg the mput assertlon i _
: '_and lf the program halts then the output assertron w:il hoid when the program reaches enouglz : S RRERAEE

'For thls purpose ‘we wrll show that the mtermedtate assert:on is true whenever control passes’-'_ : _
thtough more; in other words, it is invariant at more “The proof is by matizemattcal mductwn on"'.'_"_' %
' .-'_the number of times we reach more. That is, we will start by showmg that if the input assertron' B
-is° true when we begm execut:on, the mtermedlate assertron will be true the f:rst ttme we reach £




' Manna & Wa|dinger _ The Loglc of COmputer Programmtng‘ _

“more; we wm then, show that if the mtermediate assertion holds when we pass through more,

| __-'then it wxl! be trie again if we travel around the ]oop and return to more, therefore it must be S

3 true ever y trme we pass through more.

'_Fmally, we w:ll show that if the intermedite asseftion holds at more, and 1f control happens to".: D

" pass to enouglz, theén the output assertion will be true. . This will estabhsh the partlal correctness
e of the program w:th respect to the gnven tnput and output assertlons ' L

' 'Let us ﬁrst assuirfie that the input assertion is true when we begm executton, and show that the'_} .
" intermediate assertion holds the first time we reach more. In other words, 1f L : -

- -xoz(}a'ndyoéband(;to-s Ooryoe 0, |
" and we exeeute the assignment.
(”-’ 3?) « (’fo 3’0)

- then : ' -
.x>0andy>0and(x=e0ory=0) :
_and max{u ufx-and uly} max{u uixo and u[yo} ,
for the new values of ¥ and y. S

_ Because the assrgnment statement sets x to xo and y to yo, we are led to prove the venﬂcatwn

. condmon

e %o > 0 and yoao'and (.xb:.# Oor'jfo. « 0) __
: SRS xo>0andy0>'0and(x0¢Ooryoso)
- and max{u upxg and u[yo} = max{u ulxg and ulyo} .

s (I-!ere the notation A => B means that the antecedent A 1mp!ies the consequent B) The

"con l:equent was formed from the mtermedtate assertzon by replacmg ¥ by xo and y by ?o

ey 'Next assumzng that the mtermed:ate assertron is true ‘at -more and control passes around the'.'."

. Ioop, we need 1o show that the assertion will still be true for the new values of x and y when we. i
'21eturn to more In other words iF the lntermedlate assertlon T T T

x>0andy>0and(x o Oory . 0)
and max{u u]x and u[v = max{u u]xo and u{yo}

holds 1f the exrt text x 0 is false (le x ® 0) and 1f the condtttonal statement 5
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- sfy>xtheny«—y xelse(xy)e-(y:':):

s executecl then the mtermedlate assértion w:ll agaln be true. To establish thls we dnstmguxs‘n-

. _'between two cases. If y 2 x, the asmgnment statement y « ynx is’ executed and we theref‘ore = i: S

_must prove the verification condltron R

@ -'x>0andy20and (x= Ooryre 0) TP RIS L SRR
. and maxfu : ufx and u[y}=max{u ulxo and u{yo}, _ O
and x=«0 - 000 S _

and y 2 x R
= x>0andy—x>0and (xw Oury—-x % 0)
and max{u : ulx and uly-x} = max{u : ulry and ulyg} .

" ‘The antecedent is'c.ornpcjséd of the intermediate assertion and the tests for traversing this path .
. around the loop. The consequent was formed from the intermediate assertion by replacmg 9y by
oy _

In the alternate case, in whzch y < x, the consequent is formed by mterchanging the values of x'_
o and y The correspondmg‘ verification ccmdltlon is ' s : S

_'('3)" : xaUandy>0and (x # Dory - 0)
- and max{u : ulx and uly} = max{u : u]xo and uly}
and x=0
and y < %
-—>y>0andx20and(7¢00rxae0) _
and max{u : uly and ufx} = max{u : u!xo and u{yo} :

To complete the proof we must also show that 1f the- mtermed:ate assertwn holds at more and .

‘control passes to enough, then the output assertion will hold. For thls path we need to estabiish :

' -the verlﬁcatlon condltlon

AR '__x>0andy>0and(x » Dory » 0)
i _and max{y : ulx and uly} max{u ulxo and u[yo}
'and x=0 - : o
= y max{u ulxo and u[yo}

' These venf:cation COﬂd]thl‘lS are lengthy formulas but it is not dxmcuit to prove that they are SEERpN

Call ‘true. Cond:tmns (1) ‘and (3) are Iog:cal 1dentmes which can be proved mthout any

: ':__'knowledge of the mtegers The proofs of Condltzons (2) and (4) depend on three propertles of‘ o o

- the mtegers
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: ..(;)_ .ulx anﬁ u[y Z=5 uix énd u[y-x ' i
;_(the common divnsors of x and 5~x are the sarﬁe as fhoSE of x and y),
) w0 i '
:.(al.'ny:il.“:tejgéi‘ d'iv'idés 'iéro):, aha
() max{u =y ify>0
| (any pthsitive integer is its ('m;n 'grea'test.'c:liviso.r).

. To prove Properly (a), assume ulx and u]y . Then, we must show that upy-x
“as well, We know that x=k.u and y = L., for some integers k and ! . But
then y—x = (I~k). u, and hence uly—x, as we wanted to show. Similarly, if ujx
and uly-x, then ¥ = m.u and y-x = n.u for some integers m and n . But
~ then y = x+(y=x) = (m+n) 1, and hence ufy . '

| To pr ove 'C'.rj.nc.iitidn (2), let s consider the 'ébhséq.uénts' one by one. That x?.O y—an and (.3.;# 0

or yﬂxac 0) are true follows directly from the antecedents x20, y>x and x=0, respectwely That :
max{u ulx and uiy—-x} = max{u uixo and u|yo} R

~ follows from the antecedent E

max{u ujx and ubt} max{u uixo and ﬁ]yo}

. ; and Property (a) | |

To prove Condition {4), fi.f.st.o.l.)sé.r#e thaF .t'ﬁe.'aht:ézc'ed:en't; 1mPiY
. .-::-"because %=0" and (xsl} or y# 0) lmply y#O but 5#0 :.:in'd.' yzo :mplyy>0 Now,smce x=0. -
appwmg Property ®)to B T B FR i ),

max{u u[x and u;y} max{u uixo an.d u{yo}

S | max{u u[y} = ma;c{t; ulxo and .u[yo}

: 'Because y:-O app!ymg P"roperty (c) yields . |
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: y = rn'ax{u - ueg and d[yo} ,
: ‘the comequent of Condltion (4). .

:'Tl‘ns conctudes the proof of the part:al correctness of Program A Note agam that we have not

- proved the termination of the program: we have proved merely that if it does terminate then S ol

o the output assertion is satisfied. A srmtlar proof cah be applied to Program A’ (the program
~formed from Program A by rep]acmg the statement (x 9) « (y x) by x « x-%), even though that -

program may loop indefinitely for some legal inputs. - Program A’ is ‘partially correct, though

" not totally correct, because it does compute the ged of those inputs for which it happens to halt.

" The proof of the partial corréctness of Program A involved reasoning about four loo‘p—.free" SES

- program paths: one path from the input assertion to the intermediate assertion, two paths f rom -
. the intermediate assertion around the loop and back to the intermediate assertion, and one path
from the intermediate assertion to the output assertion. Had we not introduced the
‘intermediate assertion, we would have had to reason about an infinite number of possible
program paths between the input assertion and the output assertion corresponding to the
“indefinite number of times the loop might be executed Thus, the mtermediate assertron is '

' ._essentlal for thts proof method to succeed

_.-.Although a program ’s assertions may become true or false depending on the 1ocatlon of control e

“in ‘the program, the verification conditions  are mathematical statements whose truth is’
_independent of the execution of the program. Given the appropriate assertions, if the program -
is partially correct, then all the verification conditions will be true; inversely, if the program is .
not partially correct, at least one of the verification conditions will be false. ' We have thus
transformed the problem of proving the partial correctness of programs to the problem of
' provmg the truth of several mathematical theorems. : :

- The verification of a program with respect to glven mput»output assertions consists of three'
B phases: finding appropriate intermediate assertions, generating the corresponding verification
'-_condtttons and proving that the verification conditions are true, “Although generatmg the
verification ‘conditions is a simple ‘mechanical task, finding the intermediate assertions requnres'

a “deep understandmg of the prmcaples behind the programs, and proving: ‘the. verification -
- conditions may demand ingenuity and mathematical facility. Also, a knowledge of the sub ject '

- '_'_'domam of the program {eg., the propert:es of mtegers of the laws of physxcs) is reqmred both [ ey

o -_-i‘or fmdmg the mtermedrate assert:ons and provmg the verifrcatlon conditions St

L _'One way to apply the above techmque is to generate and prove verlﬂatton cond:t:ons by hand i
"-":_However in perf‘ormlng such” a process we are SUbJECt to the same’ klnds of errors that
'_programmels commit when they construct a program in the first’ place.” An alternate poss:blirty
k .lS to generate and prove the verlf:catton condltrons automattcaily by means of a venfcanon e

o
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system Typ:ca!!y, such a system consists of a vmf carion condttton generator which produces
the VErmcatron condmons, and a rheorem prover, which attempts to prove them - - B

L g_'!nvanant assertlons were mtroduced by Fioyd {1967] to prove partlal S
. correcthess of programs, although some 1races of the idea appear sarlierin - ..
L the literature. ng {1969] implemented the first system that used mvarlant o
" assertions to prove the parlial correctness’ of programs.” Given a'program, its
" input-output assertions, and a set of propased intermediate assertions, King’s . S
. system generated the verification conditions and attempted to prove them. R . _
. ‘Some- later systems (such as those of Deutsch [1973), Elspas,. Levitt, and ' o C
- Waldinger [1973], Good, London, and Bledsoe [1%75], Igarashi, London, and
Luckham [1975], and Suzuki [1975]) adopted the same basic appréach but .
employed more powerful theorem provers to prove the verification conditions.
‘Therefore, they were able to prove the partial correctness of a wider class of
programs ' o

Although the above systems have advanced somewhat beyond ngs orlglna!_
‘effart, they have two principal shortcomings. They require that the user
supply an appropriate set of intermediate assertions, and their theorem _
. provers are hot powerful enough to prove the verification conditions for most . -
_-of the .programs -that arise in prachce Let us consider each of these - .
d:ffrcuit;es separately. ' ’

e finding_ invariant assertions. Although the invariant assertions required to
perform  the verification are guaranteed to exist, to find them one must
understand the program thoroughly. Furthermore, ‘even if we can discover
the program’s principal invariants (e.g., max{u : ulx and uly} = maxfu : ulxy

- and ulyp} above) we are likely to omit some subsidiary invariants (eg, yzO

" _-above) that are still hecessary lo cornpleie the proof : -

' 'Of course, it would be ideal for the programmer fo supply oniy the program _
and its input-output assertions and to rely on the verification system to
construct all the required intermediate . assertions - automatically. - Much
' research in this direction has - aiready been done {see, for example, German -
and Wegbreit {1975] and Katz and Manna’ [1976]) However; it is more difficult
L for ‘a .computer system -to /find the apprOprlate assertions ‘than “for the .
S ;programmer “to ‘provide’ them, because the principtes behind a program may e .
i not be readily revealed by the programs lnstruchons Aless ambltrous goal o
S riisto require the programmer to supply the prmcrpal rnvarlants and expect the SEa
. _3system to fill in the remamlng subsldlary asserhons : B DU

_ "-30 provmg veraﬂsatwn condrtrons Verrfrcahon cond:hons may be comp!ex '_
5_forrnu!as, ‘but they - ‘are’ rareiy “sublle -‘mathematical theorems Current"[--'-'_."'
-__verlhcatlon systems can be quite effechve if they are glven strategaes et

_ .: o
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. spemhcalty tailored to the subject domam of the program However, the _
programs we use in everyday life rely on alarge and varied body of subject ¢
" knowledge, and it is unusual that a system can verify a program in a new = -
‘subject domain without needing to be extended or ‘adapted in some way (cf.
Waldinger and Levitt [1974])." Of course, some of this difficulty may be .
. remedied by future theorem proving research and by the development of SR
3'mteractwe verification systems.. : S

_ 'The invariant assertions that we attach to intermediate points to prove partial correctness relate -
' the values of the program variables at the intermediate points to their initial values.” For -
" instance, in Program A we asserted that o

x>03ndy>Oand (x=0o0f 920) :
and max{u : ujx and uly} = max{u ulg and u[yo}

“at the labe! mare. A more recent meth'od, the subgoa!—assertioh method, emplojrs' subgoal
assertions that relate the intermediate values of the program variables with their ultimate -
~ values when the program halts. For Program A the subgoai assertion at more would be '

- x>0andy>0and (x:-eOoryseO) => y:max{u ulxand u|y}

_whene Ve denotes the fma! value of y at termmatlon This assertion expresses that whenever
control passes through more with acceptable values for x and y , the ged of the current values of C
x ahd 4 will be the uitimate value of §. : : :

o We prove this: relataonshsp by mduction on the number of times we have yet to traverse the o
. loop before the program terminates. Whereas the induction for the invariant-assertion method
foliows the direction of the computation, the induction for the subgoal- assertion method
_ ptoceeds in the opposite’ direction. Thus, we first show that the subgoal assettion holds the’ last

- time control passes through more , when we are about to leave the loop. ‘We then show that if
~ the subgoal assertion holds at more after traversing'the loop, then it aiso holds before traversing

the loop. This implies that the subgoal assertion holds every time'contrc’ﬂ*paﬂes through more.
_"Fmaliy, we show that if the’ subgoal assertion is true the first time control passes through more
_ the desned output assertion holds. - ' :

To apply th!s method to prove the partial correctness of Program A we need to prove the -
lfoliowmg veriflcanon condmons - :

..__.-_—>[x>03ndy>0and(xaeOoryueo)—z»y max{u uixanduly}}

(the subgoal assertion holds when we are about to leave the Ioop)

i3
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. (2’) . [x>0and y-x20and (x # Dor y—x » O) => y;:max{u]x and u[y-—x}] _
'__=>{x>03ndyeOand(xw00ry¢0) =>' y,-=max{u ulxandu]y}}

L _(the subgoa] ‘assertion after traversmg the then path- ot‘ the loop
_implies the subgoa! assert:on before traversmg the path). -

(3) '[y>03ndx203nd(y=e00rx¢ 0) => y::max{u u[yandutx}]
and x = 0 .
and y<x : _
=>[x>0andy>0and(x¢Oory=0)~>yf=max{u u]xanduba}]

(the subgoat assertion after traversmg the else path of the loop
implies the subgoal assertion before traversing the path).

4) xo>0andyo>0and(xos Ooryoaeo) _ : : 3
and[%p20and yo2 0and {xg = Ooryp = 0) => yf = max{utxo and uiyo} 1
=> ¢ = max{u ulxg and u[yo} :

(the mput assertmn and the” subgoal assertion the flrst time we enter
~ the loop imply the output assertlon)

~ Each of these conditions -¢an' be éasily proved. Conditions (1), (2), and (3) establish that our
. intermediate assertion is indeed a subgoal assertion. Thus, whenever control reaches more the
. -assertion holds for the current values of the program variables x and y and the ultimate value

3¢ of 5. Condition (4) then ensures that the truth of the subgoal assertion the first time we

- reach more is enough to establish the desired output assertlon Together, these condmons prove'
the pa1 tial correctness of Program A :

Fjom a- theoretlcal pomt of v1ew, the mvarmnt-assertion method and the subgoai-assertion _ : -

- ‘method are equwalent in powet, in that a proof of partial correctness by either of the- methods-_. A

-can . 1mmed1ately be rephrased as ‘an equ:valent proof by ‘the ‘other method. In practlce,'._ S

however, for a. gwen program the subgoal assertion ‘may be’ srmpler ‘than the invariant. . oo

* assertion; 'or vice versa. It is a}so quite possrb!e to apply both methods together m venfying a v S
smg!e program Thus the two methods may be regarded as complementary S e

The subgoal assertlon method was suggested by Manna [1971] and deveioped

by Morrls and Wegbrelt [1977] : . _

In demonstn atmg the parnal correctness of Program A we employed rigorous but informal S :

T
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'mathemat:cal arguments It is possnb!e to formahze these arguments in a deductwe system, |

“much in the same way that logicians formalize ordinary mathematical reasening. To introduce - i

‘an invdriant deduciive system for the invariant-assertion approach, we use the’ notation -

{}F{Q}' S

:whele P and Q are log:cai statements and F is a program Segment (a sequence of program'

" instructions), to mean that if P hoids before executing F, and if the execution terminates, then -

-.Q will hold afterwards. We call an expression of this form an invariant statement. Fotr
" instance, ' s ' '

ey ey elyn) [pex)

is a true invariant statement, because if the value of x is less than the value of y before
~ interchanging those values, the value of y will be less than the value of x afterwards.

