.frfDEVELOPING A NATURAL LANGUAGE INTERFACE Qw:'””'
'T_TO COMPLEX DATA B A

.'fTeEhnicelfNofé_jgéif,

-~ By: . Gary G. Hendrix
' Earl D. Sacerdoti -
: Daniel -Sagalowicz
"+ Jonathan Slocum .
© Attificial Intelligence Center ‘
© Computer Science and Technology Division

”5§ﬁPub1isﬁéd'inf

._-:ACM Traneactlons on Database Syetems, V01 3,_No 2 .'efe ﬁ;”*
PP 105 147 (June 1978) . ST

LThe work Ieported hereln, other than the development;:
i of the: LIFDR system,_was supported by the Advanced e
7. Researeh’ Progects Agency of the Depaztment of Defence:ﬁ'f}
./ under contract’ DAAG29 16200012 Wwith' the U.S. Army
'eﬁ}Research Officel: Development of 'LIFER ‘was conducted B
i/ runder SRIY Internatlonal 8 Internal Research and
f*e,Development Program f*,:j..- S S

. Developmg a Natural Language Interface

to Complex Data

GARY G. HENDRIX, EARL D. SACERDOTI, oANfEL- SAGALOWICZ,
- AND JONATHAN SLOCUM : _
S SRI Intematlonaf o

Aspects of an intelligent interfsce that provides natursl language access to a large body of

- data distributed over a computer network are described. The overall system architecture is

presented, showing how a user is buffered from the actual database management systems
{DBMSs) by three layers of insulating components. These layera operate in series to convert

-patural langusage queries into calls to DBMSs st remote sites. Attention is then focused on the
. first of the insulating components, the natural language system. A pragmatic approach to

Ianguage access that has proved useful for building interfaces to databases is described and
illustrated by examples. Special language features that incresse system usability, such as
spelling correction, processing of incomplete inputs, and run-time system personslization, are
also discussed. The language system is contrasted with other work in applied natural language
processing, and the system’s limitations are analyzed.

Eey Words and Phrases: natural langusage, intelligent interface, database access, semantic
grammar, human engineering, run-time personslization
CR Categories: 342, 3.62, 3.79, 4.22, 4.33

1. INTRODUCTION

‘In dealing with a very large database (VLDB), which is perhaps distr'ibu't(.zd aﬁitmg

multiple eomputers with different database management systems (DBMSs) on

- ‘remote sites, a central problem faced by would-be users is that of formulating queries

in terms commumcablo to the system.
" It is usually the case that business executwes govemment officials, and other

‘decision makers have g good idea of the kind of information residing in their data-

bases. Yet to obtain the answer to a particular question, they generally need to
employ the serviees of a technician who works with the database on a regular basis

General permission to mske fair use in teaching or research of all or part of this material is

" granted to individual readers and to nonprofit libraries acting for them provided that ACM’s

copyright notice is given and that reference is made to the publication, to its date of issue,
and to the fact that reprinting privileges were granted by permission of the Association for
Computing Machinery. To otherwise reprint a figure, table, other substantial excerpt, or the

‘entire work reqmres speclﬁc perrmsswn as does republncauon or systematlc or mulUple re-

“production. . .
- ‘The work reported herem other than the development of the LIFEI{ aystem W8 suppnrted

“by ‘the Advanced Research'Projects Agency of the Department of Defensé under Contract

TAAG29-76-C-0012 with the U.8. Army ‘Research Office. Development of LIFER was con- - -

- ducted under BRI's Internal Research and Development Program. -

-A version of thia paper was preaent,ed At the Tlm‘d Inbematlonal Conference on Very Large -

o " Data Bases, Tokyo, Japan, October 1977.

* ‘Authors’ addreas "Artificial Tntelligénce Cent.er, SRI Int,emstlmmi Men!o Park CA 94025_ g

© 1978 ACM (562—5915/78/060)-01{15 $00.75
: ACM Transactiona on Database Syst.ems. Vcl 3, No 2, June 1978, Pagea 105-147

406 - G.G.Hendrix, E. D. Sacerdoti, D, Sagalowicz, andJ.-Slocum’

" and who is thoroughly familiar with its file ‘structure, the DBMSs on which it
- ‘resides, how it is distributed among various computer systems, the coded field
* names for the data items, the kinds of vahies that different fields are expected to
- contain, and other idiosynerasies. . .o o e
_“The technician must understand the decision maker's question, reformulate it - -

" in'terms of the data that is actually stored, plan a sequence of requests for particu-

1sr items from particular files on particular computers, open connections with re-
"mote sites, build programs to query the remote systems using the primitives of the
DBMSs of the remote systems, monitor the execution of those programs, recover
from errors, and correlate the results. This is 8 demanding, time-constming, and
exacting task requiring much attention to detail. Escalated levels of sophistication
are needed as the VLDB increases in size and complexity and as it is distributed
over a wider range of host computers.
~ With the goal of making large, distributed databases directly available to de-
cision makers (while freeing technicians from increasingly tedious details}, & group
of researchers at SRI International has developed a prototype system that, for
many classes of questions, automates the procedures usually performed by tech-
 picians. This paper presents an overview of this system, called LADDER (for
- language access to distributed data with error recovery) [16],! and then concentrates

~ on the particular problem of translating user queries from English into the terms

of the database. The other aspects of the LADDER system are presented in greater

_detail elsewhere in the literature [13, 16, 17). The system was developed as & man-

- agement aid to Navy decision makers, so examples throughout the paper will be
‘drawn from the domain of Navy command and control.