- Using this notation, we can express the partial correctness of a program with respect to its input
: and output assertions by the invariant statement

{mput assertmn} program {output assertlon}

: This statement means that 1f the mput assertlon holds and 1f the program termmates, _then the '
output assertion will hold; therefore, it adequately states the partial correctness of our program

-To pr ove such invariant statements we have a number of rules of inference, which express that |
to infer a given invariant statement it suffices to prove several subgoals. These rules are
_ usuatty presented in the form : :

AiAz.. Ay

B

.'meanmg that to infer the consequent B it sufﬂces to prove the antecedents A,, Az, oy An .

- '_Hene B is an “invariant statement, and each of A,, Az, .-...'A is either a log:cal statement or

_another mvarlant statement We have one rule cerrespondmg to each statement m our -

i By -language

e asszgnment rule Correspondmg to the assngnment statement
) _.(xlix.z' . '.'. '. xn) *"(tltz . ._. .:tn), ’
~ which-assigns the value of each term ¢; to its respective variable %; simultaneously, is = =~ =

15
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P.(;'C'l.xz.'.. x)">Q§t]rz .'... ) B

: { 'P.(xi xa xn)} (x] Xg ios Xp) € (t] 12 n) {Q!x, X5 . n) },

'whele P(x, Xy xn) and Q,(x, xz x) are. arbrtrary Ioglcal statements and [

| _'thl 15 rn) is the result of s!multaneously substrtuting 4 for xl wherever it appears in'”_:_ -

Q(:c, Xpooou X,). ‘In other words, to infer the invariant statement
Pl ) ) e o W (@i )]
._it suff ice's‘to prove the logical statement |
PI(Ix.I x’z...xn)=>Q_(t, tg...tn). ; '. _ |

For examp!e to prove the invariant statement {x <y} (x y) « (y x) {y < x} it is enough to
plovex<y->x<y . .

o Thrs rule is vahd because each x has been assrgned the vale & by the ass:gnment statement. -

This, ij, Xp ... xp) will hold after the as_srgnment if Q(t, 1y ... 1) held before. Because we .-

‘are assuming Plx, %, ... xn)'held before"the'_assignment it is - enough to - show'

' P(x, xz . xn) =5 Q(z]'tz fn).
@ conditional rule. The rule for the staterent "if R then F, else F," is

{P and R} F, {Q), {P and -R} F, {Q} :

{P} if R then F, else F, {Q}

’I'hat is, to estabhsh the consequent it suffices to prove the two antecedents {P and R} F] {Q}'_' RS .
' conespondmg to the case that Ris true and {P and -vR} F2 {Q_}, correspondmg to the case that FUL

: R 1s fa]se

'-_"To treat ioops in th:s notatlon 1t is convement to use: the while statement mstead of‘ the goto
'-The statement - IERE O e - . o -

white R do F

means that the program segment F is to be executed repeatedly as long as the loglca] statement ey

o R is true In other words this statement is equ:vaient to the program segment
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more: If not R then gbto erteu'gh

© . goto more
enougiz: S
:The more concise structure of the while statement srmphf ies the formulat:on of its ruie

e whule rule. Correspondmg to the while statement we have the rule

Pe=>1 {land R}F {I}, Tand-R =>Q

{P} while R do F {Q]}

" for any L Here, I plays the same role as the invariant assertion in our informal proof; the -
~ condition "P => I" states that the invariant I is true when we enter the loop; the condition

- "{I and R} F {I}" conveys that if I is true before executing the Ioop body F, and if the execution” - = -
of F terminates, I will be true afterwards; then the condition "I and =R =» Q" ensures that lf o

_control ever exits from the loop, then Q_wn!l be true.

_ To appiy the while ru!e to infer the desired consequent. we need to find a log:cal statement I S
'satlst‘ymg the three antecedents. s L : L :

® concatenation rule 'I“hns rule enables us to’ make mferences about the concatenatlon F Fz of
twe program segments, F, and Fy R . _ B A

SRR RRQ
(P} Fy Fp Q)

for any R. The consequent follows fram the antecedents. - For suppose that P holds before

executing F| Fp, and that the execution terminates. Then R holds after executmg Fy (by thei S

R irst antecedent) and therefore thlds after executmg F2 (by the secend antecedent)

_These are aII the ruies in our deductwe system Addltlenal rules are necessary 1f we wnsh to S

o '_adcl new statements to our programmmg language

-?." .

RN To prove an 1nvanant statement {P} F {Q}, we' apply the approprnate mference rule, _of the:-" St
"."-form SR - R R RN SRR ST L

AI,AQ,...,A. SR

{P} F {Q}

Y
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Bii Az is an invariant statement then it is of form {P’} F’ {Q} where F’ is'a subsegment of F SR

- In ‘this ‘case, we repeat the process for t}us antecedent. On the- other hand, if A is a iogical S

: statement we prove it directly without usmg any ‘of the riiles of the invariant deduct:ve system

L Eventua!ly, all the subgoals are reduced to 1og:cal statements whlch are proved to be true

' To estabhsh the partml correctness of a program with reSpect to g;ven mput-—output assert:ons R
- we plove the mvariant statement  © ST e

{input assertlon} program {output assertion}

“In this case, the logical statements produced in applymg the above procedures are the program 's :

‘verification conditions.

To show how this formalism applies to the partial correctness of the subtractive ged algorithm
(Program A), we rewrite this program using a while statement instead of a goto:

Program A (with whife statement):
' input(xg yo) . :
_' {xg2 Oandy0>Oand (xo » 00ryo » O)}
(29 e (xp 30) :
while x = 0 do
' { invariant(x ¥) }
if 32 x then y « y-x else(xy) (yx)
{ 9= maxfu : ulo and ulyo} }
'. output(y),

where invariani(x %) is taken to be the same 1nvar1ant we USed in our mforma] mvarlant- B
' assertion proof, ie, '

x>0andy20and(x#00ry¢0) o
and max{u ulx and ufy} = max{u uixo and uiyo}

Thls plogram has the form

. input(xo yo) . :
o .{xozﬂandyOEOand (xo * Ooryo # 0)}
o -Body A o
o y= max{u uixo and u[yo
: 'output(y) '

~ and the invariant statement to be proved is . ..
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_Go’ai 1, {x2 0 and g > 0 and (JCQ#OOl'yoﬂO)}
Body A
{y*max{u ulxo and u[yg} }

Note that Bndy A is a concatenation of an a551gnment statement and a whi!e statement thus S
_the concatenatmn rule teils us.that to establish Goal 1 it suffices to prove R -

' _Goal 2. { xo 2 0 and yo > 0 and (xovﬂ 0 or yo;e 0) } (x y)c-(xo yo) { R(x y) }
and
" Goal 3. { Rix y)} while.:'cgo do ... .{ y='max{.u;.: ulxo and ubvo} }

for some assertion R{x j) Here, R(x ) can be taken to be invariant(x y) itself. (If‘ we make an’
inappropriate choice for R{x y), we may be unable to complete the proof.)

To infer Goal 2, it suffices by the assignment rule to prove the logical statement -
B Goal'd,: xg 2 0and yo 0 and (g 0 or yog 0) => mvanant(xo Yoh
. which.is'eas.'ily'eSt'.abli'sh'ed, because' invariant(xo y’o) is simply .

%02 0and o2 0 and (xoaeo or yo#O)
- and max{u : ujxg and ulyp} = max{u uixo and ulyol

The while fule reduces Goal 3 to the trivial Iogicai statement
{invariant(x y) =>-invariant(x y),
| .an"d the fwo new suﬁgoals
" Goal 6. { invaridnt(s 5) and £x0 ify2 x'th:e'n. '§|sé co ?@&fz‘_aﬁt(x 9 } .
-E-'a-nd'-.-- _ e _ B .

= Gbal 8. mvarmnt(x y) and X = 0 => y = max{u uixo and u|y0}

The if- then eise rule reduces Goal 5 to .3' RIS

' '._Go'al 7 ' { inva'ri'arit(x y) and xséO and yz x} ye y-—x B invdfi_é_'v‘zt'(':'c"y).'.}r'.':'._'._ e
G £
."_Gdal 8. | 'iﬁ'var'iant(x. 5) and x=0 'and.'y.'.< x} (x 'y) - (j x)'{lilﬁvdri.an't('x' N e

: 19



Manna & Waldinger The Logie of Computer Programming
A pplying the assignment ruie to each of these goals yields

Goal 9. invarient(x y) and x#0 and y 2 x => inveriani(x y-x}
and

Goal 10. inveriant(x y) and x»0 and y < x => invariant(y x).

Now the remaining Goals 6, 9, and 10, like Goal 4, are all logical statements; these are the four
verification conditions of Program A. Each of these statements can be shown to be true, and
the partial correctness of Program A is thus established. .

The above deduction can be summarized in the following "deduction tree"™

C Goal 1 )
co

ncatenatio;\\\\\\\\\\\

Ceri C=D

assignment //,/’//////, while

C Goal 4 ) C Goal 5 ) ( Goal 6 )
if-then-else \\\\\\\
(: Goal 7 :) (:7 Goal 8 Aj)

assignment assignment

= Com)




_-Manna &'Waldihger' R The Logic of Comput'er Pro’gramh‘ring'."

The above mvarlant deductive system |s essentuafly the same ‘as the one : ..
'|ntroduced by Hoare [1969] T : . L

_ Whenever a new deductlve system is developed ll is natural to ask whether |t o _::
- possesses certain desirable logical properties. The deductive system we have L
'_presenied has been proved (Cook [1976]) io haVe the followmg propertles' e

L soundness !f the ver:hcahon condrtlons of a program are true, the
program is indeed partlaliy correct

. completeness !f {he pmgram is parhalty correct, its verlfrcatlon condltlons
are true,

* We have presented the inference rules for onl'y a very simple programming
_ language. Such rules have slso been formulated for gato's » procedures, and
other common programming features {e.g., see Clint and Hoare [1972) and
- Asheroft, Clint, and Hoare [1976]). However, when more complex features_are
- introduced, finding sound and complete rules to describe them becomes a
“serious challenge. it has actually been proven impossible to: formulate = -
complete rules of inference for certaln programming constructs (Clarke :
__[1977]) .
Part of the difficulty in formulating rules of inference for certain constructs
arises because, “traditionally, - programming languages have been - designed
without considering how programs using their constructs are to be verified. it
has been argued that programming languages designed to allow easier
verification will also facilitale ithe construction of more comprehensible
. programs. Some  recent programming languages designed with . such
_ considerations in mind are LUCID (Ashcroft and Wadge [1977]), EUCLID
- {Lampson et al. [1877]), CLU (Llskov [1976}), and ALPHARD (Wulf, London, and
.. Shaw [1976]). :

~ Our treatment of partial correctness has been rather idealized: “our programming language

- “includes  only the simplest of features, - and the -program ‘we considered was - quite

- _'_straxghtforward We have not distussed the more complex probiems that oceur !n verlfymg the . R
“kinds of programs that actually arise in practice L S

.Lei us brlefly ment!on a few of lhe trouble spéts in provmg the correctness . RS e
. of prachcai programs L : : . : : S

-'59_ computer anthmeuc We have assumed ihat lhe arrthmet:c operatlons RN
o 5_ "performed by the computer correspond preasely with the ideal operatlons of . '

' " the mathemahc:an, in fact, the computer is limited in the prec:smn to Which a '; '

' '.'_reaI number can be represenled Consequenﬂy, our nohon of correciness'
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| should he modnfled to take mto accouni that a computer program on!y
_computes an approximation of the ‘mathematical function it is intended to
compute (see, e.g., Hull, Ennght and Sedg\mck [1972]} -

e cleanness A computer program may be mcorrect ot oniy because it falls
- :"io 'satisfy its ouiput specuficatlon, but also because of mishaps that oceur
_ - during the computahon' it may generate a "number- larger ot smaller than the
 computer system can store {overflow or underflow), for instarice; or ‘it may -
~attempt to divide a number by zero or to find the square-roct of @ negative _
number. it is possible to prove that a program is clean (ie, that no such ~ '~
' - accident can accur) by establishing an appropriate invariant before each ..~
"_program statement that mighl cause offense (Sites [1974)). For example, -
before a statement z « x/y we can introduce the assertions that y » O and
that € < [x[y] < E, where ¢ and E are the smallest and largest positive real
" numbers, respeclively, that the computer system can store. : -

'@ side—effects. Many programming constructs have indirect side-effects:
. their execution can alter the properties of entities not explicitly mentioned by
. the instructions themselves. For instance, suppose our programmihg !ahguage i
- allows assignment to the elements of an array. Then the instruction Ali] «-1,.
. ‘which assigns 7 to the ith element of an array A, can alier the value of Alf]if
* it happens that i = j, even though Alf] itself is not explicitly mentioned in
the instruction. To prove the correctness of programs employing such
constructs requires an alteration of the principles outlined here. For example,
- one consequence of the assignment rule is the invariant statement

{P}x « t {P},

~ where the variable x does not occur in P. If array assignments are admitted,
however, one instance of this statement is :

(Al = 6] A[t]eq{A{J] 5}

' This siatement is faise it § can equal j. (For 2 dlsCUsSth of such prob!ems, '
 see Oppen and Cook [1975]) ° :

e mtermedaate behavior of progmms We have formu!ated the correctness of 1
a program by providing an output assertion that is intended to be sahsfled
e _'."when the program terminates. However, there are’ many programs that are.
“not’ expected 10 termmate, such ‘as alrhne reservahon ‘systems, operatmg P
. syslems, and conversatrona! Ianguage pr0cessors The correctness’ of these
" programs cannot bé ‘characterized by an ‘output assertion (e.g. see Francez"' o
- and Pnueli [1975)).- Moreover, certain prOperttes of such programs are" more_- '
__"naturally expressed as a relation belween events that ‘occur  while the ..
: 'program is’ running. . For lnstance, in specrfymg an operatmg system, we mlght R




oy

~ Manna &'Waldihger S R The Logic of Computer Programming P

- '_want to state that |f a 3ob is submltted |{ wrli ultlmate!y be execuled Even if Son
'-_the operating system does -terminate, this property cannot be expressed
. conveniently as an output assertion. ‘Similarly, in specifying the security =
 property of a data base system, to ensure that a i.'l's'er ‘cannot accees.’ or alter - -
“any file ‘without the proper authorizalion, we -are. concerned with- the - o
- intermediate behavior of the system durlng executlon, and not with any flna!' RS
“outcome, R . . : ) N
) iﬁdétérminacy. " Some programming languages have introduced control
- features that aliow the system to choose arbitrarily beiween several alternate
courses of action during execution. For example, the guarded command
- construct (see- Dijkstra [1975]) aliows one to express a program that
computes the ged of two positive integers as follows:

input(xy o)

(x 9) « (x5 yo)

dox>9y => x«x-%
O x>y o= (X9 elyn)
SO y>x o= yey-x
ood
' output(x).

This denotes that if x > ¥, we can execute either ¥ « x—y or (¥ %) « {(y x),

while if ¥ > x we must execute y « y—-i The statements within the do ... od
- construct are executed repeatedly until neither condition % > y or Y >
~ applies, i.e. until x = 5. (The terminator "od” of the construct is merely "do"
._backwards.‘) Although for a given input there are meny ways of executing the

‘program, the ultimate output is always the ged of the inputs. Ektensibns of
- our proof methodo!ogy exist to prove the correctness of such programs

: @ parallelism. We have only consndered programs that are executed o
o sequenhally by a smgle computer processor, but some programs are intended el
to be execuled by ‘several processors dt the same time. Many different parts e

of ~such -a program might be runnmg simultaneously, and -the 'various . T

-processors may cooperale: in producing - the “ultimate output. . ‘Because the e

~-various processors may interact with each other during the computation, new ~ *

‘obstacles arise in proving the correctness of a parallel program For exampie, SR
it becomes desirable 1o show the absence of deadlack, a sﬂuahon in‘which -

““two processors each halt and wait for the other to conclude some por’[;on of
__'3the task thiis - preventing the compleilon of the ‘program’s execution.” To ' . |
S prove the correctness of parallel programs reqmres spec;ai techmques, this'is :

- currently an active research area {cf. Ashcroﬂ [1975], Hoare [1975], OWIckr .

and Grles [1976]) : :

B



Manna & Waldinger s .. TheLogic of Computer Programming

e very large brograms. For the sake of ctarlty we have discussed onty the' S
. verification of small programs, but in practice it is the Iarge and complex‘ L
- systeéms’ that really require verification. As one would expect, the verification
of such programs is obstructed by the larger number and greater complexity
 of the intermediate assertions and verification conditions. .Furthermore, the =~
' - specifications of a iarge system are -likely to be more difficult even tof
formulate: .one must detail all the situations - a spacecraft gu;dance system is
expected to handle, for instance, or all the efror messages a ‘compiler ‘is
expected to produce. Finally, in a larger system the specifications are likely -
“to be higher-level and more abstract, the discrepancy between - the
specifications and the implementation will be greater, and the verification
- conditions will be correspondingly more difficult {o prove than we have found
" 50 far.

- It has been argued that such large programs cannot be verified unless they -
are given a hierarchical structure that reduces their apparent complexity. A
hierarchically structured program will be decomposed into a few top-level
‘modufes, each of which in turn will be decomposed into a few more detailed
modufes at a lower level,  The verificaton of a module at a given leve! thus
“involves only a few lower-level modules, each of which may be regarded as a
primitive instruction.” Therefore, the program becomes understandable, and its = - TR

yerification manageable. (Examples of hierarchical decomposition are given, .
€.g., in Parnas [1972] and Robinson et al. [1975].) : .

One hwight hope that the above methods for proving the correctness of programs, suijtably '
- extended and incorporated into verification systems, would enable us to guarantee that
programs are correct with absolute certainty. In the balance of this section we will discuss

“certain theoretical and - philosophical limitations that will prevent this goal from ever being

reached. These limitations are inherent in the program verification process, and cannot be
__surmounted by any technical innovations. :

. ® We can never be sure tbat the speciﬁcation's are correct.

_ In verifying a program the system assures us that the program satisfies the specifications we =
- have provided. It cannot determine, however, whether those specifications accurately reflect the - -
intentions of the programmer. -The intentions, after all, exist only in the mind of the . -

| progiammer and are inaccessible to a program verification system. If he has made an error m'
: '-exp: essmg them the system has no way of detectmg the dlscrepancy -

o 'For exampte in spec:fymg a sort program one is hkely to assert that the elements of the array SRy
' N _' are to be in"order when the program halts, but to neglect to assert that the array s final contents' Sl
. are some permutatiun ot‘ its original contents. In this event, a prcgram that merely resets the'.--

,'.fust element to 1 the secend to 2, and so on, may be veriflecl as a correct sort progmm

o4
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However no system will ever be able to detect the mlssing portlon of the spec:fication because'

it cannot read the mind of the programmer

- To some extént these difficulties can be remedied by the use of a well-designed, high-level
- -assertion language. . The programmer can express his intentions in such a language qu:te
_naturally, and with little chance of error, presumably because he thinks aboiit his’ problem in.

' ;'the same terms as he expresses it. : : I ST

£ No uerification sy'stem can verify’_every correct program.

For a system to verify a program, it must prove the approptiate verification -conditions.

Typically, these conditions are logical statements about the numbers or other data structures. ;-

“Any system that attempts to prove such statements is subject to certain theoretical limitations,
no matter how powerful it may be. In particular, it is known to be impossible (as a consequence
of Godel's Incompleteness Theorem) to construct a system capable of proving every true
statement about the numbers. Consequently, for any verification system there will be some
* correct program that it cannot verify, even though its specifications are correct and complete.

| THis theoretical limitation does not preclude the construction of theorem provers useful for -
“ program verification. After all, verification conditions areé usually not .deep mathematical

theorems, and it is entirely possible that a computer system will be developed that will be able .

“to verify all the programs that arise in practice. But no matter how powerful a verification
~system may be, when it fails to verify a program we can never rule out the pdS’sibiliity that the
failure is attributable to the weakness of its theorem prover, and not to an error in the
program. '

“® We can never be certain that a verification system is correct.
‘When a program has been verified, we must have confidence in the verification system before

.we believe that the program is really correct.  However, a program verifier, like any large
“system, is subject to bugs, which may enable it to verify incorrect programs. One might -

' ~ suppose that bugs in a verification system could be avoided by allowing the ‘verifier to verify e

itself. . Do not be fooled: if the system does contain bugs, the bugs themselves may cause the i-::_-:
o .program to be verified as correct. As an extreme case, a verifier with a bug that aﬁowed it tc S

verify any plogram, cotrect of incarrect would certainly be able to verify itself

- :'I”'his phllosophlcal I:m:tatlon does not 1mply that thére i no use in. developmg verlflcat:cn "

- systems. Even if the system has bugs itself, it may be useful in findmg other bugs'in computer
“." programs. A’ large system (which presumably had sothe bug), written by ‘a graduate student to "
‘check mathematical proofs, was able'to discover several errors in the' Prmcap:a M arﬁemataca of R

o _ZIWhltehead ancl Russell a classical source m mathemat:cal Ioglc, a shghtly mcorrect program R

EER
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) venﬁcatlon system could be' of comparable vaiue Moreever, ohce -we have developed a"-- '
“verification system we make it the focus of all our debugging efforts, instead' of spreading our _
. -attention over every program that we construct. - In this way, although we can never hope to .
_achieve utte: certalnty that the system is correct, we can estabhsh its’ correctness beyond

"reasonable doubt : - L : SRR

. Gerhart and Yelowitz [1976] have presented & collection of programs whose
" verifications were published in the literature but which contained bugs.
" DeMillo, Lipton, and Perlis [1977] advance a philosophical and "sociological”
argument against the ulility of verifying programs. Dijkstra [1977) expresses
pessimism about constructing & usefut aulomatic verificalion system.

Critics o©f ‘logical techniques for ensuring program correctness -~ often

"~ recommend the fraditional approach to detecting bugs by program testing.' In

" this approach, the program is aclually execuled on various inputs, and the
resulting outputs are examined for some evidence of error. The sample
inputs are chosen with the -intention of exercising all the program’s -
components, so that any bug in the code will be revealed; however, subtle - '
~ bugs often escape the most thorough testing process. Some bugs may gscape

' because they occur only upon some iegal input configuration that was not
-anticipated, and therefore not tried, by the programmer.. Other bugs may
actually occur during a test execution but escape observation because of -

" human carelessness. These problems are discussed in a special section of th_e .
“IEEE Transactions on Software Engineering, September 1976.

Some efforts have been made to apply logical techniques to systematize the
testing process. For instance, the SELECT system (Boyer, Eispas, and Leviit
[1975]) attempts to construct a sample input that will force.a given path of
. the program to be executed. The EFFIGY system (King [1976]) executes the
- program on symbolic inputs rather than concrete numerical quantities, thereby
testing the program for an entire class of concrete inpuis at once.

The techniques we have given in this section establish the partial correctness of 2 computei"
pr ogram but not its termination. We now turn our attention to techmques for provmg the
tea mination of programs - ' :

T
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I Terinina'tto"n

"_;'Provmg the termination of prugrams can be as dlfflcult as provmg partral correctness Fbr e

o instance consrder the followmg program

'-'_mput(x) R THIE S
whllexaldo R L S R R
. if even(x) thenxe-xl2 elsex<-3x+1
output() :

- This program is known to terminate for every positive integer less than 3. 105 “However, for

.- over a decade no researcher has succeeded in proving its termination for every positive integer,’
nor in producing a positive integer for which it fails to terminate. Resolution of this quest:on .

| 'could depend on some deep unknown property of the mtegers

Let us examine the subtractive ged -algorithm (Pr'ogram A) again to see informally why we 3
believe it terminates for every input satisfying the input assertion.

*“P“t("o Yo B o ' :
_:'{xOZOandyo>0and (xo # Ooryo #* 0)}
_ (ey) e (o90).
" more:  {x20andy20and (x:eOoryucO)
: and max{u : ulx and uly} = maxfu : ulxo and ulyo} }
if x = 0 then goto enough -~
: ify>xtheny«-y—-x eise(xy) (yx)
— goto more
enough:  {y = max{u: ukto and ‘ulyo} }
: output(y). '

‘Note that in showmg the partial correctness ot‘ this program we have estabhshed as invariant- _
that ¥ and y will always be nonnegative at more. - Now, observe that every time we go ‘around ~

' -the Ioop, either x is reduced, or ¥ is held fixed and y is reduced. First, x is reduced if % “and y DT

are mter changed because ¥ is less than ¥ in this case.” On the other hand, if g is set to’ y—x - ﬁ

_ then % is held fixed and ¥ is reduced, because x is posrtlve when this assagnment is executed o

. The crux of the argument lies in observing that ‘we cannot forever continue reducing Xior. o
"ho]dmg % fixed and reducmg y, without eventuaily making one of them negative contradicting T

S the lnvanant

" Te make thrs argument mote rtgorous, we mtroduce the notion of the lexicogmpkzc ardermg > _' i
on palrs of ncmnegatwe mtegers We w:ll say that L - U '

(xl Y > (xz 92)

o9
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i, (x; 9) is greater than (¥, y,) under the lexicographic ordering, if

.
'cr g x]—xzandy,>y2

(Thus (29 > ( [ 100) and (l 4) > (1 3)) The set of paxrs of nonnegatlve mtegers has the
‘special property that there exist no infinite decreasmg sequences under this erdering, ie, there
are no sequences such that : .

ey 90) > (g 92) > (ke pad >
Proof: Suppose that (x; 9;), (¥ ¥2), (%3 _73).. ... is an infinite decréaSing ;
~sequence of pairs of nonnegative integers. ‘The definition of @ the
lexicographic ordering then requires that x) 2 x, 2 x3 2 ... , but because
the nonnegative integers themselves admit no infinite decreasing sequences,
. there must exist some 7 such that ¥, = %, = %p,2 = ... . {(Otherwise we
“could extract an infinite decreasing subsequence from x;, X, ¥g, V.. )
" The definition of lexicographic ordering, again, implies that then ¥, > g5,
> 9p2 > ... , which violates the same property of the nonnegative integers. |

“In general, if a set is ordered in such a way that there exist no infinite decreasing sequences, we

say that the set is a well-founded set, and the ordering a well-founded ordering. Thus, the

* lexicographic ordering is a well-founded ordering on the set of pairs of nonnegative integers, as

- we showed above.

* The nonnegative integers themselves are well-founded under the usual > ordering. However, =
' there exist other well-founded orderings over the nonnegative integers. For example, the
. ordering defined so that x > y if y properly divides x, ie, LT

“ylrand y = %,
is a well-founded ordering.

" The well- founded - se't“'toh'cep't ailows us to formulate a more rigorods'proof of the termination

;: of Ptogram A.To construct such a prool‘ we must find a set W with a’ weli—founded ordermg

".'> and a termination expresswn Elx: y), such that.whenever control passes through the label '_:

more, the value of E(x ) belongs to W, and such that every time control passes around the Ioop, S

: ':'_-the value of E(x 9) is reduced under the ordermg >0 ThlS will establish’ the termmatlon of the Sl

_' -'progt am, because if thete were an infinite computatmn control would pass through more an'._ :
“infinite number of tames, _the correspondmg sequence of values of E(x y) would constitute an e

= mfimte decreasing sequence of elements of W contradlcting the well foundedness of the set

23'



:Ma‘nha'& Wa'lcllnger i The Logic of Coinpuier Pra‘gramh‘ﬂng" PR

: To fcn mu!ate such a termmation prouf for Program A we must prove ‘the following three _:;' '
termmatnon conditions for some invariant assertion mvarmnt(x y) at morer C

5 | I_ (l) mvanant(xy) => E(xy)eW

f(the value of the expression belongs to W when control passes through -
“more) , : :

- (2.).' _invariczﬁt(x y) and ) andj > x '. é> E(x y) > E(x ywx)

{the value of the expressnon is reduced if control passes through the
- then branch of the loop), and

(3) invariant(x ) and x=0and y <x => E(x %) > E(y )

_ (the value of the expression is reduced if control passes through the
- else branch of the loop).

' Becaune the mvanant will be true every time controi passes through more, the above condltlons
' suf fice to establish termmation : :

Perhaps the most straightforward way to construct such a termination proof for Program A is
 to follow our informal demonstration and to take W to be the set of pairs of nonnegative
integers, > to be the lexicographic ordering, and E(x y) to be the pair (x y) itself. The invariant -

© . assertion invar tant(x 4) can simply be taken to be x 2 0 and y 2 0. The termination conditions
~-are then: :

(1) x20andy20 = (ry)e {éairs' of nonnegative integers},
(2) %30 and gi0and xx0and y2x => (x9)>{x y-x),'a'nd
(3) x>0andy>Oandwaandy<x =5 (xy))-(yx)

'We have already mdxcated m our mformal argument the JUStlflCathh for these COﬂdlthﬂs

' _-A tr1ckner termination proof may be constructed by takmg w to be the nonnegatlve mtegers > |

: to be the usual > ordermg, and E(x y) to be the expressnon 2% + y The termmanon condxtlons s

g r__atethen o

(l) x 2 0 and y > 0 =5 2x + y € {the nunnegatzve mtegers}

(2) x>0andy>0andx:=0&ndy>xi=> 2x+y>2x+(y~x) and

99
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(3) x>0andy>0andx=e0andy<x'=> 2x+y>2y+x
__T:hésé conditions can also.be easily éstabhshed.

The above descr:pt:on lilustrates how to prove the termmatlon of a program w1th oniy a smgle B

o _'-Ioop If we want to apply the well-founded ordering method to show the termination of a i

program- with several loops, we must deslgnate a particular loop ‘label within each of the =~
' program’s loops. We choose a single weli- founded set and with each designated loop label we -
associate an expression whose value belongs to the well-founded set. These expressions must -

_be chosen so that each time control passes from one designated loop label to another, the value

of the expression correspondmg to the second label is smaller than the value of the expression - AR

cotrresponding to the first label. Here, "smaller” means with respect to the ordering of the
“chosen well-founded set. This method establishes the termination of the program, because if
there were an infinite computation of the program, control would pass through an infinite
sequence of designated labels; the corresponding sequence of values of the expressions would
‘constitute an infinite decreasing sequence of elements of the well-founded set, contradicting the
well—f oundedness of the set, as in the one—loop case.

' The weil-founded set approach mtroduces machmery to prove termination completely dlfferent
_from that requited to prove partial correctness. There is an alternate approach which extends

the invariant-assertion method to prove termination as well as partial correctness. In this *

_approach we alter the program, associating with each loop a new variable called a counter. The
.~ counter is initialized to 0 before entering the loop and incremented by 1 within the Ioop.body.
" We must also supply a new intermediate assertion at a point inside the loop, expressing that the
corresponding counter does not exceed some fixed bound. In proving that the new assertion is
im'rariant, we show that the number of times the loop can be executed is bounded. (If for some
reason control never passes through the assertion, the number of times the loop can be executed

s certainly bounded - by zero.) Once we have proved that each loop of the program can only

be executed a finite number of times, the program’s termination is established.

: For mstance, to prove that our subtractwe gcd algonthm (Program A) termmates we introduce o

" a counter i, and establish that the assertion -

152104-))0

s mvarlant at more To show thlS 1t 15 actually necessary to prove the stronger assertlon

x>0andy>0and2x+y+zs2xo+yo

~is invariant at more. (The stronger assertlon :mphes the waaker because lf X2 0 and y 2 0 then
L Qx4 y 2 0) . _
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Augmented with the counter { and the new intermediate assertmn, Program A appears as '; S

foliows

Program A (wﬂh counter)
o mput(xo Yo) N =

{%p20and y > 0 and (xoae(}oryowo)}

(x ) « (%o 30)
i«0 : : :

more: {x20andy20and 2x+y+i<2x0+yo}
if x = 0 then goto enough
if 92 x then y « y—x else (x ) « (y x)
iei+l
goto more _ _ _ _ _ :
' enougfz output(y). ' ; o : o

- The new assertion is clearly true at more mma]ly, it remains true after each execut:on of the
~ loop body, because each execution reduces the quant:ty 2x + y by at least 1, and i is increased -

"by only 1. : S

" The counter method yields more information than the well-founded set method, because it
_ enables us to establish a bound on the number of times each loop is executed and, hence, on

* the running time of the program, while termination is being proved. By the same token,

 however, the counter method is mere difficult to apply, because it requires that suitable bounds
be known, and we often can prove that a program terminates without knowing such bounds.

+ - Well-founded sets were first used to prove the termination of ‘programs by
Floyd [1967], in the same paper in which he introduced the invariant-
- assertion method. The alternate approach, using counters, was suggested by
Knuth [1968] The program verifier ‘of Luckham and Suzuki [1977] proves -

- ‘termination by this method.
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" IV. Well-founded Induction

" The well-fotinded séts that we have used to prove termination actually have'a much broader
‘domain of application; they can serve as the basis for a proof by mathematical mductlon usmg
- the f‘onowmg pnnc;ple of wcll-—founded mductwn :

‘Let W be a set with well founded ordermg >
~To prove P(w) holds fof every element w of W,
~ consider an arbitrary element w of W and prove that
P{w} holds under the assumption that
P{w’) holds for every element w’ of W such that w > w

In other words, in attempting to prove that every element of a well-founded set has a certain
_property, we can choose an arbitrary element w of the set, assume as our induction hypothe:ts
" that every element less than w (in the well-founded ordering) has the property, and prove that
- _w has the property too. (In the special case that no element of W is less than w , the inductive
assumption does not tell us anything, and is therefore of no help in proving that w has the

o p:ope:ty)

Fo: example suppose we want to show that every integer greater than of Equai to 2 ¢an be'_*
expressed as a product of prime numbers. We can use the principle of well-founded induction,

takitig W to be the set of integers greater than or equal to 2, and > to be the ordinary "greater- =

" than" ordering, which is a weli-founded ordering of W. Thus, to prove the desired property, -

 we let w be any element of W, and show that w can be expressed as a product of prime

numbers using the induction hypothesis that every element of W less than w can be expressed
as a product of prime numbers. The proof distinguishes between two cases: if w is a prime,

- the property holds, because the product of the single prime w s w itself. On the other hand, if S B
Cw is not a prime, it is the product of two integers w; and w,, each smaller than w and greater -

" than or equal to 2. Because w, and w, are each members of W less than  under the ordering =

">, our induction hypothesis implies that each of them is a product of primes, and hence w is
. .also a product of primes. We then conclude by wetl-founded induction that every member of

‘W can be expressed as a p:oduct of primes. (Alternatively, we could prove the same property =

takmg the well-founded ordering x > y to be the properly- ~divides refation defmed eatlier, ie., .