2. SYSTEM ARCHITECTURE _ _
- The running demonstration system consists of three major components that pro-

‘vide levels of buffering of the user from the underlying DBMSs. The LADDER
‘user can think he is retrieving information from a “general information base"’ rather
than retrieving specific items of data from a set of highly formatted, traditionsal
~ databases that are scattered across & computer network. The user provides a ques-
tion sbout the information base in English; LADDER applies all the necessary
information concerning the vocabulary and syntax of the question, the names of
specific fields, how they are formatted, how they are structured into files, and even
. where the files are physically located, to provide an answer. _ _
" " LADDER'’s first component, . called INLAND (for informal natural language
aceess to Navy data), accepts questions in a restricted subset of natural language
and produces a query or sequence of queries to the VLDB as a whole; The queries

" 't6 the VLDB, as produced hy INLAND, refer to specific fields, but meke no com-

‘mitment sbout how the information in the database is broken down into files. -~ -

-~ For example, INLAND translates’ the question “What is the length of the . -
.j[{gnnédy?”_.intd'the‘qi;ery_--__'_." L S P
L0 ((NAM EQ JOHNF.KENNEDY) (¢ LENGTH)), -

' where LENGTH is the name of the length field, NAM the name of the ship name .
f !A glosﬁary of system riames precedes the'Abbehdix. S T e
" ACM Transactions on Datebasé Systems, Vol. 3, No.2, June 1978, *~ .

: Developin a Natura! Language Interface to Complex Data . 107

ﬂeld and JOHN#F KENNEDY the value of the NAM ﬁeId for the record con-

o cerned with the Keunedy.

: “Queries from INLAND are directed to the second component of LADDER,
- called IDA (for intelligent data access) [17). In general, a query to IDA is a com-
-mand list of constraints (such as (NAM EQ JOHN#F.KENNEDY) or (* MAX
'LENGTH)) and requests for values of fields (such as (? LENGTH)). INLAND
operates by building & (possibly null) fragment of a query to IDA for each lower-
‘level syntactic unit in the English input. These fragments are combined as higher-
" level syntactic units are recognized. At the sentence level, the combined fragments
~ are sent as a command string to IDA.
. Employing a model of the structure of the VLDB, IDA breaks down a query
against the entire VLDB into a sequence of queries against individual files. Link-
ages among the records retrieved are preserved so that appropriate answers to the
overall query may be composed and returned.
For example, suppose that the database consists of a single file whose records

contain the ﬁelds_
(NAM CLASS LENGTH).

" Then, to answer the database query issued above, IDA ean simply create one file

. retrieval program that says, in essence, “For the ship record with NAM equal

. JOHN#F.KENNEDY, return the value of the LENGTH field.” Suppose, however,
that the data.base is structured in two files, as follows:

SHIP: (NAM CLASS . . .) '
CLASS: (CLASSNAME LENGTH .)

In this case the single quéry about the Kennedy’s }ength must be broken into two
file queries, These would say, first, “Obtain the value of the CLASS field for the
SHIP record with NAM equal JOHN#E.KENNEDY.” Then, “Find the cor-
" responding CLASS record and return the value of the LENGTH field from that
record.”” Finally, IDA would compose an answer that is relevant to the user’s
 original query (i.e. it will return NAM and LENGTH data, suppressing the CLASS-
to-CLASSNAME link). o
' In addition to planning the correct sequence of file queries, IDA must actually
- compose those queries in the language of the remote DBMSs. Currently the system
accesses, on & number of different machines, a DBMS called the Datacomputer

.- {4, 6], whose input language ig called DATALANGUAGE. IDA createsthe relevant

 DATALANGUAGE query by inserting field and file names into prestored templates.
- However, since the database is distributed overseveral machines, the DATALANGUAGE
‘that TDA produces does not refer to specific files in specific direetories on specific
machines. Tt refers instead to generic files, files containing a specific kind of record. .~
_For example, the queries discussed above might refer to the SHIP file rather than

- file SHIP.ACTIVE in directory NAVY on machine CCA-2.-

"1t is the function of the third major component of LADDER to ﬁnd the locatlon _ :

" _ -'of the generic files and manage the access to them. To carry out this funetion, the

thlrd component called FAM (for ﬁle access manager) {13], rehes on a locally o

. If xt. is possxble to perform multxple ﬁle accesses wzt,h [:Y amgle multlﬁle query, IDA wxll do 80.
ACM 'l‘rumcuom on Dat.nbase Systemn. Vol. 3, No 2. June 1978 o

108 - G.G.Hendrix, E. D. Sacerdoti, D. Sagafowicz, and J. Slocum

~_stored model showing where files are located throughout the distributed database.

- When it receives a query expressed in generic DATALANGUAGE, it searchesits model

- for the primary location of the file (or files) to which it refers 1t then establishes

connections over the ARPANET to the’ appropnate compiters, logs in, opéns the

- files; and tranannts the DATALANGUAGE query; ds amended to refertothe specific

files that are being accessed. If at any time the remote ¢computer crashes, the file

- becomes inaccessible, or the- network connection fails, FAM can recover, and if a

- ‘backup file'is mentioned in FAM’s model of file locatmns it can estabhsh a con-
- neetion to a backup site and retransmit the query. . -

.. The existing system, written in INTERLISP [19], can process a fairly wide range of

i questmns against a database consisting of some 14 files containing about 100 fields.

~Processing a typical question takes less than a second of CPU time on a DEC

- KL-10 computer. An annotated transcript of a sample session with the system is

provided in the Appendix.

We emphasize that the three major components of LADDER each address
separate portions of the data access problem. Although they have been designed
‘to work in combination, each component is a separate, self-contained module
that independently addresses one aspect .of data access. For example, the virtual
view of the data that IDA supports for its caller would be of value even without a
' natural language front end. Likewise, the general téchnology developed for natural
* language translation may be separated from the data access problem and apphed in

- other domains. _ _
3. THE NATURAL LANGUAGE COMPONENT _
With the goal of supplying natural language interfaces to a variety of computer
-software, we have developed a language processing package, called LIFER (for
language interface facility with ellipsis and recursion) [11], that facilitates the con-
struction and run-time operation of special purpose, applications-oriented, natural
language interfaces, INLAND, the linguistic component of our intelligent inter-
- face to distributed data, has been constructed within the LIFER framework,
Figure 1 gives some indication of the diversity of language accepted by this system.
Below we describe the nature of INLAND and illustrate how it was created using
LIFER’s interactive language definition fagilities. Of course, the examples can show
“‘only limited aspects of INLAND. We believe the existing INLAND system to be
- .one of the most robust computerized natural language systems ever developed,
- accepting a wide range of questions about information in the database (as shown in
- ‘Figure 1) as well as metaquestlons about deﬁmtaons of data,ba.se ﬁelds and the
-grammarltself IR i e _

a4 Overwew of LIFER : : . el
L Although work in artlﬁcmi mbelhgence and computatmnal hngmstlcs ha.s not yet

S _ _developed & general approach to the problems of understandmg English and other - _
‘natural languages, mechanisms do emst for dealmg with major frs.gments of ianguage _

R pertment to particular application areas. The idea behind LIFER is to ada.pt exist- -
_ '-mg comput&tional linguistic technology to practlcal apphcatlons whﬂe investigating
o ACM Transactions on Database Systeme, Vol 3, No, 2, June 1978, _ . S

'. Developing a Natura! Language Interface to Complex Data . + 109

- -and extending the human engineering aspects of theltechnology ‘The LIFER

system supplies basic parsing procedures and an interactive methodology needed

. by a system developer to create convenient interfaces (such as INLAND) in rea-
"~ sonable ‘amounts of time. Certain user-oriented features, such ‘as spelling corree-
* tion, processing of incomplete inputs, and the ability of the run-time user to exténd
. the language accepted by the system through the use of paraphrase, are also in-
'cIuded in‘the LIFER package. '

“LIFER is composed of two basic parts a set of 1nteractwe ianguage specxﬁcatlon

' ‘funetions, and a parser. The language specification functions are used to define an

application language, a subset of a natural language (e.g. English) that is ap-

- propriate for interacting with existing software, such as & DBMS. Using this

language specification, the LIFER parser interprets natural langusge inputs,

translating them into appropriate interactions with the application software.
Figure 2 shows simplified example interactions with the LIFER parser using

the INLAND language specification. A sequence of complete examples is presented

in the Appendix. The user of the system types in a question or commandin ordinary

English, followed by a carriage return. The LIFER parser then begins processing
the input. When analysis is complete, the system types “PARSED!"” and invokes
databa.se functions (IDA) to respond.

_An important feature of the parser is an ability to process elliptical (incomplete)
inputs. Thus if the system is asked, as in question 1 of Figure 2,

WHAT 1S THE LENGTH OF THE CONS TELLATION,

‘then the subsequent input

OF THE NAUTILUS

will be interpreted as WHAT IS THE LENGTH OF THE NAUTILUS. _
If a user misspells 2 word, LIFER attempts to correct the error, using

- the InTERLISP spelling corrector [19]. If the parser cannot account for an input in
. terms of the application language definition, error messages, such as that produced

after question 6, are printed that indicate how much of the input was understood

- and that suggest means of completing the input.

Provision is included in INLAND for interfacing with LIFER’s own language

- specification functions, making it possible for users to give natural language com-
‘mands for extending the language itself. In particular, computer-naive users may

extend the language accepted by the system by employing easy-to-understand
notions such as synonyms and para.phrases ThlS is illustrated by interactions 7

and 10 in Figure 2. : .
. In using TIFER to defirie 8 language for INLAND we ha.ve followed the ap .

- _proach taken by most real-time Ianguage ‘processing systéms in embedding con- . -
.. siderable semantic information in the syntax of ‘the language. Such ‘s language - .

- . 'specifieation is typically called & “semantié grammar.” For example;’ words like -
- NAUTILUS and DISPLACEMENT :are not grouped together into & single :
-~ (NOUN) category. Rather, 'NAUTILUS s treated as-a- {SHIP-NAME) :and
DISPLACEMENT as'an (ATTRIBUTE) Sumlar]y, very ‘specific sentence pat-

ACM ‘Transactions on Detabase Syslems Vol. 3, No. 2 “June 1978.