' ylrand y = % Cleariy, if wis the product of w, “and wz, then w > zu, and w > zuz under this o
S or dermg) ' : ' ' S

) ‘The vahdlty of ihe prlm:lpie of well founded mduct:on is a dsrect consequence'f"'

' '_'of the 'definition  of a -well-founded set. For, _suppose we have - used the - e

- induction hypolhesas 1o prove tha’( P(w} holds for an- arb:trary w, ‘but - that' _'
" there actually exists some element w of W stch ’(hal -P(w,) Then for some

element w, such that w, > wy, -Plwy) holds _as well; otherwise, our proot :
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: 'ueing”t'he induction hypbthesis'\romd allow us to conclude P(w,i, "cb'ntrar'y' to- :

. our supposition. The same reasonmg applaed to wp 1mplles the exnstenca of. -
" an element wy such that wy > wy and HP(wa), and so on. In ihls way we can Rt

' construct an infinite descendmg sequence of e!ements w,, wz, wa, Sl ef |
W such tha’t w; > 102 > ws DR contradlchng the ‘well- foundedness of W g :

'.Marly‘of the prbof te'chniques we‘have alreacly intrbducéd m'a)'r be regarded as app’!icatiens of
the principle of weli-founded induction. In the remainder of this section we will look back on

. the invariant-ssertion method, the subgoal-assertion method, and the well-fourided ordering

* method, to see how each of them may be viewed as an instance of well-founded induction.-

~ In-introducing the invariant-assertion method to prove the partial correctness of the subtractive
: .'-gcd algorithm (Program A), we invoked ordinary mathematical induction on the number of
times control has passed through the loop label more since the beginning of the execution.
Alternatively, we can regard this method as an application of the principle of well-founded
~induction, taking W to be the set of positive integers, and > to be the usual "greater*‘tha'n"
ordering between them. The property we wish to prove is that, for every positive mteger n,
the intermediate assertion will hold the nth time control passes through more.

Tci pr'ov'e the desired 'property, w’e”let n b'e' ahy p'os'itive inte’ger, and we show that the - -
_intermediate assertion holds the nth time control reaches more, -using the induction hypothesis
that the intermediate assertion holds the n'th time control reaches more, for every positive
‘integer n’ such that n > n”. The proof distinguishes between two cases: if n = 1, then control
has reached more for the first time, and the induction hypothesis gives us no information; we
© prove that the intermediate assertion holds as a direct consequence of the input assertion.

{This cdrresponds to the verification condition for the initial path from start to more.) On the -
" other hand, if n > 1, control has passed through more previously; our induction hypothesis tells .

- us (taking n’ to be n~1) that the intermediate assertion held the previous time control passed
“through more. We use this induction hypothesis to show that the intermediate assertion still
holds. (This corresponds to the verification conditions for the paths from more around the loop

and back to more.) We can then conclude by the principle of well-founded mductron that the =~ - |
inter mediate assertion holds every nme control passes through more, i, that it is an invariant

. assertion. ‘The batance of the pruof that the cutput assertion holds when' the program halts is’
concluded in the tisual way (correspondmg to the verification condition for the path from more

to- enovigh.) “This shows that thé invariant- asserhon method may be regarded as an apphcation S
e of the pr1nc1ple of well- founded mductmn T : . L ST

i _In app]ymg the subgoakasseruon method we remarked that the . mathematlcal mductlon'_'__"Z_"{.:-'
- -employed ‘is precnsely the reverse of that used in the- invariant-assertion method In fact,'we’ o
could also regard the subgoal-assertion method as an apphcatmn of the weil-founded mductlon'_

principie, but instead of basing the lnduction on the number of time control has passed
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" through more since the execution began, we would consider the number of times control wifl
~pass through more before the execution termmates (Thrs is a finite number lf we assume that-

_the program does terminate.)

- "T'he invariant-assertion and the sitbgoal-assertion methods prove partial correctness, but do net :-

~establish termination. It is possible to use the principle of ‘well-founded induction to prove

termination -as well as partial correctness. In fact, the well-founded ordering method for -

‘proving termination may be regarded as another application of well-founded induction.” For - -

~ instance, recall that to apply the well-founded set method to prove the termination of Program
A, we need to find a well-founded set W ordered by the ordeting > and a termination
expression E(x y) such that whenever control passes through more, the value of E(x 9) belongs -
to W, and such that whenever control ‘passes around the loop, the value of E(x 3) is reduced
‘under the ordering > . To phrase this method as a well-founded induction proof, we prove the
. property that if during a computation control passes through more, the computation will
terminate. The well-founded set used as a basis for the induction is the set of pairs of
nonnegative integers, and the ordering >» is defined by '

(IU[ '[Uz) b (IU! wz’) if E(wl IUz) p E(w, UJZ )

. We show that the property holds for arbltrary values (w, ws) of the parr (x y) at more, assummg '

‘the induction hypothesis that the program will terminate if control passes through more with .~ @~

~values {w,” wy") of (x y) such that (w; wy) »> (v, wy'), i.e, such that E(w, zuz) > Ew,” wp .

Following the two well-founded sets in the termination proofs of the previous section, we can a

“either take E(x 9) to by (x y) ltseif and > to be the lexicographic ordering between paxrs of
nonnegatwe integers, or we can take E(x 9) to be 2x+y, and > to be the usual greater~than _
- ordering between nonnegative integers. The details of the proof then correspond closely to the
steps in the weli-founded set termination proof. :

~In proving partial correctness by the invariant-assertion and the subgoal-assertion methods, we
- employed weli-founded induction based on the number of steps in the computation; for this .

" - reason they are classified as forms of computational induction. On the other hand, our proof -’ ;' e -
" of termination employed an- induction indepéndent of “the computauon “such proofs are - 3
generany referred to as structural induction proofs.. We have seen that both cornputatrona! -

., induction and structura! inductioh may be regarded as mstances of wel! founded mductlon In'
B subsequent sections we wr]l encounter this prmcnple in many other guxses R - - '
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V., Total Correctness

" So far we have to'nside'r'ed correctness separately from termination; to prove that a program . -

halts and produces the desired result required two separate proofs. ~In this section -we will =~

_ "_'zntroduce a technique that establishes the total correctness of a program, ie., its termlnation and o
_-correctness, with a sing]e proof. S _ >

' In"our previous correctness 'proofs we attached assertions to points in the program, with the .
intended meaning that the assertion is to be invariant, that is to hold esery time control paés'es' '
through the corresponding point. Conceivably, the assertion could be proved to be invariant
even though control never passes through the point in question. In particular, we can p'r'ove '
that the output assertion is invariant even though the program never halts; thus, a separate
termination proof is required.

In the method we are about to introduce, we will also attach assertions to points in the program,
but with the intended meaning that sometime control will pass through the point and satisfy the
Cattached assertion. In other words, control may pass through the point many times without

| satisfying the assertion, but control will pass through the point at least once with the assertion -

“satisfied; therefore, we call these assertions infermittent assertions. If we manage to prove that
the output assertion ‘is an intermittent assertion at the program’s exit, we have simultaneously .
" shown that the program must hait and satisfy the output assertion.’ Th:s establ:shes the :

~ program’s total correctness..

“We will use the phrase I o o AT
sometime Q at L

to dencte that Q is an intermittent aséertion at the label L, i, that sometime control will pass
-through L with assertion Q satisfied. {Similarly, we could have used the phrase "always Q at :

'L" to indicate that Q is an invariant assertion at L) If the entrance of a ptogram is labelled * _
- start and its exit is labelled enough, we can express the total correctness of the program wnth IR

' renpect to an input assertion P and output assertion R by

if s'ometirr':e P at start
then sometime R at enougk

__Genenaﬂy, to prove thls statement as a theorem we must afﬂx mtermittent assertions to some of _ g
- the program’s intermediate points, : and supply ‘lemmas to reiate these assertions The proof of R

e -t‘nece lemmas typlcally employs well founded mductmn

' To |lluct1 ate this method we mtroduce a new program to compute the greatest common dw:sor '

'_ '_'ss
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Program B (the symmetrtc algorlthm): '
: input(xg 9o) :
' _sid'rt:: (x ) « (%5 y0) |
' more: if x = y'then goto enough _
B - reducex: if x >y then x ¢ x-y _
L goto reducex
- redztr’:ey if y>x then 9§ & g
' | goto reducey
_ got_o'ma're"
 enough: output(y).

" This program is only intended to be used for positive %o and yo, whereas the previous Program

_ ‘A can also be used when either xg = 0 or § = 0.

* The intuitive basis for this progran_s rests on the following three properties of the integers: -

(a)  ulx and uly <=> u|x—-y and u{y o : :
(the common divisors of x-y and y ‘aré the same as those of ¥ and ),

(b u!x and u{y <=> ulx and u[y— : B
(the common divisors of x and y-x are the same as those of x and y) and

@ max{u upy=y if y>0 -
' (any posmve integer is its own greatest dmsor)

'We would like to use the intermittent-assertion method to provre the total corfrectness of
Program B. The total correctness can be expressed as foilows: i E

" Theorem: if sometime xp > 0 and yo > 0 at start
' then sometime y = max{u ulxo and ulyo} at enouglz

- This theorem states the termination as well as the partial correctness of Program B, because it -

~ asserts that control must eventually reach enough the exit of the program, g:ven that it I'JegmsE |
'executton wnth posrtwe xo and yo = - : e S '

o To prove thts theorem we need a !emma that descrtbes the mternal behav:or of thls program
) '_Le'm'ma: ' if sometime x o a'and y = b and a, b > 0 at m’ore o
T or sometime x'='¢ and § = b and a,'b >0 at reducex

or sometime x = ¢ and y = b and @, b > 0 at reducey
then ‘sometime y = max{u : ule and ulb} at enough. -
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" T'o show that the lemma imp!iee the theorem, we .a'sstlme' that | - | |
;eh'tetime Xg > 0 and jyo' > 0 at start .
'.T:heh ee'ntrc}llp'aeses to'mere,' thh x and y Set.' to :to 'an.d _'.90. resee'ct:i\tel'y. 50 wé'ﬁ'ave y o
| sotnetime X = % and.y. Yo and %) yo > 0 at more. |
. Etlt then the lemma implies that

sometime y = ma#{u : ulxg and ifyo} at enouéh, |

which is t.he desired conclusion of the theorem.

* It remains to prove the lemma. We assume

- sometime x = & and y=banda,b>0atmore
‘of sometime ¥ = ¢ and § = b and @, b > 0 at reducex -

S . or sometime x = ¢ and y =band a,b > 0 at reducey -
" and show that

sometime 3y = max{u : ule and ufb} at enough.
The proof emptdys well-founded induction on the set of pairs of nonnegative integers, under
the well-founded ordering > defined by :

{ad)y > b") if ab> a’+b'.

. In other words during the proof we will assume that the lemma holds whenever x=a’ and y:b
. where a+b > a’+b"; i.e, we take as our induction hypothesis that

o if'so'metime x=a’and y'= b and a',b' > _O at more o
“or sometime % = ¢’ and y = b" and @', b" > 0 at reducex
or sometime x = a’ and y = b’ and a',b" > 0 at reducey
then sometime y = max{u ula and u]b } at enough '

"..'The proof dlstingmshes between three cases

.

'_--..4Case a=b Regardless of whether cuntrol is at more reducex, or reducey, control passes to”' ROR
S 'enough wnthy = b, s0 that ' IR S : SRR

sometlme y b at enougb

Ry
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: _But in thls case b = max{u ; u|b} max{u ula and u]b} by Property (c) abOVe Thus, E '
o sometime y = max{u uje and uib} at enougiz

:-'whxch is the desrred conclusion of the Iemma

. _Case a > b Regardless of whether control is at more, reducex ot reducey, ‘controt reaches :
reducex and passes around the top inner toop, resettmg x to a-b, 50 that :

_ sometime % = a-b and y = b at reducex.

For simplrcity, tet us denote ¢=b by ¢” and b by &', Nere tﬁat

a’, b7 50,

“a+b > a'+b’, and : :

maxfy : ule” and up’} = maxfu ula-b and ulb} = maxfu : u!a and u!b}

| Th:: last condxtmn follows from Property {a) above.

- .Because @’ b's 0 and a+b>a+ b’ the mductmn hypotheezs 1mphes that
sem‘etirrre y = max{u : uja’ and ulb’} at en’o‘uglz; :

ie, by the third cenditioe above, |

sometime § = max{u : uia and Iulb} at énou‘gfz..

.-.This is the desired conclusion of the lemma.

' caseb>a Thiscaseis disposed of in'a tﬁaﬁner's.ymnﬁetric to the p'r'eviot_.ls ease, o

-* This concludes the proof of the femma. . The total correctness of Program B is thus established.

' Let us see how we wou]d prove the correctness and termmatlon of Program B if we were usmg
the methods of the prevmus sections mstead ' : : R

' The partlal correctness of Pregram Bis stralghtforward to prove usmg ‘the mvariant-asraert:ee '

" “method introduced in Sectiori 1. The invarlant-assertmns at more, reducex and reducey, can all S

be taken to be

.38
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x50 and y> 0
and max{u : ulx and u[y} max{u u]xgl and u[yo}

~In contrast it is awkward to prove the termination of thls program by the well- founded

" ordering apptoach we discussed in Section II1; it is possible to pass from more to reducex, from

reducex to reducey, o from reducey to more without altering the value of any program variables.
- 3Consequentty,' it is difficult to find ei-cPre'sSiohs whose values are reduced whenever ‘control :
- passes from one of these labels to the next. One possibility is to take the well-founded set to be = -
- the pairs of nonnegative integers ordered’ by the lexicographical ordering; the expresslons .
~ corresponding to the loop labels are taken to be N

(x+y 2) _ at'mor'e,. _
if x = ythen (x+y 1) else (x+y 4) at reducex, and
if x < y then (x+y O) else {x+y 3) at reducey.

‘It can be shown that as contrel passes from one loop label to the next the values of the _
corresponding expressions decrease. Although this approach is effective, it is unduly

- complicated. ' ' T
The above example illustrates that the intermittent-assertion method may be more natural to
‘apply than one of the earlier methods. It can be shown that the reverse is not the case: a proof
of partial correctness by either of the methods of Section II or of termination by either of the

methods of Section 111 can be rephrased directly as a proof using intermittent assertions. In this
sense, the intermittent assertion method is more powerful than the others.

The intermittent-asserlion method was first formulated by Burstall [1974) and

* further developed by Manna and Waldinger [1976). Different approaches to
its formalization have been atiempied, using predicaie calculus (Schwarz
[1976]), a deductive system (Wang [1976]), and modal logic (Pratt [1976]).

90
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e Correctness of Recursive Programs e

8o far we have mdu:ated repeated operatlons by a particu!ar kmd of loop, the 1terat1ve ioop,

'_:whlch is’ expressed thh the goto of while statement. We are about to introduce a’ new iooping o
.-'constauct that is’ in some sense- more powe:ful than the 1teratwe ioop “This construct the

- recursive call allows a program to use itself as'its own subprogram ‘A recurswe ca}I denotes a:

| 1epeated ope: atnon because the subprogram can then use 1tse|f agam and so on. .o

: 'For :nstance consnder the followmg recursive  version of olir subtractwe gcd aigonthm
"(Paogram A) -

~ Program A (a recursive version):
' gcdmmus(x y) <= ifx=0 *
theny -
else ify2x .
then gcdmmus(x y—- —x) -
eise gcdmmus(y x) .

‘In othex words to compute the gcd of mputs x and 9 test if % = 0; lf 50, “return y as the output"

- otherwise test if y 2 % if so, return the value of a recursive call to this same program on inputs .~

x and y-x; if not, return the value of another recursive call, with inputs ¥ and X. For example, ..~ o

in computmg the ged of 6 and 3 we get the followmg sequence of recurswe calls:
gcdmmus(s 3) <= gcdmmus(s 6) <= gcdmmus(s 3) <= gcdmmus(s 0) <= gcdmmus(o 3) <= 3 '_

- "Thus, the value of gcdmmus(ﬁ 3) is 3. AIthough a recursive defrmtlon is apparent!y cu'cular, 1t

represents a precise description of a computation.  Note that gedminus is a "dummy” symbol . .