110 * @ G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, &nd J. Slocur,

* What kind of mformatlon do you know sbout
- X there a doctor on board the Biddle
. Display all the American cruisers in the North At.lant:c :
'What is the name and location of the earrier nearest to New York -
" “What is the commanding officer’s name
.. Who commands the Kenpedy
What is the Kennedy’s beam -~
When will the Los Angeles reach Norfolk
Tell me when Taru is scheduled to leave port
Where is she scheduled to go
When will Los Angeles srrive in its home port

When will the Sturgeon arrive on station
What aircraft units are embarked on the Conabellﬂtlon

To which task organization is Knox assigned
Where is the Sellers
. Where is Luanda
What is the next port of call of the Santa Inez
"When will Tarifa get underway
__Wh:ch convoy escorts bave inoperative sonar Bystems
When will they be repaired
- Which U.8. Navy DDGs have casreps involving radar systems
What Soviet ship has hull number 855
To what class does the Soviet ship Minsk belong
. What class does the Whale belong to?
What is the normal steaming time for the Wainwright from Gibraltar to Norfolk
What American ships are carrying vanadium ore
How far is it to Norfolk
How far away is Norfolk o
. ‘How maby nautical miles is it to Notrfolk
" How many miles is it to Norfolk from here -
. How close is the Baton Rouge to Norfolk
- How far is the Adams from the Aspro
What is the distance from Gibraltar to Norfolk
What is the nearest oiler
-What is the nearest oiler to the Constellation
.How far is it from Naples to 23-00N, 45-00W
What is the distance from the Kitty Hawk to Naples
"How long would it take the Independence to reach 35-00N, 20-00W
How long is the Philadelphia
How long would it take the Aspro to join Kennedy
What is the nearest ship to Naples with a doctor on board
. What is the nearest USN ship to the Enterprise with an operational air search radar
. What is known about that ship -
- How many merchant ships are within 400 miles of the Hepbum :
‘What are their identities and laat reported locations
"What cargo does the Pecos have - :
‘Who is CTG 673 - .
‘What are the length, wxdth and draft of t.he thty Hawk
" To whom'is the Harry E. Yarnell attached o
What type ships are in the Knox class . o
.- Where are the Charles F. Adams cla.sa ahlpa B
_ Whnt are’ thelr current asmgnments .

Flg 1. Ssmple of s.cceptable inputs to LADDER
- Figure 1 ia eontinued on the next. page

ACM Trnn.sacuom on Dat.nhue Syatérs, Vol. 3, No. 2, June 1978,

Davsloping a Natural Lénguage interface to Complex Data ~ +~ 11

What subs in the South Atlantic are within 1000 miles of the Sunfish
"What is the Kittyhawk doing .
How many USN asw capable slnps are in the Med
* Where are they -
What are their cirrent asmgnmenta and fuel ¢ ates
- What ships are NOT at combat readiness rating C1
.- ‘When ‘will Reeves achieve rendiness rating C1
. Why is Hoel at readiness rating G2~ -+ .-
- 'When will the sonar be repaired on'the Sterett
~ What ships are carrying cargo for the United States
‘Where are they going
. What are they carrying
When will they arrive
Where is Gridley bound
Which cruisers have less than 50 per cent fuel on board
Where are all the merchant ships
When will the Kitty Hawk's radar be up?
What ships are in the Los Angelea class
‘What command does Adm. William have
Under whose epcon is the Dale
Show me where the Kennedy is!
What ship has hull number 1487
What is the next port of eall for the South Carolina?
Are doctors embarked in the Kawishiwi
- What kind of cargo does the ¥Francis McGraw have?
: What air group is embarked in the Constellation?
_What do you know about the employment schedule of the Lang?
Which systems are down on the Kitty Hawk
What ships in the Med have doctors embarked?
How many ships carrying oil are within 340 miles of Mayport?
What sub contacts are within 300 miles of the Enterprise?
List the current position and heading of the US Navy ships in the Mediterranean every 4 hours
What is the atatus of the Enterprise’s air search radar?
" Where is convoy NL53 going
What convoy is the Transgermams. in
" How many embarked units are in Constellation
What ships are in British ports
What T.S. ships are within 500 miles of Wilmington?

- . What U.8, ships faster than the Gridley are in Norfolk

‘What is the fastest ship in the Mediterranean Sea
How close is that ship to Naples?
What is its home port
-, Print the American cruisers’ current pomtlona and states of readiness!
“How ia the Los Angeles powered _
- 'What ship having a normal cruising apeed greaber then 30 knots is the largest
Display the1ast reported position of sll shipa that are in the North Atlantic
" When did the Endeavour depart the port of New York " -
 Whast natlonaht.y is the ship with mt,ernatlonnl radxo ca!l sngn UAID

' What ports are in the database

- 'What merchant ships are enroite to New York nnd w1thm 500 mliea of the Saratoga
- To what country does t.he fasbest eub belong? % RN .

Fxg 1 (ccntmued from prevzoua page) : :
: ACM ’I‘ramnchons on Daubaae Syxl,erna. Vol 3 No 2, June 1978.

112 - G.G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

1 What is the length of the Constellation ,
" PARSED! _
(LENGTH 1072 feet)
2. of the ‘Nautilus - - - '
. TRYING ELLIPSIS: WHAT IS THE LENGTH OF THE NAUTIL‘US
_* (LENGTH 319 feet) _ o
- 3- displacement i : BT
 TRYING ELLIPSIS: WHAT I8 THE DISPLACEMENT OF THE NAUTILUS
 (BTANDARD-DISPLACEMENT 4040 tons) _

4- length of the fastest’ Amierican Nuclear sub . - : Co
. TRYING ELLIPSIS: WHAT IS THE LENGTH OF 'I‘HE FASTEST AMERICAN

NUCLEAR SUB
(LENGTH 360 feet NAM LOS ANGELES SPEED 30.0 knots)

5. Who commands the Constallation
S8PELLING-}CONSTELLATION

PARSED!
(COMMANDER CAPT J. ELLISON)

€~ Who commands JFEK
TRYING ELLIPSIS: ELLIPSIS HAS FAILED
_THE PARSER DOES NOT EXPECT THE WORD “JFK' TO FOLLOW

“WHO COMMANDS"
OPTIONS FOR NEXT WORD OR META-SYMBOL ARE:

_(SHIP-NANIE)
7- Define JFK to be like Kennedy .