-and, like a- Ioop Iabel can be replaced by any other symbol w1th0ut changmg the meanmg of '_ ;
-~ the ptogram _ : : g

" A recursive computatlon can be infinite 1f the execution ‘of one recursive o “Call 1eads to the

‘execution of another recursive call, and 50 on, w:thout ever returmng an output For example T

the p: ogram

gcdnostop(x y) <= ifx= 0 DR
SR “'e".')‘ SRR
eise ify>x L
then gcdnostop(x y x)
eise gcdnostop(x—y y) it

which is ‘obtained from Progratn A by alterl_ng -the -argument_s _of _the':s_e'eoﬁd recursive call,

40
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'computes the gcd of those mputs for whlch it ‘nalts However, this program wril not terminate - R
for many mputs eg if ¥« 0 and y = 0 or :f x;eO and y =% Thus for x = 3 and y = 3 we SR

| obtam the mflmte computatron

gcdnostop(f& 3) <= gcdnostoﬁ(s 0) <= gcdnoszop(s G) <= gcdnastop(s 0) <= .._' o

i Our recursxve ‘version of Program A descnbes essentrally the same compurat:on and produces N
"..-:_the same outputs as the iterative version.” In fact, it is stralghtforward to transform aany -
iterative program into a recursive program that performs the same computatxon The reversej

_ _:tl ansformation, however, is not so straaghtforward in translating a recursive program into'a -
" corresponding iterative one, it-is often necessary to introduce devices to simulate the recursion, S

" complicating the program considerably Some computational problems can be solved quite
naturally by a recursive program for which there is no iterative equwalent of comparable :

__srmphcrty
As a new specir’nén for our study of recursion we will introduce a recursive cousi'n'_of the’
" gredtest common divisor algorithm of Euclid, which appeared in his Elements over 2200 years -
ago. . : S o N
' Pr'ogra'm C (the Euclidean algorithm): °
' gcdrem(x § <= ifx = 0 '

theny _
else gcdrem rem(y x) x)

-'He:e rem(y x) indicates the remamder when ¥ is: divided by x. Program C hke Program A,
_ computes the ged of any nonnegative integers x and y, where x and y are not both zero. The =
.. correctness of this progr am witl be seen to depend on the foilowmg properties of the integers: . -

(a) - ube and uly <=> ujx and ulremi(y x) if 2x 0 o
- {the common divisors of x and y are the same as those of x and

i "rem(y x) 1f xan)

S (evgry mteger dmdes 0) B

L 1) -"_--__.'max fu: uly] = y 1fy > 0 o o
L --':(every posrtlve mteger IS 1ts own greatest divzsor) and

L@ ssrempw20 ifes0

' _'_.'41 '
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. The reader may be m’(erested to sée a proof of Properly (a) SuppOSe that. SR ARy
| ule and ‘uly and that x # 0. We need to show that ulrem(y ¥). We know that = ="
=k u and y=lu, .for some lntegers % ‘and L But rem(y x) is “defined 50 :
. :1ha’t y g+ x+rem(y x), where qis the quotient of § and %, Therefore rem(y )
=y-gx= lou ~gohe u = u+{l ~ g+ k) so that ulrem(y x), as we mtended to

o prove The proof in the oppcsde drrectlon is svmalar : S o

'-"We would like to mtroduce techmques for provmg the correctness and termination of recurswe T

'pmgt ams. In proving the properties of iterative programs ‘we often employed the principle of
“well-founded induction. We distinguished between computational induction, which was based
on the number of steps in the computation, and structural induction, which was mdependent of
the computation. These versions of the induction principle have analogues for proving
properties of recursive programs. We will illustrate these techniques in proving the correctniess

. and termination of the above recursive Euclidean algorithm (Program C).

" To apply computational induction to Program C, we perform induction on the number of

recuisive calls in the computation of gedrem{x y). (This number is finite if we assume that the

) 'computatmn terminates.) Thus, in’ proving that some property holds for gcdrem(x ), we assume

E _-mductwely that the property ‘holds for gedrem(x’ 9'), where ¥” and ' are any nonnegatlve

*“integers such that the computation of gcdrem(x 3 involves fewer recursive calls than the .
computatlon ofgcdrem(xy) L ;_ S : e

' -Now let us use computat:onal mductlon to show that ‘Program C is partlally correct w1th' 2
respect to the mput s;becaftcation : - '

. x>0andy>0and{x¢00ry¢0), .

. :-and the output spec.:ﬁcatwn

gcdrem(x ) = max{u ulx and u|y}

e :"__Thus, we must prove the property that

For every mput % and y such that -

O x>0andyaOand(xe00ry¢0) _
1f the computatlon of gcdrem(x y) termmates then e
: gcdrem(x y) mex{u ulx and u[y}

'_’I“he1efere, we consnder arbltrary nonnegatwe mtegers x and y and attempt to prove that the
“above pr operty hoids for these mtegers assumtng as our mduction hypothesm that the’ property

‘holds for any - nonnegat:ve integers %" and -y ‘such that the computat:on of - gcdrem(x y’)

-"mvolves fewer recurswe calls than the computation of gcdrem(x y)
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| ".Thus we suppose that

X2 0 andy> 0 and (x#O and y;eo)

_-'_and that the computat:on of gcdrem(x y) termmates 'We woulcl hke to show that SR

gcdrem(x y) = max{u ulx and utv}

: OF oﬂowmg the deﬁmtion of gcdrem, we dlsttngmsh between two cases.

CIfxs 0 then Program C dlctates that

gcdrem x 9= .

: -'But because we have assumed that x#O ot yaeo and that y 2 0 we know that y > 0. Therefore

by Properties (b} and {c),

max{u ux and ubt} max.{u ub‘} J’

) .-Thos,' |

- gedrem{x 9) == masu : e and ),

" as we wanted to prove.

'- :O.'n the'other hand, if x=0, ?rdg'ra'm C dictates that ~ -

gcdrem(x y) gcdrem(rem(y x) x)

. Because a recursive cal] to gcdrem(rem(y x) x) occurs in the computatton of gcdrem(x y), _ L
‘computation of gedrem(rem(y x) x) invoives fewer recursive calls than the compuatmn of: Ry
;gcdrem(x y) L ) S : _ R

B -'__'Thelefoxe we would like to apply the mductuon hypothesrs taking x' to be rem(y x) and y to'- SRI
B be x. For thlS purpose ‘we attempt to prove the antecedent of the inductron hypot‘nesns te :

rem(y x) > 0 and X2 0 and (rem(y x)nO or X% 0)

o ;and that the computat:on of gcdrem(rem(y x) x) termmates However, we know that rem(y x) 20
AT by P:oper ty {d), that 'x 2 0 by the mput specuf:catton, and ‘that x#0 by our case. assumption Gt
s '_Further more, we know that the computatlon of gcdrem(rem(y x) x)t termmates, because it is part'- [
" of ‘the computatton of gcdrem(x ), “which- has been assumed to termmate Our inductton R
o 'hypothesm therefore altows us to conclude that SR SR . S

S48
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gcdrem(rem(y x) x) = max{u uirem(y x) and u[x} |

- But by Property (a)

'.5:_1(xy)> (x y’),re x>

o .2- max{u uirem(y x) and u[x] = max{u u[x and u[y}

e _'and therefore

.

gcdrem(x y) max{u ulx and uly
- as desned This concludes the proof of the part:al correctness of Program C.

In the above compotaticinal—indu'ction 'proof we were forced to assiime that thef'corri'potation' S
- terminates. However, if we choose an appropriate well-founded ordering independent of the -
. : computation, we can employ structural induction to prove 'terminatio’n as well as correctness.
*_ For example, suppose we wanl to prove the termination of Program C for all mputs satlsfymg
_ the mput spec;f:cauon in other words, e

- For 'e\':er'y input x and y such that - _: . B
~x20andy20and {x=00ry=0),
the computatlon of gcdrem(x y) termmates :

o The weli founded set whlch w:ll serve as the basns for the structural mductron is the set W of" o
ol pans (w, wz) of nonnegatwe 1ntegers under the ordering > defmed by s

(w, IU2)>(!U] ruz) 1f w,>w|

' _(Yes ‘the second component is ignored completely)

To plove the termination property, we consider arbltrary nonnegat:ve mtegers x and y arrd e R
- attempt to prove that the property holds for these Integers, assummg as out induction
hypothesas that “the property hoids for any nonnegatrve integers x and y su'ch' ‘that

T‘hus we suppose that T

x> 0 andy:- Oand (xveO ory-.aO)

. "'Followmg the clefmmon of gcdrem we agam distmgu:sh between two cases If x.u 0 the'."__-f:"l'-

s 3;.*_computatxon terminates’ ‘immediately. On the other hand, if 0, the program- returns asts

. output the value of the recurswe call gcdrem(rem(y x) x} Because x> rem(y x) by Property (d), S
. _'-'_"'_.we have . S . v o o B LI
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(x y) > (rem(y x) x) :

._and ther efore we would hke to. apply the lnductron hypothesrs takmg % to be rem(y x) and y
'-_'_"'._to be X Fol this purpose we prove the antecedent of the inductlon hypothesrs that '

rem(y:c)>()andx>0and (rem(yx) ¢Oorx #® 0)

usmg Property (cl) the mput specrfrcanon and the case assumptlon, respectwely The' 5:-;-"_..: g

N _consequent of the: induction hypothesis tells us that the computation of gcdrem(rem(y x) x), and

thelefore of gcdrem(x ), termmates Thls concludes the proof of the termmatlon of‘ Program C.

| '_Of course, we could have used structural mductlon. wrth the same wellwfounded ordermg, to"._.-"- '

prove the total correctness of Program C For this purpose we would prove the property that

For every mput % and y such that

: x20andy>0and (x = Oory=0),

- the computation of gedrem(x y) terminates and '
gcdrem(x y) max{u uEx and u[y}

: _:The proof would be srmrlar to the above termmatron proof

L Euciid, himself, presented a proof“ of the p’roperties'of his ‘ged algorithm. _H'is
termination proof was an informal version of a well-founded ordering proof, - _
but his correctness. proof considered only two special cases, in which the " -
" recursive call ‘s executed ‘precisely  one —or three -times - dormg the = .
S computatlon The principle of mathematical mductlon. which would have been
necessary to handie the general case, was unknown at ihe tume

“The reader may | have noticed that the proofs of correctness and termination for the recursive =~ -
o '-_pt ogram presented here did not requrre the invention of the intermediate assertions or Iemmas : L
© that our proofs for iterative: programs demanded He may have been led to conclude that

“proofs of recursive programs are always sxmp]er than proofs of the corresponding iterative -

.- programs; -in general this is not the case. Often, in -proving a property by the well- founded o
_induction prmcnp!e, it is necessary ‘to estabhsh a more- general property in"order to have the T
Lo :advantage of a stronger induction hypothesrs For example suppose we wanted to prove that" C
e Plogram C satlsfres the property that AT = I S H

gcdrem(x y)ix - :

| If we trled to app!y an rnductrve proof dlrectly, _the mductlon hypothesis wou!d yleld mereiy e

i_.-that

_.45 :
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.-'.thl‘i assumptlon 1s ‘not stmng enough to 1mply the desu‘ed property To prove the property we g =

'must mstead prove a more general prcperty, such as that PR
gcdrem(x y)]x and gcdrem(x y)iy . .

'-_The mductmn hypothesns would then yield that

| gcdrem(r em(y x) x)]rem(y x) and gcdrem(rem(y x) x)lx

'whlch is enough to lmply the more genera} result It may require consnderable mgenmty to fxnd .
the appropriate stronger property that will enable the inductive proof to go through.: -

" We have used structiral indiiction to show the termination of a program, and we have

"~ indicated how it can be used to show the total correctness of a program: We will now show

“how structural induction can be used to prove an entirely different property: the equivalence
“Cof two proglams BT e

We ':ay that two’ prog:ams ‘are equwalent wlth respect to some mput spec:ficatlcm 1f they' S

_termmate for precnsely the same legal inputs, and if they produce the same outputs when they -
- do terminate. - 'We will wrlte flx) = glx) if, either the computatmns of f(x) and g(x) both -~ .
".'_-tetmmate and yield the same output or if they both fail to terminate.. Then we can say thatf -

s equwalent to g 'with re5pect to a glven 1nput speuﬂcatmn xf for ‘all ¥ sat:sfymg the mput :
pecrf:caton f(x) g(x) : 3 R i L

: Let us see how structural mductlcn can be apphed o prove the equivalence of the subtractzve S
. ged algorithm (Program A) and the Euclidean ged algorlthm (Program’ C) we have mtroduced R

in thzs secuon Recan that the Euchdean atgor:thm is

gﬂdrem(xy)<— i 0 S
' . ‘theny " R ..-.
else gcdrem(rem(y x) x) R
-.and the subtract:ve algonthm is _' : R
gcdmmusxy).:: 1fx,,o_ DR
Sl theny o
g else ify>x o
o then gedminus(x y-—x)

i else gcdmmus(y

.. 'The remainder function rem can be defined _by _the recuirsive pi'b_gr'am- vl
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i remlu v) <= if U < v ' N
BRI o thenu :
e else rem(umv v)
_Whefe vis assumed ot to be' zero.' Ui

- -'-_To estabhsh the equwalence of the two gcd programs, _we need to prove that

lfx 2 0 and y2 0 and (x#O ory#O)
- then gedrem{x'y) = gedminus(x y).

: The Prodf of this property is a straightforward aPpIica"ti'oﬁ' of structural .iriduct.i'on in ivh‘ich th'e'- S

" weli-founded set is the set of pairs of nonnegative mtegers ordered by the Iexlcographlc

B ordelmg > We consider arbitrary nonnegative: integers & and y and attempt to prove that the =~

equivalence property holds for these mtegers, assummg as our induction hypothesns that the '
'.'pnopelty holds for any nonnegative integers x! and y such that (x y) > (' y’) '

: .Thus, we suppose that |

| X2 Oandy> Oand (xxOory:O)

and attempt to prove that .  R :'. o o R

| gcdrem(x e gcdmmus(x y) N | | | o
o 'I“he proof dlstmguishes between several cases. If x= O b.ot.h programs terminate and yleld y as

" _their output. - On the other hand, if x«0 and y < %, the Euclidean algorithm executes a

Crecursive call ' Ce ST e

| gcdrem(rem(y x) x),

:_.._01 (by the defmition of rem)

gcdrem(y x) |

'_.'_].n thle case the subu actwe aigoe:thm executes a recurs;ve. call

gcdmmus(y :c) | i i |

":-'.Recaﬂ that x> y, and therefore that (x y) > (y x) Thus because y and * satlsfy the mput'
: ﬁ-_spec:f:caton ;s S B S - L -

y:- Uandx>0and (yeOorwa)
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."-:'.our mductlon hypothesns )ﬁelds t.hat | i S
| gcdrem(y x) gcdmmus(y x)
= '.xe. (m thlS case)
gcdrem(x y) gcdmmus(x y)
_.:.: Fmally. lf :t'# 0 but _9 3%, the Euchdean algor:tﬁm execetee ; recues:ve ca]l
gcdrem(rem(y x) x), e | .
01; (byv .the defihition of rem)
b gcdféﬁi(reﬁ(jux x) %),
or (by the definition of gcdrem)'
| gcdrem(x y x)
E :‘I.]n thls case, the subtractxve algorxthm executes a recurs;fe call |
gcdmmus(x y—x) y |

_l_.-NUtE that % S 0 and therefore that (x y) b (x y—x) Thus because here x and y—x satisfy the - L ';.
_'lnput spemﬂcatmn . : AR

| . xz20 and y—x > 0 and (x#Oor y—xec)
B .the :nductxon hypothesls ylelds that
gcdrem(x y- x) gcdminus(x y-—x).