PARSED!

« {JFK iz now & aynonym for IGENNEDY which'is a shlp name)

8 Who commands JFK ' (t.hst. is, retry interaction 6)

PARBED!
(COMMANDER CAFT P. MOFFETT)

9- info JFK country

' PRYING ELLIPSIS: ELLIPSIS HAS FAILED

«» {error message omitted)

10- Define “‘Info JFK country’’ to be like ““what is the country of JFK”
PARSED!

" i1 Info JFK country =
 PARSED! . . .
(NATION USA)

.12 Tnfo fastest Amencan nuclesr subma.rme speed

. PARSED! < 7
- (SPEED 30.0 knozs NAM LOS ANGELES)

L 13 Nautilus

©TRYIRG ELLIPSIS INFO NAUTILUS SPEED Tl
8 (SPEED 22 knot&) S : '
' Flg 2, Sunphﬁed interactions w:th LADDER

4 ACM 'mnmﬁom on Dambau Systems, Vol. 3, No. 2, June 1978,

Deve'l'opin'g a Nafu'ra! Lﬁnéuage"tn{eﬂaéa to Complex Data . 113

teriis such as
" WHAT IS THE (ATTRIBUTE) oF (SHIP}

) ' "are typically used instead of more general pattems such as

(NOUN-PHRASE) (VERB -PHRASE)

' For each syntactic pattern, the language deﬁner supphes an expressmn for com- -

puting the interpretation of instances of the pattern. INLAND’s expressions for

_Bentence-level patterns usually invoke the IDA component to retrieve information

from the distributed database.

This method of language specification is easy to understand, easy to use, and,
when pursued systematically, allows languages of broad coverage to be defined, as
indicated in Figure 1.

To provide a more detailed view of how LIFER has been employed to produce
an efficient and effective language processing system, let us examine in detail a
highly simplified fragment of the INLAND language specification.

3.2 INLAND's Function in Brief
The central notions of how INLAND is constructed may be seen by considering

‘the problem of providing English access to two files of the form

' SHIP: (NAM CLASS COMMANDER HOME-PORT HULL;F 1.0C) :
CLASS: (CLASSNAME TYPE NATION FUEL LENGTH BEAM DRAFT SPEED)

Tlocated on different coinputers'. 1DA and FAM togeth’er provide levels of insulation
from the real situation, so that INLAND need consider only the problem of speci-

fying what subset of the overall database should be queried and what field values
within that subset should be returned. IDA will dynamically plan the appropriate
joins on the files in the database, and FAM will carry them out. {In the actual

'LADDER system, the intertwining of multiple files is much more complex than

in the current example.)

3.3 A Miniature Language Specification

(1) Productions. The grammar rules may be viewed as productions of the form
- metasymbol = paltern | expression,

where metasymbol is & metasymbol of the application language, pattern is a list of
" symbols and metasymbols in the language, and expression is & Lisp expression whose
value, when computed, is assigned as the value of the metasymbol.? The symbel
- {L.T.G) (LIFER top grammar) is the highest-level metasymbol of the grammar.
‘The system’s answer to complete inputs that match a pattern mstantxatmg (L. T G)

w111 be the result of evaluatmg the assocla.ted L‘.{SP express:on
For exa.mple, the mput : e

PRIN'I‘ THE LENGTH OF THE KENNEDY S

3 In sddmon to computmg valuea for accepbabie apphcahona of the producnon the expresslon
may also be uséd to reject some applications on aemantlc grounda Re]ectlon is slgnsled if the
“expression returns *ERROR?® as its value. . :

ACM 'I‘mchtwm. on Database Syutem. Vol 3 No. 2 June 1978

114 . G. G. Hendrix, E. D. Sacerdoti, D. .Saga]owicz', and J. Slocum

is an instantiation of the sentence-level production _
- (LT.G) = (PRESENT) THE (ATTRIBUTE) OF (SHIP) |
) o o (IDA (APPEND {S8HIP) (ATTRIBUTE))).
'The input matches the pﬂ.ttem L ‘

- (PRESENT) THE (ATTRIBUTE) OF (SHIP), L
- where (PRESENT) matches PRINT, (ATTRIBUTE) matches LENGTH, and
(SHIP) matches the phrase THE KENNEDY. If the semantjc values for (SHIP)
and (ATTRIBUTE), compiited by means described shortly, are ((NAM EQ

JOHN#F.KENNEDY)) and ((? LENGTH)), respectively, then the answer to the
.question is computed from the expression portion of the production as follows:

(IDA (APPEND (SHIP) (ATTRIBUTE}))
= (IDA (APPEND *((NAM EQ JOHN JE. EKENNEDY))
'(? LENGTH))) : .
- = (IDA "((NAM EQ JOHNJF KENNEDY)(? LENGTH))).