- '1 e, (ln thls case)

gcdrem(x y) gcdmmus(x y)

o _'-._._',ThlS concludes the prco!‘ of the equwalence of the two gcd a1gor1thms Sl

i The two gcd programs we have shown to be equivalent both happen to terminate for aIi legal i
L '.fmputs However the same proof technique could be’ applxed as well to shuw the equxvalence of '3:'3 ;
i two pr ograms that do not always termmate, provnded that they each fail to termmate for the;,:'_

.:__same mputs - S : : v = : Sana
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"In geneta] to solve a programmmg problem can’ reqmre ‘not” one but a system of recurswe'_ SR
“ programs, ‘gach of Which’ ‘may cail -any_ of ‘the others. Even our snmple recursive. Euclidean”ﬁ_ g
'..;_'algouthm can be regarded as.a: system of programs. because gcdrem ca!!s the recurswe'_-- i

" remainder program rem.. Everythmg we have dune in this section can be extendeci naturally o,

- treat such systems of programs

:Varlous forms of computahonal mductuon were appiied 10 retursive programs

by deBakker .and Scott [1969], Manna and Pnueli [1970], and Morris [1971] = Ry

g 3:_"..The structural . induction  method - was - first presented as'a- technlque for oo
. proving properties of recursive pograms by Burstall [1969]. A veraf:cahon:'_ _
system employmg this method was’ lmplemented by Eoyer and Moore {1975]. s
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g VII Program Transformatlon

_:_ 3 -Up to now we have been d:scussmg ways of provmg the correctness and termmatlon of a gwen : 5
“program. . We ‘are about to- consnder iogtcal techmques to transform and improve the given =

3 _'_';ptogram These transfolmatrons may change the’ computatton “per formed ‘by the’ program'f i _
L ”-drast:ca]ly. but’ they are guaranteed to produce a program equwatent to the origmal we’:’---'_'.' .
. therefore call’ them equwalence-—presermng transfarmatwns Usualiy. a; sequence of such.- ..

e ansformatlons is apphed to optrm;ze the program ie, to make it more econormcal in :ts use of: "

't:me o: space

' Perhaps the srmp!est way ot‘ expressmg a transformatlon isasa rule that states that a program e

o segment of a certain form can be replaced by a program segment of another form.-

'.'Foa example an assrgnment statemenit of form '

_.xt—f(aot ot),

wh:ch contains severa! occurrences of a subexpressmn o, may be replaced by the program' i

f’isegment o

ye—c(

- xef(ry

whexe y is a new varrable Thns transformatzon often optlmtzes the program because the :

o subexpress:on a will only be computed once by the latter segment For instarnice, the ass:gnment

xe (ab)3 + 2( ")"‘ + S(ab)
= ___m.ay'be'replac'ed by the_ segment
. _')’ « ab S L
xe—y +2y +3y
. "'-'."Such eltmmatmn of common subexpresstons 15 performed routmely by optlmlzmg comprlers
| Another transformatton m a program segment of form _: ;";_1_
'.-.'_'thenet S
'---.'else if p RN
_ then B
etse 'Y R

B0
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: -"the second test of p if executed will always yield false the express;on ﬂ w1ll never be S
S ‘eva]uated Therefore thls segment can always be replaced by the equwalent segment of‘ form e

. L]

sf p _
then o
- e!s.e 't’ .
o _Another example a-while |oop of form '_ S
whlle p(x) and q(x ) do y <—f('y)
' where y does not occur in p(x) may be replaced by the equwalent statement of form

if p(x) then while q(x y) doy t—f(y)

. The former segment will test both p(x) and q(x y) and execute the a551gnment g & ._f(y)
- repeatedly, even though the outcome of the test p(x) cannot be affected by the assngnment

o - statement, The latter Segment will test f(x) only once, and execute the while loop -only if the T
) outcome is true. Theret‘ote thls transformatlon opttmlzes t'ne program to whlch it is applied ' '

" An important cIass of pr ogram transformatlons are those that effect the removal of recursive _:' e

" calls ‘from ‘the given program. - Recursion can be an ‘expensive convenience because “its -

Jrnplernentatlon generally requires much time and space. ‘If we-can rep}ace a recurslve catl by S D
: _an equwalent iterative Ioop, we may have achleved a great savxngs R -

.'One tr ansformat;on for recursion removai states that a recursive program of form u
F(u)«:-sfp(u)' SRR

7 can be reptaced by _an e'quiiialent iterative program of form f:

input(u) BT
more if p(u) then output(g(u.))
L u e ft(u) ': L :
el goto more

; T To see that the two progams are equwalent suppose we apply each program

L 1o an mput a.. Flrst if p(a) is true, each program produces output g(a)

el 'Othermse, if p(a) is fatse, the lteratwe program wilt rep!ace - by h(a) and ‘go-
L 'to more ihus, !ts output wul! be the same as |f lts mput had been iz(a) !n thls o o
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o case, the recurswe program w;li return F(ft(a)), thus, lts output too, |s the ::-_.ﬁ: v B e
ey same as if |ts mput had been iz(a) L o SRR

- For example, thls transformation wnli enable us to replace our recursive Euclidean algor!thm A
B (Program C) : - : Lienlen e o

gcdrem(x y) <= if x 0
AN “then y : 2
o else gcdrem(rem(y x) x)'

" by the equivalent iteratnve program

' input(x )
- more: if % = 0 then output(y)
(x ) € {rem(y x) x) -

goto more .

B For some forms of recarsive programs ‘the correspondmg 1terat1ve equwalent is more complex
o For mstance a recursive program of form o : :

F(u) <= if p(u)
”. then g(u) .
else k(u) + F(fz(u))

can be transformed into the iterative program of form

L .irip'ut(u) L
R X
. more: - if plu)
... then output(z+g(u))
P : else (u 2)  (h(u) z+k(u))
- goto more o

o However the ;terat:ve p!ogram reqmres the use of an additlonal vanable 2 to maintam a:f-'- e
e _runnmg subtotal A more comp!ex recurswe program such as one of form SR

F(u) <= i p(u)
. then g_(u) PR PR
else k(F(iz,(u)) F(ﬁa(u))), :

_ cannot be transformed into an equnvalent iteratlve program at all wlthout introducing' -
; consnderable intrlcacy L : L : o L
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. -'_Although not every recurswe program can be transformed read:ly mto an equivaient 1terat1ve e

'-'.program an rteratrve Program can always be ‘transformed into ‘an’ equwalent SYstem of

recursive programs in"a stralghtforward ‘way. This transformetron mvolves mtroducmg a

o -'.'recursrve program cor respondmg to each Iabel of the grven 1teratwe program For example 1f_-_. e
e the 1terat1ve program contams a segment of form : - : e

L1 if p(x)

S then output(g(x)
else ¥« Alx)
- goto L2.

the cor responding recursive program wrll be

Ll(x) it p(x)
then glx)
else L2( (x)) :

" "The idea behmd this transformatlon is that Ll(a) denotes the ultrmate output of the glven

iterative program if control passes through lfabel L1 with x = a. By this transformation we can
' replace our symmetr:c ged algonthm (Program B) by an equwa]ent system of recursxve-3 o

programs The orngmal program may be wntten as

-input(xy) o R KR .. SR
: :more ifx= y then output(y) _

reducex: if x>y then x ¢ x-y

T _ . goto reducex -

:'reduc'e'y i 9> then Jey-x

T _ goto reducey
‘goto more. . : -

" The 'equival'eht's'ys't'em"of'f'ec:ursive p'rég'rar'ns'is" '

o ostart(x ) Cge mure(x y) L
more(x y) <= |f ¥ = y then y else reducex(x y)

i reducex(x o <= A x> 5. then reducex(x—y ). e!se reducey(x y)
E '.'reducey(x y) <= if y > then reducey(x y x) eise more(x y)

The output of the system for mputs x and yis the value of start(x y) Thls transformatlon R
does not rmprove the efﬁcxency of the program, but the srmpllcrty of transformmg an iteratwe L

R
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S pr ogl am mto an- equ:valent recurswe program and the complexlty of performmg the oppos:te
S ;transfotmatlon, substantaates the folklore that recursron is a- more powerful programming

Ry j_feattue than 1teratron. i

. .'_-Paterson and Hewrtt [1970] haVe stud:ed the theorehcal bams for the"" ARRS

__'_'d:ff:culty of - lransformmg recursive . programs into equwalent rteratwe ST

© ‘. programs. The reverse’ transformatlon, from |terai|ve io recursive programs,' A
s due to McCarthy [1962} R T -

Equwalence-preservmg transformations have been stud:ed extenswely, and'.
some of these have ‘been incorporated into oplimizing compilers. ' The text of
Aho and Uliman {1973] on compu!ers ccmtams a chap!er on optlmlzatmn :

“Sofe more  ambitious exampies of equwalence preservmg program
‘transformations .are discussed by Standish et al. [1976]. An experimental

. system for performing such iransformatlons was ampfemented by Darlington
' and Burstall {1973]. : :

- -The above tansformatlons are all equwaience preservmg for a gwen mput the transformed

- ‘program will always: produce ‘the same- output as’ the orngmal program. However, we may be - |

- satisfied to produce a program that computes a different output from the or:g:nal so long as it - .

.'_strll termmates and  satisfies the “same - mput-output “assertions. - For’ example. if ‘we -are
“optimizing a program o compute ‘the square—root of a given real number within a tolerance we
“will be satisfied if the transformed program produces any output within that range. “In the .

" remainder of this sectioh, we’ will discuss the correctness— preserving transformations; such-a

©transformation yields a program that is guaranteed to be correct, but that is not necessar;ly-
' ;-eqmvalent to the orlgmal program. RN ' ' '

- Conectness pzeservmg transformatrons are apphed to programs that have a!ready been proved'
" to be correct; they use information gathered in constructmg the proof as an . aid in'the

L _transt‘o:matron process: In particular, suppose we have a partial-correctness proof that empioys'-" e

“‘an‘invariant assertion invariant(x y) at some label L, and a well-founded-ordering termination = - |

- 'proof that emptoys a well- founded set W and an expression E(x y) at L. Then we can tnsert e
"-at“ ter L any pmgram segment F w;th the followmg charactenstzcs : - :

L - _(_I) -;'If mvarzant(x y) holds then the executron of F termmates and invanant(x y) is

7 still true afterwards. (Thus the altered program will still satrsfy the origina] -
".-'_imput output assertrons) . : : _
o "3:-_('2)'_:-1_::_11“ znvariant(x y) holds then the value of E(x y} in ‘the weli«-founded set is |
1educed ot held ' constant by the executron of F. (Therefore the altered B
'_'.progl am wrll stlll termmate) : : Sl : :
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: 'For examp\e suppose that we have proved the part:al correctness of a program by means of the
- .--mvanant assertion - = SO . L Sen

._ L {x>0andy>0and:cy .k}
_and.that we have proved its termmation by mean.s..of the express:on i
| E(x y) x | ” |
| : over .the nonnegatlve lntegers . Then rue maf insert the staternerrt
if even(x) then (x5 « (x!2 9. J‘) |
after L, -rvithou't déstroying th correctness of trre program or its.terrrgrinat'ioﬁ. .

" Note that the above transformation does not dictate what segment F is to be inserted, nor does’

- it guarantee that the aitered program will be more efficient than the ongma! Furthermore, L

. _even though it-preserves the correctness of the transformed program it may cause it to produce =
a drfferent output from the orlgmal program L S : -

_ Let us now apply these techmques to transform our subtract:ve gcd algorlthm (Program A) mto' o _: |
‘the “so-called binary ged algorithm. -We reproduce Program A below, . introducmg a new'

N rnvanant assertion ‘in the middle of the loop body

_lnput(xo yo) _ - o
.~ {%,>0and yo2 0 and (% Ooryo " 0)}
o ey - |
more: {x 20and 2 0and (x:cO or ya:O)
Lo and gcd(x 9= gcd(xo R
R if x = 0 then goto enougiz
 {¥%>0andy.>0and ged(x 9) = ged(o yo) }
o '.|fy>x theny«—y—x eise(xy) (yx)
‘_.'_-"'.-'.'_goto moré .
 enought {3 = gedto J'o)}
L output(y)

i -The new assertron Sl

x > 0 and y 2 0 and gcd(x y) gcd(xo yo)

s equwalent to our ongmal Ioop assernon at more, and is 1ncluded because we want to insert C '

" new statements at this point.” In formulatmg the invariant assertions for this program we have

i 'used the abbrev:ated notation gcd(x y) in place of the expressron max{u u]x and u[y 1
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B -.'Recall that to pmve the termination of this program by the well founded ordermg method we B

- used ‘the' expression E(x y) = (x y) over the set of all pan’s of nonnegatwe mtegers w:th the N

R .lex1cog:aph1c ordermg

S Now suppose that we know three addltlonal properttes ef the gcd:' |

. -_'_-bv |

(a) gcd(x y) gcd(xl2 y) _'t'f % |_s even and y is pdd.'.li' S
o (b) ged(x y) = gedlx 9/2) - if xisodd and yiseven
; () gr:d(x y) = 2. ged(xf2 y!?) if x and yare b’oth"even;

.- :- "_.' C

" Then we can use these preperttes and the above correctness—preservmg transformatxon T

. technique to introduce three new statements into the body of the program loop

P:‘dperty (a) will allow us to divide x by 2 when % is even and ¥ is edd; w’ithettt changing the
_.value of ged{x y) and, hence, without affecting the truth of the new invariant -

250 and 20 and gcd(x y) gﬂd(’fo 3’0)

"Furthermore the value uf the expressron (x y) used to prove terrnmatlon is reduced n the"

: Iexrcograph:c orclermg if ¥ is divided by 2. Slmriarly, Property (b) will allow us to do the same

for y if y is even and x is odd. Consequently, we can apply the correctness pre5erving
-_transformatlon to introduice the two new statements : S S

U if even(x) and odd( ) fhen x ‘ x!? 3
If odd{x} and euen(y) then y 92

'- after the new mvar:ant
- .Preperty (0), on the otner hand, cannot be applied so readily, because c.li"\r.idin.g both ¥ and yby
2 will divide ged(x y) by 2 and disturb the invariant. To restore the batance let us generahze_ :
__'all the 1nvarlant assertions, replacmg ' - o :

gcd(x y) - gc««xo yo>

o z gcd(x y) gcd(xo yo), e et

'.'._-_.__'_"'whete 7S a new progx am’. vanable We can then preserve the truth of the lnvarxant by
-_'ﬁ.-mult:plymg z by 2 when we dtv:de both x and y by 2 Thus we mtroduce the new statement et

S |f even(x) and even(y) then (xy 2) (xl2 3’!2 2: z)
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__The alterecl program will still termmate because if and ¥ are even, the expressron (x y) used S

- to pl ove termmatlon wili then be reduced in the lex:cographlc ordermg

‘ *.To 1ntr oduce the new vauab!e 2 into the intermedrate assertlons, we must aiso adjust the mltral N o
- ;aod final paths of our program.. To ‘ensure that the generahzed assertion’ will ‘hold When'

" control first enters the Toop; z must be initialized to 1. Furthermore, when control uittmately:'

| leaves the loop with % = 0, -the output returned by the program must be 29 rather than y,

- because then’ z§ = z.  ged(0 9) =z ged( 9 = gcn!(xo yo) Therefore we introduce the

ass:gnment Y ze y into the final path of the program

_' Our genera!azed program is then

'mput(xo o) . -
{xo20and ¥ =0 and (xo # Ooryo . O)}
o {xy D elxgy 1)
tore: {x20and y20and (x » Oory # O)
. .and z. ged(x y) = ged(%g o) } '
o if x= 0 then goto enough R
{x>0andy20and 2o ged{x y) gcd(xo yo) }

o it éven{x) and odd(y) thenxex!? S :'. SR L (1) |

U if odd(x) and evenfy) theny €912 Ll s e ) g

. if even{x) and even(y) then (xyz)e—(xl2y]22 v} s o (B
: '__{x>Oandy>Oandz ged(x §) = ged{xg yo) ¥ S B R T
ifyzxtheny e y-x eise(xy)t-(yx)'_-*
R 'goto more : : :

' enougiz yemy oo

{9 = gedlto yo) }
output(y).

- (The enumeratlon oh the rrght is “added for future reference) The correctness preservmg

' ;_ttansfol mation ‘does not ensure that this program wn!i run faster than the- orlgznal program but L

: on]y that it satlsfles the same mput~output assertlons and that it st:ll termmates e

"To xmptove our program further we mtroduce another correctness preservmg transformatron e

o If x is'even and y 1s odd the ass:gnment statement x « x!2 preserves the truth of the mvarlant'-_'." :

- asse: t!OI‘I

x> 0 and y >0 and gcd(x y) gcd(xo D‘o) :

| _and 50 !ong as x > 0 reduces the value of the expressmn (x y) used to, prove terminatlon

) -"I'het efore -if we repiace the condmonal statement
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lf even(x) and odd(y) then ke xl? | y - _ : R (1)

:_-by the whule statement Lo

whlle even(x) and odd(y) and x > 0 dox & xl2 - o ‘ (1')' Al

R -;We have mamtamed the correctess and termmatlon of the Program The asstgnment statement:“ SR
il then be app!led repeatedly untllxis ndd : e

| _"S:mllar!y, 1f ¥ is odd y is even, and y > 0 the assngnment y e yl‘z wm preserve the invariant
“assertion and reduce the termination expression; therefore, the condmonal statement .

o odd(x) and even(y) then y « 5/2 S | :' o @ .