(APPEND is & Lise function that appends any number of lists together to form a
. larger list.} At this point, the IDA component is called with the argument

~((NAM EQ JOHN{#F.KENNEDY) (? LENGTH))
and the length of the Kennedy is retrieved as _ _
~ (IDA’((NAM EQ JOHNfF.KENNEDY) (? LENGTH)))
| =5 (LENGTH 1072 feet). -

- . In LIFER, 'pi'dducti'ohs like the dne'ju'ét shown are d.e'ﬁnet'i int e’racﬁvely'by’ is'suihg
commands such as
PDLT.G)

.- ~((PRESENT) THE'(ATTR.IBU’.I‘E) OF (BHIP))
~ {IDA (APPEND (SHIP) (ATTRIBUTE)))],

where PD is the production definition funetion.
(2) Lezical Eniries. Metasymbols, such as (PRESENT) and (ATTRIBUTE),
are often associated with individual words or fixed phrases, which are maintained
- in LIFER’s lexicons. The LIFER function MS {(make set) is used to define a set of
words and phrases that may match g particular metasymbol. For example, the
- call ‘
~ CMSKATTRIB) ~ . o o
C .- (CLASS COMMANDER FUEL TYPE NATION LENGTE =
“BEAM DRAFT (LOCATION - LOC) (POSITION . LOC)
- (NAME . NAM) (COUNTRY .NATION) - -~ = "= . .
" (NATIONALITY . NATION){({HOME PORT) . HOME-PORT) _
-+ ((POWER TYPE) .'FUEL)((HULL'N_UI\IBER) .'_-_HUL_LI))] L e

s used to define 16 words and fixed phrases that may match the symbol (ATTRIB)
(which s used subsequently in defining (ATTRIBUTE)). . - . .
"~ After this call to MS, (ATTRIB) will match the words CLASS, COMMANDER,

- FUEL, TYPE, NATION, LENGTH, BEAM, ‘and DRAFT. For these words,

' (ATTRIB) will take ss its semantic value the word itself. (ATTRIB) will also-
ACM Transactiona on Database Systems, Vol. 3, No. 2, June 1978, o L Co)

Developing & Natural i.anguage Interface tb Complex Data . _' 115

- mateh the word LOCATION, but for this mateh the value of (ATTRIB) will be
" LOC. . . Similarly, - (ATTRIB) matches POSITION, NAME, COUNTRY, and
. NATIONALITY, but takes the values LOC, NAM, NATION and NATION
- réspectively. (ATTRIB) also matehes the two-word phrase HOME PORT, taking
- HOME-PORT ss its value. For the phruse POWER TYPE, the value is FUEL:
.- for HULL NUMBER it is HULL#. (It is assumed that the codes HOME-PORT,
“HULL#, LOC, and NAM are peeuliar to the database and will not cecur in natural
" language inputs.)
(3) Subgrammars. Metasymbols may also be defined by production rules. For
_exa.mple the call
"PDEATTRIBUTE)

{ATTRIB))
(LIST (LIST ‘7 (ATTRIB})))]

indicates that an {ATTRIBUTE) may be matched by an (ATTRIB), viz.:
(ATTRIBUTE) = (ATTRIB).

For this production, the associated expression is
{(LIST (LIST '? (ATTRIB))).

Since the word LENGTH matches (ATTRIB) and causes (ATTRIB) to take
LENGTH as its value, the rule above indicates that LENGTH is an instantiation
:of (ATTRIBUTE) That is,

{ATTRIBUTE) = (ATTRIB) =+ LENGTH.) :
The value assigned to (ATTRIBUTE) when it matches LENGTH is computed
by the production’s expression as follows:

(LIST (LIST ’? (ATTRIB)))
= (LIST (LIST ’? 'LENGTH))
= (LIST *(? LENGTH))
=5 '((? LENGTH)).

This fragment of an IDA command requests the value of the LENGTH field.
It was used above in answering the question “What is the length of the Kennedy?”

To recognize inputs such as
- PRINT THE LENGTH BEAM AND DRAFT OF THE KENNEDY,

. the ¢oncept of an (ATTRIBUTE) may be generahzed‘ by addmg two new produc-
tions as follows _ .
PD[(ATTRIBU’I‘E)

| (ATTRIB) AND (A'I‘TRIBUTE)) o
(CONS (ms'r '? (ATTRIB) (A'I‘I‘RIBUTE))]

A The use of t.wu aymbois (A‘I"I‘RIB) nnd {ATTRIBUTE} could be avmded by lemng L

' (ATTRIBUTE) directly match lexical items and by introducing ‘such productions as _
{ATTRIBUTE) = (ATTRIBUTE) AND {ATTRIBUTE). Unfortunately, the collapae of the - .
- ‘two Bymbols into one results in both smbxgulty and left recursion. LIFER recognizes only one =
-of the ambiguous interpretations. Left Yecursioh can be tolétsted by apecial mechanises in . -

LIFER’s top-down left-to-right parser, but only at a considerable increase in parsing ti_me.
.ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978,

146 - G.G.Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

- PD{(ATTRIBUTE) .
(ATTRIB) (ATTRIBUTE))
“(CONS (LIST '? (A'I'TRIB)) (ATTRIBUTE))]
(CONS is a Lisp funiction that adds an element {in thlS case the' hst whose ﬁrst
" -élement is ? and whose second element is the value of {ATTRIB)) to the front of &
. ‘list (in this ease the value of (ATTRIBUTE)).) These productions allow the phrase
TENGTH BEAM AND DRAFT to be accounted for in terms of the syntax free
: of Figure 3. .
- (4) Complete Analysis of a S;mple Qucry The examples above have indicated
how the pattern

(PRESENT) THE (ATTRIBUTE) OF (SHIP)

may be defined as a top-level input and how the metasymbol (ATTRIBUTE}
may be defined. To complete the analysis of the top-level patiern, consider now
the following definitions for (PRESENT) and (SHIP).
To define (PRESENT), the function MS may be used:
MSKPRESENT)
(PRINT LIST SHOW GIVE ((GIVE ME) . PRINT)
{(WHAT IS) . PRINT) ((WHAT ARE) . PRINT}H).
. ‘This call allows (PRESENT) to match the words PRINT, LIST, SHOW, and
“GIVE and the phrases GIVE ME, WHAT IS, and WHAT ARE. The values

. -assigned to (PRESENT), which might be used, for example, to direct output to

the terminal or to a graphies subsystem, are not of interest here.
A (SHIP) may be designated in any one of a number of ways, the simplest

being by name. The call
PD{{SHIFP)
({(SHIP-NAME))
(LIST (LIST ‘NAM 'EQ (SHIP-NAME}))}
causes (SHIP) to match a (SHIP-NAME) and to take as its value an IDA com-
mand fragment restricting the value of the NAM field to be EQ (equal) to the
‘particular name. (SHIP-NAME) may be defined by MS:

MS[(BHIP-NAME)
- (CONSTELLATION NAUTILUS

LENGTH BEAM AND DRAFT
" (ATTRIB) (ATTRIB) (ATTRIBY
' : ' EAM U veoraFT
5 (ATTRIBUTE)
V"'((? DNAFTH
<A~rrmaurs>

v-tlvaEml l?DRAFTH _' R

(ATTRIBUTE} el N
: V-Ii? LENGTHII?BEAHH? DHAFT‘" o

) Flg 3. {A’I"I‘RIBUTE) syntax tree
ACM 'T‘rma.acuom on Database Synlema, Vol. 3, No. 2, June 1978.

: Developing & Natural Language interface to Complex Data . 117

(KENNEDY JOHN#F.KENNEDY) . '
(JOEN F . KENNEDY) JOHNFF KENNEDY) ete.)}

o For an actual data.ba.se ‘this list i is,’ of course much more exten:ﬂve To allow the
- optional use of “the” before the name of a ship, a supplementary productxon for
_ (SHIP) may be deﬁned :

~ PDYSHIP)
(TEE (SHIF}))
- {SHIP}).
"With these definitions, LIFER has been given all the information needed to
process a small class of sentence-level inputs. For example, the complete analysis

of the input
WHAT IS THE LENGTH OF THE KENNEDY

"is shown in the syntax tree of Figure 4. Note how the query given to IDA was
generated by combining fragments from (SHIP) and (ATTRIBUTE).

From the definitions for complete inputs defined above, LIFER can infer how to

process incomplete inputs in context. For example, having just parsed the input

‘WHAT I8 THE LENGTH OF THE KENNEDY,

_'.the system may, without additional knowledge, also handle the following sequence
of incomplete inputs:

BEAM :

{i.e. what is the beam of the Kennedy)
HOME PORT AND CLASS

(i.e. what ia the home port and class of the Kennedy)
NAUTILUB

{i.e. what is the home port and class of the Nautilus).

The method by which these incomplete inputs are processed is discussed below.
Other inputs that the rules defined thus far will accept include:

GIVE ME THE POSITION OF THE NAUTILGS
PRINT THE HULL NUMBER AND POWER TYPE OF CONSTELLATION
‘SHOW THE COMMANDER COUNTRY AND TYPE OF THE JOHN F. KENNEDY.

WHAT IS5 THE LENGTH OF THE KENNEDY

"(PRESENT) (ATTRIB)

1 SH[P—NAME Yo
V- LENGT" V = JOHN#F, KENNEDV
3 [ATTRIBUTE } (SHIPY

V= - ({7 LEHG‘!‘HH‘ (SHlP) V- HHAM EG .ﬂHN'F KENNEDYH :

V l(ﬁm EQ ”HN#F KENNED\'H

4 L.T G) o
Swe unA muua Eo mnw xeuuenvn I? LENG'I’H")
TN = ILENGTH 1072 feit)

Fig. 4. Syntax treé for: s complete queatmn
ACM Tranzactions on Database Systems, Vol 3, No. 2, June 1978.

118 . G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Stocum

/3.4 Some Generalizations _ o

“The tiny fragment of language defined above already ‘allows Enghsh's)ccéss to
. most of the fields in the'example database, given the name of a ship. Tms fra.gment

- may be expanded easily along many d1mensmns

A1) Generalzzmg (SHIP). Genera.hzmg (SHIP) prowdes one of the most fnutful

‘expansions. Naval ships are 'divided into major sets called classes. For example,
" the Constellation is in- the Kitty Hawk class. Sometimes users will wish to ask
- questions about all ships of a‘particular class; for example, HOW LONG ARE
KITTY HAWK CLASS SHIPS. To do this, the language may be extended by the

call

PD[{(ERIP)
({CLASS) CLASS SHIP)
(LIST (LIST 'CLASS 'EQ (CLASS)))],

where (CLASS) is defined to mateh class names and takes their database desigha—
tions as values.® After this extension, the system will accept such inputs as

PRINT THE LENGTH OF KITTY HAWK CLASS SHIPS.