“can be replaced by the while statement

.whtleodd(x)and even(y)andy>0doy<..y‘r2 e o | (2') B

- .In the same way, the condltlonal statement S
if even(x) and even(y) then (xy z) '(3312”9';'2 9 .(3)__.. _
" can be replaced by the whtle statement ' '

while even(x) and euen(y) and (x > 0 ory > 0) do (xy ) « (xl2 yl2 2. z) - o (3;) '

“The 'c0l1d1t10n % > 0 or y > 0" guarantees that the ass;gnment (xy2)« (le yltz 2 z) reduces ROE

- the value of the expressmn (x y) in the lemcugraphtc ordertng

. In the while statement

while even(x) and odd(y) and x> 0 dox & xl2 ' BN - . '(ir) ‘_ SR

_'_the t:uth of the test udd(y) and x> 0" cannot be aft”ected by the asstgnment statement x - xl2, el
therefare, using an equwa!ence«preservmg transformatlon we mentloned earlter, we can replace SRR R

-"_-_the while statement by
|f odd(y) and x > 0 then whlie even(x) do x « xl2 '_: S (1:.’_..')

L .The same transformat:on can be used to transform S

- white odd(x) and even(y) and y > 0 doy “ y]g o ; o S (2:) i

into

o8
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W odd(x) and y > o ihen while even(y) doy t—yl2 = o o .'-_‘_::__(2”) e

.3and the statement L

- while even(x) and even(y) and (x > 0 ury > 0) do (xy z) “ (x!2 y{2 2 z) | (3:) : !

Cinto - '

o lf (:r:>0 or y>0) then ‘while even(x) and even(y) do (x y z) « (xl2 yl2 2. z) | (3”)."_:" B

" Because all of these statéments preserve the truth of the invatiant ¥ > 0 the test x> 0 can be"

-+ dropped from (1"’), and the test (x > Oor y > 0) can be dropped from (3'".
“The final resulting program is then

'Program D (the binary aigorithm) :
input(xy o) '
BNCE RN CIN )
- ‘more: " if x = 0 then goto enough :
... if odd(y) then while even(x) do'x « xl2
© if odd(x) and y > 0 then while even(y) dog e 92
" while éven(x) and even(y) do (¥ y 2) « (/2 52 2.2)
i y2xthenyey- xelse(xy) (yx) '
. gotomore
. emought yezey
' - output(y)

'_Althcugh the transformations we applied are not al! guaranteed to’ prnduce optimizations, this"" o

' algorithm turns out .to be “significantly faster than the given subtractive algorithm if:'-_'_:_" '
. _implemented on a binary machine, where division and multiphcation by 2 can be performed_ RRUSE

B -quxte qu:ckly by sh:ftmg words to the nght or ieft

' 'The blnary gcd aigorlthm IS based on one dlscovered by Sllver and Terztan
- (see Knuth [1969]. An analys;s of the runnmg time’ of thls algorlthm has
: been performed by Knuth and refmed by Brent [19?6] e ;

o _.The correctness preservmg transformattons we USed to produce the bmary
R 'gcd algorlthm are'in ihe spmt of Gerhart [1975] and Dljkstra [1976]

i '-We have presented program transformatmns as a'means of improvmg the eff:cnency of a given'-f'_.f_':_'_'-' '::
"Plognam 1in fact, the existence of such transformatzons ‘may aid in ensuring the correctnes.v. of oo
S '_p:og: ams as we]l A programmer can safely 1gnore eff:cxency consnderatmns for a wh:le, and S
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produce the s:mplest and clearest program posslbte for a gwen task the program 50 produced is
-‘_'moxe likely to be correct, and can- be transformed toa more efﬁc:ent :f less readable, program S

ata later stage o

' Program transformatton as a method for achtewng more rehable prOgrammmg EI .
“ has’ been advocated by Knuth' {1974] and Burstall and Darlington [1977]. The_.-' i
--Iatter authors - amp!emented an interactive” system for the transformation of .~ = .
. recursive programs. Wegbreit [1975] illustrates how a iranstormation system T
" can -be ‘guided by an analysis' of the ‘efficiency of the program being =
transformed, thus ensuring that the program Is lmproved and not merely L
transformed. - : : -

" One area for which the application of program transformations has been -
particularly well explored is the representation of data structures: programs
written in terms of abstract data structures, such as sets or graphs, are
transformed to employ more concrete representations, such as arrays or bit
strings, instead. By delaying the choice of representation for the abstract
data structure until after the program is writien, one can analyze the program

“to .ensure .that an efficient representation is ‘chosen.. This process is N
examined, for example, in Earley [1971] and Hoare [1972]. Experimental -~ . '
o ~implementations have been constructed by Low {1974}, Schwartz {1974}, and o
s Guttag et al. [1977]. '
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U V:ll P.rogratrrl'bev'el'opm'eht '

n the pnewous section we dlSCUSSEd Ioglcal techmques for transformmg one program inte

" ‘another that satisfies the same specnflcatlons In this section we will go one step further and

..mtroduce techmques for developmg a program from the speclt‘icatlons themselves. . These i

o techmques involve generahzmg the notion’ of transformatlon to apply to spec:ftcatlons aswell as’ -

" to programs.- “The programs produced in thls way will be guaranteed to sattsfy the glven".:_ﬁ'f

5 -

_ To |Itustrate thls process we will present the systemattc development of a recursive and an -
iterative program to compute the ged function. From each derivation we will extract some of -
the principles frequently used ‘in program development. We will then -show how these
principles can be applied to extend a given program to achieve an additional task. In

particular, we will extend one of our ged programs to compute the “least common, multiple” (lem) © -
“of two integers as well as their ged . -

.. _Let us first develop a recursive program for computmg the gcd We requnre that the desnred |

o : plogram gcdgoal(x W) satisfy the output specrftcatmn L

gcdgoal(x ¥ = max{u ulx and u]y}
: _ where % and 9 are 1ntegers satlsfymg the input spec:flcatron
x>0andy>0and(xve Oory» 0)

The set'constructor {u ..} is'admitted to our specrf:catlon language but is not a pr:mitlve of

cour programming !anguage We must find a sequence of transformations to’ produce an = '

' ..equwaient description’ of the output that does not use the set -constructor or .any other' '

nonprimitive - construct. This descr:ptton will be the desired primitive program. In what :
follows we will exhibit a successful sequence of transformations, without tndncating how the R

“next tr ansformataon at a glven stage is selected

The tr ansformatrons we employ for th:s example embody no knowledge of the gcd. function g ;'
_ itself, but soime sophisttcated knowiedge about functlons simp!er than the' gcd such as the S

followmg

" For any in_tegers-u,- v, and W, .

el
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@) ulp = true ifu=0
3 (én'y mteger divides zero),

(b) uiv and ulw 25 u]v and u|w—v TR R
(the common dxvxsors of v and w are the same a5 those of Y and w v) o S

(c) max{u u!v} =7 lf v'> 0 :
(any pos:t:ve mteger is 1ts own greatest dwisor)

: 2 n apptymg these transformatlons, we w1|l produce a sequence of goals the flrst wﬂl be derwed
- directly from the output specification, and the Jast will be the desired pragram itself Our
initial goal is . S S _ _

Goal 1, .Cump.ute. nida[:{u :Iu'l'x 'a:;d'_ub.v},"

for any x and y satisf ying the input specification. The transformation (b.) aﬁﬁve, -
Uy and ulw 5 uly and ulw— o B

| éppiié dn‘eetly to a subexpressnon ef Goal i, yléldlng..

Goa% 2 Compute max{u ulx and uiy x}

‘Note that Goal 2 is an instance of our dultput spétification, Goal 1, but with x and y-x in place -

- of the arguments x and y. This suggests achieving Goal 2 with a recursive call to gedgoal(x y-~

' x), because the gcdgoal program is intended to satisfy its output specnflcat:on for any
.ar guments satisfying its input specification. : . -

To see that the mput SpEleIC&tIOt‘I is indeed satisf‘led for the arguments % and y—x of the’ S
pl oposed recursive call, we establish a subgoal to prove the input condition '

Goal 3 Prove x S 0 and y~x 20 and (x = 0 or y-x " 0)

Thls mput <Condition is formed from the onginal mput spec:fncatmn by subst:tutmg the

'arguments x and y—x for the g:ven argumentsx andy I R E

i Furthermore we must ensure that the proposed recurswe call will termmate For this purpose, ' y
we will use the well- founded ordermg method of Sectuon IV we estabhsh a subgoal to achleve R

- the followmg rermmation condmon o
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: - Goal 4 Fmd a welt founded set W with orderrng > such that _'
(xy)eWand(xy x)eW : :
- and (x y) )- (x y~—x)

. Let'us consrder the mput condrtron (Goa! %) frrst Because ¥ has been assumed nonnegative by

“our or:gmal input specrf;cation Goal 3 can be reduced to the two subgoals o

3 B Goal 5. 'Prove y z'x,
and
‘Goal 6. Prove (x = Oory = x).

- We ca'nnqt prove or disprove Goal 5 — it will be true for some inputs and false for others —-
30 we will consider separately the case for which this condition is false, ie, 9 < x. This case
~ “analysis will yield a conditional expression, testing if y < ¥, in the final program. -
: __._Césey < x:

| We cannot achieve Goal 5 ift this case. Tn fact, the proposed recursive call does not satrsfy its
~input condition; therefore, we try to find some other way of achievmg one of our hxgher goals

i Usmg the logical rdentlty

Pand Q <=> Qand P,

" we éee that Goal 1 is an instance of itself, with x replaced by y and y by . This suggests
.achrevmg Goal | with the recursive calt gedgoal(y x). For this purpose we must estabhsh the o

input condrnon

Gcal 7 y>0and szand(y:eOorx ueO)
' and the te:mlnatiun conditien g 5 5

Goal 8. Fmd a weil founded set W wlth orderrng > such that B B
(xy)eWand(yx)eW : :
' and(xy))-(yx)

EE _'Goal ’7 is achleved at once; 1t is a srmp!e reordermg of our orrgmal mput specrfrcat:on We can' P

o -achleve Goai 8 by takmg W to be the set of palrs of nonnegatlve integers because x and y are ' |

"'known to be nonnegative by our input specification. In"this case § < x, so we take our well- =~

: 'founded order:ng >to be the usual > ordering applied to the first components of the pazrs (In R L
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'other wmds (u, s > (v, vz) 1f uy > v, ) Havmg establlshed the input COndlthI‘l and thie -

‘termination condition, we are justified in returning the recursive call gcdgoal(y x) Thus, the‘-i_: SR

'i partlal program completed at thts stage is

gcdgoal(x y) <= if y <k .
‘then gcdgoal(y x)
- eise

It reémains to consider the atterna't'e branch of the case analysis, in which 'y > %, This case = -~

. corresponds to the else branch of the final program.
Case y2x:°

" Here; we have established Goal 5, a subgoal of the input condition for the proposed recutsive

call gedgoal{x y-x). It remains to prove the other subgoal of the input condition, Goat 6, that .

“x = 0ory = x. Again, we cannot prove or disprove either disjunct of this goal because they

* will be true for some inputs and false for others. Thus, we can make either x » Qory » x'a -

basis for a case analysis; we choose the former diSJUI‘ICt and consider the case in wh:ch X 0 is

. -_False .

_case'a& =0

. We cannot achieve Goal 6 'here, so we are prevented from intr'oducin’g the recursive call

gedgoal(x y~x). We therefore again attempt to apply aiternate transformations to the higher- - :

‘level goals. Because in this case ¥ = 0, Transformation (a),
_uib’ &> true ifo=0

- 'app]ie:s tt: the subexpression ujx of Go.al. 1, yi.étdi.ng' R

Goal 9 Compute inax{at : trize and uly} :

| .Applyln.g the Iogrcal transformatxon :' - N

true and P => P o

: pxoduces

Goal 10 Compute max{u u{y}

:Because yz0 and (x' 7 0 or g 0) by our origmal mput spec:ﬁcatton, and ¥ 0 by qur case

'condxtron we know that 3> 0at this pomt therefore, we can’ apply Transformation (c)
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_7;1GJC{u':u|v} E>f v'.if'v;o ' : S A

. yi'e'tciing” | | B
N _.: Goal 11 Computey

e _We have thus reduced the goai in this case to’ the task of. computmg y, which mvo!ves no’
. nonprimitive constructs. The des:red program may smply output ¥. The partlal program ‘we

' __have constructed so far is

gcdgoal(x M= ifyex
then gedgoal(y x)
else ifx=0
then y
else ....

Finalily, we consider the remaining branch in our case analysis.

 Casex = O

"_Here the mput condition (Goal 3) for our proposed recursive call gcdgool(x y x) is sat:sf:ed If..
" remains, therefore, to consider the termination condition (Goal 4): o

Find a well-founded set W with ordering > such that
(x ) e W and (x y-x) e W
“and (x ) > {x y-x).

Fo: the prev:ous recursive call, gedgoal(y x) we have taken W to be the set of pa}rs of
‘nonnegative mtegers and » to be the usual > relation on the first components of the paifs. To

ensure the termination of the final program, it is necessary that W and > be the same for both

recursive calls. Unfortunately, the first argument of the proposed recursive call gcdgoal(x §~-%) .

is x itself, and it is not so that (x 3y > (x y-x) in the ordermg > we have employed We '

_ ‘therefore attempt to alter’ > to establish the termmatlon condittons of both recursive calis'-_
__:gcdgaal(y x) and gcdgoal(xy x) S S el

: Because in thls case it s known that x> 0 (ie X e 0 and x > 0) we have that y > y—x We :
_-therefore extend the ordering to examme the second components if it happens ‘that the flrst :

e :'_ : components are equal in other words, we revise )- to be the lex1cographxc ordermg on the’ panrs et
' ..__of nonnegatwe mtegers With the new ordermg >, both recursive calls ‘can be shown to . e
~ terminate.”. We have thereby estabhshed Goal 4 and the program can output gcdgoal(x y-x) in - -

f.thts case.
" Our final progr"a'm is -
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gcdgoai(x <= ify<x .

: - then gedgoally x)
Celse fx=0"

~theny -
eise gcdgoal(x y %), o

“This p:ogram is sxmxlar to our subtractlve gcd algortthm (Program A) but its tests are
performed in the reverse order. S

Note that in performing the above deri\tation, we have ensured that the derived pr’ogr'am

terminates and satisfies the given specifications; thus, we have proved the total correctness of .

| _the program in the course of its construction.

" From the above example, we may extract some of the basic principles that are frequently used
in program development

° tmnsformatwn rules The program is developed by applying successive
- transformation rules to the given specifications. The rules preserve the
‘meaning of the specnficatnons but try to ‘replace the nonprimitive
contructs of the ‘specification language by prlmltwe constructs of ‘the
programmmg language : '

® conditional introduction. _Sonie transformation rules require that certain -
conditions be true before the rules can be .applied. - When a .
transformation requires a condition that we cannot prove or disprove,
" “we introduce a case analysis based on that condition, yielding a
- conditional expression in the uitimate program.

© recursion introduction. When a subgoal is an instance of the top goal
{or any higher-level subgoai), a recursive call can be introduced, = .~
provided that the input'specification'of the desired program is satisfied = -
by the new arguments, and the termination of the recursion can’ be' B
guaranteed o ' ' o

'The above example lllustrated “the constructlon of arecursive program from gwen'-

'SpElelcatlonS If we w:sh to contrict an’iterative program instead, alternate techmques are" B

nece:saty In our next example we wxll illustrate some of these techmques

_ 'ln consttuctmg the recursive program we dld not allow ourselves to use any of the properttes S
- we know about the gcd functton tt,self but only the propertles of subsidlary functxons such as-

L
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" division -and subtraction. In constructmg the | iterative program, however, we facﬂitate the
' plocess by adm:ttmg the use of several propertres of the ged function itself: FERN

' Fot any mtegels u and y
(a)gcd(uv)-v 1fu=Oandv>0' _
(b) gcd(u'v) = -gcd(rem(v u) u) -if s OIan'd v20,

'whe:e rem(v u) is the remainder of dividing ” by . We further s:mpht‘y the task by assummg s
the stronger input assertion :

x> 0and 35 > 0.
'We write our goal directly in terms of the ged function

Goal 1. input(x, o)
{xo>0and y,>0}
 achieve z = ged(xg yp)
{2 = gedlxo 3o }
©ooutput(z) .
* Here, to achieve a relation means to consiruct a program segment assigning values to the
program variables so that the relation holds. Noté that we have annotated the goal with the
~program's input and output assertions. ; -

It is understood that "ged” is part of the assertion language but not a primitive construct of our .
programming language, so it does not suffice merely to set z to be gcd(xo Jo% we are forced to -

~rephrase our goal in terms of more primitive constructs.

" Because xp and ¥ are input values, which we will want to refer to later, we introduce new

_program variables x and y whose values can be mampulated Consequently, the abcve goal is e

' 1eplaced by the equwalent subgoal S

Goal 2. lnput(xo yo) R
.5'{x0>0andyo>0} _ G
- achieve z = gcd(x y) and gcd(x y) gcd(xo yo)
{ = gedlng 3‘0) yoo o '
-output(z)

o Usmg P:operty (a), that R _.

."
E
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gcd(uv)-v 1fu~Oandv>0

- we can reduce Goal 2 to the followmg goal

Goal 3 mput(xo .To)
- {x0>0and_‘yo>0} : - -
- achieve z =y and ged(x 9) = gcd(xo yo) and x = 0 and y >0 o
'{z~gcd(xoy0)} L :
-output{z). S B R

‘We can now achieve z = y by setting 7 to be § before exiting from the program. We choose'to . =

' ‘achieve the remaining conjunction by introducing a loop whose exit test is x = 0, and whose
-invariant assertion is ged(x y) = ged{xg o) and y > 0. (To be certain that ged(x y) is defined, we -
" must add the invariant x 2 0, as weli.) On exiting from such a loop, we can be sure that all the
con juncts are satisfied. The desired program will be of the form

Goal 4, * Inputlxg 5o
' {xg>0andyp>0) - - -
. achieve ged(x 3) = ged(xo yo) and x 2 0and 5> 0
more: { ged(x y) = ged(xg yp) and x 20 and y > 0}
- if x = 0 then goto enough _ '
achieve ged(x y) = gedlxg Yo) and x 2 0 and y > 0
while guaranteeing termination
: goto more
énough: z « 4
{ 2 = ged(xo 3o) }
-output(z).

“The variables x and y can be initialized to satisfy the invariant assertion easily enough by

' settmg x to xo and y to yo. In constructing the loop body, we must ensure not only that the--__f_._' DI
‘invariant is maintained, but also that the values of the program ‘variables ¥ and 5 are altered so T

that the program will ultimately terminate, ie, so that eventually X = 0 For this- purpose ‘we’
req uire that x be strictly reduced Wlth each iteration. : '

.'.'

To aeduce x whale mamtammg the mvar:ant assertlon, ‘we use the above Property (b) of the gcd' R
'_functlon that S A S R L

gcd(u v) gcd(rem(v u) u) if u > 0 and ¥ > 0
and the addltlonal property of the remamder functmn, that |
0<rem(vu)<u 1fu>0andv20
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','Because we know that » and y are posrtlve (by the exnt test and the invartant assertion) weé can _ '

~‘achieve the requirements for the loop body by updating * and y to be rem(y x} and X,
tespecttvely The fmal plogram, complete w:th its annotations, is '

L input(xo yo) .

{xb$03ndyo'>0}' .
k) e oo
more: f gedix y) = gcd(xo yo) and x 2 0 and y>0 }

if x = 0 then goto enough
{x ) « (rem(y x) x)

. .goto more .

' énough: Zey

{ 2 = ged(xg 30) }
output{z).

“This is an iterative version of the Euclidean ged algorithm (Program C).
" The above example allows us to extract some additional principles of program development:

© pariable introduction. Introduce program variables that tan be
- manipulated in place of input values, and rewrite the goal in terms of the
program variables.

© iteration introduction. If a goal is expressed as a conjunction of several
“conditions, attempt to introduce an jterative loop whose exit test is one of
the conditions and whose invariant assertion is the conjunction of the
others.

&

There are many other- program development techmques besides those encountered tn the two S

- examples above. Some of these are listed here:

® g’ene'ralization We have observed 'earlier that ‘in proving a theorem b'y'motﬁematical '
_ _induction, it is sometimes necessary ‘to strengthen ‘the theorem, so that a stronger mductton R S
L hypothesrs can be used in the proof. By the same token, in deriving a recursive program ftis ol

.-'sometlmes necessary to generalize the programs specxﬂcataons, 50 that a ‘recursive call to the_" o
~ program will sattsfy a desired subgoal Thus, in constructing a ptogram to sort an ‘array. with.

-_elements Ao, Ay, - An, we may be led to construct a more generai program to sort an arbitrary Lo
' ._._segment Av Ajrys A Slmxiarly, in constructmg an iteratlve program we may need to o

"genmahze a proposed mvarlant assertion, much as we were forced to generalize the invarlant e
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-"_a«:set tioh ged(xy) = gcd(xo yo) to be z: gcd(x y) = gcd(xo Yo) in deve!opmg the blnary gcd SR

| algonthm (Program D) in Sectlon VI

4

° slmultaneous goals Often Wwe need to construct a program whose spec1f1cat10ns mvolve

- achlevmg a .conjunction of two or ‘more mterdependent conditions at the same ‘time. < The '.f Lo
difficulty is that in the course of achieving the second condition we may undo the effects of
“achieving the first, and so on. One ‘approach to this problem is to constract a program to

" ‘achieve thé first condition, and then extend that program to achieve the second condition as’
well; in modifying the program we must protect the first condition so that it will’ still be

'.achleved by the altered program. For instance, a program to sort the values of three. vanables .

x, v, and z must permute their vaiues to achieve the output specification "x < yand y s
To construct such a program, we may first construct a pregram to ach:eve x < % and then'
- extend that program to achieve y < z as well, while protecting x < y.

® efficiency. To ensure that the program we contruct will be efficient, we must be able to
decide between alternate means of-achieving a given subgoal. We must consider the effects of
the chosen transformations on the time and space requirements of the ultimate program.” For |
~example, in constructing a gcd program, if we were given a variety of transformatlons based on 3
. different propetties of the ged function, we mlght rieed to decide between achlevmg the subgoal
compute maxiu uix and uly-x}" and the subgoal cumpute max{u: ujx and ul(yl?)}

A discussion of generallzahon in program synthesus is found in Slk!ossy
[1974). An approach to the simultaneous goal problem appears in Waid:nger'
[1977] .

The systemat:c development of programs has been regarded from two pomts
"of view: as a discipline to be adhered to by human programmers in order to
construct correct and transparent programs, and as a method by which
.‘programs can be generated aulomalically by computer systems. The first
“aspect, referred to “as structured programming (see, for example, Dahl,
Dijkstra, and Hoare [1972), Wirlh [1974], and Dijkstra [1976]), has been
“advocated as a practical method for achieving reliability in large computer
_:'p'rOgra'ms. The second aspect of program development, called program
" synthesis, is currently ‘being pursued as a research activity (e, .see S
- "Buchanan ‘and Luckham [1974], Manna and Waldmger [1975], and Darlmgton S
. [1975})

'-Although the iechnlques of s!ructured programmlng -are sufﬁcaent!y well—'-__'_ oA
. specified to serve as a guu:le to ‘the human’ programmer, much needs ‘to be"
- 'done before his performance can be imitated by an automatic ‘system. For ..
. instance, at each point in the development of a program, a synthesis system .
‘must decide what portion of the specifications will be the next to be

7:0 :‘:
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_ 'lrans!ormed and se!ect an appropnate transformahon from many p!ausuble"
candidates. In introducing a loop or recursive call it may need ?o find a
suitable -generalization of the -goal ‘or the proposed invariantl-'a55ért_idn.
" Furthermore, a synthesis ‘system must have ‘access to knowledge of the
properties of the operations involved in the program being constructed and
. ‘beable to use this knowledge ‘to reason about the program. To some extent'__ '
these problems are shared by verification systems, but the synthesis task .is-
_-more difficult than verification, because it receives less help from the human - .
' programmer and demands more from the compuler system. Consequently,
~automatic program synthesis is slili in an experimental stage of development,
'_ .‘and does not seem likely to be applied to praclical programming problems in
~ the near future. :

In the examples of program development we have seen so far, we have used the given
specification as a basis for constructing a completely new program. We have introduced no
-mechanisms for taking advantage of work we may have done previously in solving some
related problem. This situation conflicts sharply with ordinary programming practice, where
. we are often altering or extending old programs to suit new purposes. In our next example we
* will assume that we are given a program with its original specifications plus some additional

specifications; we will extend the program to satisfy the new specifications as well as the original -

ones. Thus, although we may add new statements or change otd ones in the existing program '

to achieve the new goal, we will always be careful that the program still achieves the purpose '
~for which it was originally intended. o e

We suppose we are given a program to compute the gcd of two pos:twe integers, and we want '
‘to extend it to compute their least common multiple as well. The least common multiple of x
and y; or lem(x y), is defined to be the smailest positive integer that is a multiple of both x
“and y; for example, em(12 18) = 36. Now, of course we could construct a completely separate
program to compute lem{x %), but in fact the ged and the lem are closely refated by the identity -

_ _(a)' gcd(x 9)-lem(x §) = - y

~(For example gcd (12 18): lcm(l? 18) = 6. 36 = 216 = 12 18 ) We would I:ke to take advantage P
“of the work being done in the ged program by addmg new statements that will enable itto -

" computé the lem at the same  time.

.Suppos'e th'e g‘iven g'cd prog’ram, anholta_t'e'd with its assertions, is as follows: -

7]_.
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input(xy ¥o) '
{%>0and y5 >0}
o (e el :
" more: - { ged(x 9) = ged{xg yo) and ¥ 2 0 and y 50 }
. if ¥ = 0 then goto enough
Cif gy x then y e 5ox else ¥ x-uy
g :.'go’tomore : _
“enough: {y = ged(xg yo) }
. ' output(y)

This is a version of our subtractwe algorlthm (Program A) for computmg the gcd of pos;t:ve =

integers only.
"_Tﬁe extension task is to achieve the additional outp'ut assefﬁgn
%" = lem{xg 9o) ‘ | | | | S
as Welllas the original output a's'ser.ti:on' '. | ' B
' 9 = gedtxo 3o

‘In the hght of the identity (a) reiatmg the gcd and the lem, the most straightf‘orward way to
achieve this new assertion is to assign :

%"« (g 9ol

~at the end of Program A. However Program A itself computes the gcd without usmg
multiplication or division; let us see if we can extend the program to compute the lcm usmg
.-only addition and subtraction. : :

; One approach to program’extension reflects a techmque we already used in’ developmg anew .

program: we try to find an additional intermediate assertion for the program, usually involving -

‘néw variables, that will imply the new output assertion when the program halts.’ We then alter Lo

the program by initializing the new variables so that the additional intermediate assertion will
. be satisfied the first time we enter the Ioop, and by updatmg these variables in the loop body 50

L that the assertton will be mamtamed as'an invariant every time we travel around the loop As . o
~oinpr ovmg the correctness of a program the chcuce ot‘ su:table mtermedtate a.ssertton may" R
i _requ:re some mgenmty e e : : Sl

- 'For instance, it wouid suff:ce if we could extend the program by introducmg the relatton :
oot .y = xO'j’O

>
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g 'as a new mte: mediate assertion in addmon to our orlganal assertion
gcd(::: y) gcd(xo yg) and %20 and y> 0

: Thas relatlon lmphes the new output assernon because when the program halts L will be

~ged(xg yo) -and therefore x’ will be lem(xg yo).~ If we initialize x” to be ¥g, ‘this relation willbe 0

satisfied the first time we enter the loop, because y is initialized to yg. However we still need

' _'to update the value of x’ as we travel around the ioop 50 that the relation is maintained this -~

 turnis out to be a very difficult task.
A successful new intermediate assertion is the much less obvious choice
{b) x’-j.- +x.9 = xb-yo

where x” and y” are both new variables. This relation does imply the output assertion, because
= 0 and y = ged(xg yo) when the program halts. Furthermore, because y is initialized to yo,
" we can ensure that the relation will be true the first time we enter the loop by initially assigning

(x 3) « (x0 0).

: Fmally, we can ‘maintain the relatlon when control passes around the Ioop Con51der1ng the e
case in which y > x, iet us rewrite the refation (b) as :

cxf o {{y-x)x) + xop" = xg+90.
 After y is reset to ¥—x, a new relation holds:

_ x"o(y4x) + X+ 9" = Xp+ Yo,

e,
_ x'-y"+ xe(y"+2") = %9 9.

“Hence, to restore our intended invariant asserton it is only necessary to ass:gn

-in thlS branch of the !oop body

IS

In cons:dermg the other branch for Wthh y < x we merely reverse the roles of x and y, and
of x" and y’ thus, we can restore our :ntended mvariant by assngnmg Sy :
xex’ 4y
“in this case.
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It is clear that the changes we have introduced do not affect the truth of the pr'ogfarn’s original -

~ assertions, because we have only altered the values of the new variables ¥’ and %, which do
ot appear in those assertions. The comptete program, which computes both the gcd and the cr
“lem at the same time, is : : : o

Program E (the extended algonthrn)
- input{xg yo)
{xo>03ndy0>0} _
ey’ ) e (o Yoo 0) -
more: ' { ged(x y) = gcd(xo Jo) and x 2 0 and y> 0
~oand x" y+ %0y’ = %g099 }
if x = 0 then goto enough -
if y > x then (3 9') « {y—x 3"+x’) eise (x ‘x’) {x— y x +y g
: goto more
énougb { 9 = gedlxp yo) and x” = lem(xg ¥o) }
output(y x).

~This program computes the lem as a byproduct of computing the ged, using only the.addition
operation. Given the intermediate assettion (b), it is purely mechanical to extend Program A to -
Program ie, Choosing a.successful intermediate assertion, however, is still a mystenous process :

._In the above example we were careful that the program being ‘extended still achieved its
. original purpase, computing the ged of its arguments It sometimes happens that we need to

adapt a program to perform a new but analogous task. For example, a program that computes -

- the square root of a number by the method of “successive approximations” might be adapted to

compute the quatient of two numbers by the same method. In adapting a program we want to
maintain as much as possible of its original structure, but we change as much as necessary of its

“details to ensure that the altered program will satisfy the new specifications. . If we have proved

the correctness of the original program, it is possible that we may afso be able to adapt the

. proof in the same way to show the correctness of the new program. Progrdm debugging may be "
~considered as a special case of adaptation, in whlch we aiter an incorrect program to conform Tl
- with its intended specnflcatlons : :

o Program adaptatlon has been studled by Moll, Soioway, and Ulrich [1977], and

© an-experimental program adap‘(ahon system has been produced by Dershowitz
and Manna [1977] Automatic debugging has been dISCUSSEd by von- Henke

B '_'and Luckham [1975] and by Katz and Manna [1976] . S

In ihzs sectlon, we have discussed loglcai iechnlques for program development
from given input-output specifications.” Other approaches to the constrisction
of programs, under the general rubric of automatic programming, have used

4
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- more informal methods  of program specification  and less - systematic

" {echniques for program development; a survey of the entire field of automatic -
" programming is proyided by Biermann {1976} Alternaie approaches io '
: automatlc programming mclude § L o . :

° giving ’(yplcal pairs of inpuls and Dutputs; 6.8+ (A (B C) D) => (D B C) A) _
suggests a program to reverse a list. 'A system that accepts such
- specifications must be able to generslize from examples (e.g, see Hardy
- [1975] and Summers {1976)). Sample input-output pairs are natural and easy
“to formulate, but they may yield ambiguities, even if several pairs are given,

@ giving typical traces of the execution of the algorithm to be encoded; e.g.,
the trace {12 18) = (6 12) = (0 8) - 6 suggests that the Euclidean ged
algorithm is to be construcied (see Biermann and Krishnaswamy [1976]). To
formulate such a specification, we must have a particular algorithm in mind.

® engaging in a natural-language dialogue with the system. For instance, in
“specifying an operating system or airline reservation system, we are unlikely
- to formutate a complete and correct description ali at once. In the course of
an extended dialogue, we may resolve inconsistencies and clarify details {see
Balzer {1972}, Green [1976]). The use of nalural language avoids the
necessity to communicate through an artificial formalism, but requires the

"+ “existence of a system capable of understanding such dialogue.

@ consiructing a program that "aimost" achieves the specifications, but is not
completely correct, and then debugging it (see Sussman {1975]). This
technique is similar i{o the way human programmers proceed and is
particularly appropriate in conjunction with the natural-dialogue approach, in
“which the specifications themselves are likely to be incorrect at first.
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-Abstract:

Techniques derived from mathematical logic promise to provide an alternative to the
conventional methodology for constructing, debugging, and optimizing computer programs.
Ultimately, these techniques are intended to lead to the automation of many of the facets of the
programming process.

This paper provides a unified tutorial exposition of the logical techniques, illustrating each
with examples. The strengths and limitations of each technique as a practical programming
aid are assessed and attempts to implement these methods in experimental systems are discussed. '
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Applymg the assignment rule to each of these goa[s ylelds
. Goal 9  invariant(x ) and %0 and y 2 = zﬁﬁanﬁnt(x §-x)
and | .
' éoal 10 -iﬁz).ariaﬁt.(:é ) z.m:d .xn() and 3y <x => 'iﬁva:ria'nt(y x) |
" Now the r’éfnaihing Goals 6, 9, and‘iO like Goal 4, are alt !o:gical stateménts‘ fheSé .are. the 'fbu;' o

verification conditions of Program A. Each of these statements can be shown to be true, and
the partial correctness of Program A is thus established. _ o .

" The above deduction can be summarized in the following "deduction tree":

<

concatenation

Goal 2 :) Goal 3 j)

assignment ’,/’,/’///// while

(:V Goal 4. :) (j Goal 5 (: Goal 6 :)
if-then-else
C Goal 7 ) C Goal 8 )

assignment assignment
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