"~ A (SHIP) might also match a general category such as CARRIERS, CRUISERS,

or MERCHANT SHIPS. Such categories may ususlly be defined in terms of the
TYPE field in the database. For example, CARRIERS are of type CVA, CVAN,
or CVS. OILERS are AO or AOR. {CATEGORY') might be defined by

MSB[(CATEGORY) "
((CARRIER ((TYPE EQ cvy
OR (TYPE EQ CVAN)
- OR (TYPE EQ CVS)))
(OILER ((TYPE EQ AQ)
OR (TYFE EQ AOR})))
etc.)).

| A new production for (SHIP) may then be added such as

PD{[(SHIP)
((CATEGORY))
{LIST {CATEGORY))).

) With this production, the command

PRINT THE LOCATION OF CARRIERS
will be accepted.

Modifiers such as AMERICAN, NUCLEAR sind CONVENTIONAL are also
_ very useful; for example

‘MS{MOD) '
: ((AMERICAN (NATION EQ US))

. %To slmpllfy the lsnguage deﬁmtzon a language bmlder may supply LIFER witha preproces-]
-’ 'sor that does certain kinds of morphological transformations. For example, plural nouns such -
- a8 SHIPS may be converted to the singular SHIP pIua the pluralmng suﬂix -S Or, a8 is as- -
:'sumed here, the suffix may aimply be discarded. - .. 0 0 L _

: ACM Transactions on ‘Database Syxte:m. Vol. 3, No. 2, June’ 19’?8

Devéloping a Natura! Language Interface to Complex Data - 119

(N UCLEAR (FUEL EQ NUCLEAR))

. {CONVENTIONAL . (FUEL EQ DIESEL))
oo etel)].

' By adchng :

PD[(SHIP)

- (MOD) (smr'}) -
* (CONS (MOD) (SHIP))], -

the system will then process inputs such as
GIVEME THE POSITION OF THE AMERICAN NUCLEAR CARRIERS

‘Superlative modifiers, such as FASTEST and SHORTEST, may be defined:

- MS|(MOD)

((FASTEST . (* MAX SPEED))
{(SLOWEST . (* MIN SPEED))
{(LONGEST . {* MAX LENGTH))
ete.)]

Then the system. will accept inputs such as
GIVE ME THE NAME AND LOCATION OF THE FASTEST AMERICAN OILERS.

This would franslate into the IDA eall

(IDA '({* MAX SPEED) (NATION EQ US)
((TYPE EQ AO) OR (TYPE EQ AOR))
(? NAM) (? LOC))).

D) Geﬁéralizing {LT.G). Néﬁ' sentence-level prodijctions, defined in terms of
the more primitive metasymbols already described to LIFER, also greatly extend
“the range of language accepted. For example,

PDUL.T.G)
((PRESENT) (SHIP))
{IDA (CONS '{? NAM) (SHIP})]

allows inputs such as

‘WHAT ARE THE FASTEST NUCLEAR SUBMARINES
- PRINT THE CARRIERS

“and
/GIVE ME THE KITTY HAWK CLASS SHIPS
 As another example,

PDULT.G) . - -
(WHO COMMANDS THE (SHIP)) :
~'(IDA (CONS *(? COMMANDER) (SHIP)))]

_ 'aliowsthe input Sl
WHO COMMAN DS THE KENNEDY

(3) Cakulated Ans—wers Sometunes a database does not contam the mforma.tmn

. needed to answera questlon directly, but nevertheless contains information that may
' - ACM Transactionson Database Syatem.s, Vol. 3, No. 2, June 1978,

120 + G.G.Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Siocum

‘be used as input to a procedure that can compute the answer from more primitive
data. For example, the distance between two ships is not directly available in the
_example database, although position data is. Suppose the function STEAMING-
"TIME can take speed and position information returned by IDA and calculate the
. ‘time for the first ship to travel to the pomtlon of the second ship. Then, after de-

o fining (SHIP2) like (SHIP),

PDI(SHIP2)
((SHIP))
" {BHIP}],

a new top-level productlon may be deﬁned as follows

PDHL.T.G)
(HOW MANY HOURS IS (SHIP) FROM (SHIP2))
{(STEAMING-TIME
(IDA (APPEND *((? SPEED}(? LOC)) (SHIP))}
{IDA (CONS '(? LOC) (SHIP2))))].

This production allows such queries as
' BOW MANY HOURS IS KENNEDY FROM THE CONSTELLATION.

3.6 Extending the Lexicon with Predicates

'In certain instances, it is impractical to use the MS function to explicitly list all
- of the symbols that might match some metasymbol. For example, if the metasym-
- bol (NUMBER}) is to match any number, then MS is of little value. For such cases,
. LIFER allows 2 metasymbol to be associated with s predicate function. The
metasymbol will match any symbol for which the predicate returns a non-NIL
value. When such a mateh oceurs, the metasymbol will take as its semantic value
the response returned by the application of the predicate.
To define a metasymbol in terms of a predicate, the function MP (make predi-
-eate) is used. For example,

MP[{(NUMBER} NUMBERP]

defines (NUMBER) to match any symbol for which Lisp predicate function
. NUMBERP returns a non-NIL value. When applied to numbers, NUMBERP
returns the number itself. When applied to anything else, it returns NIL.

" As the following questions indicate, (NUMBER) has many uses in the example

-database:

WHAT CARRIERS HAVE LENGTHS GREATER THAN 1000 FEET
HOW FAR IS CONSTELLATION FROM 0 DEGREES NORTH 6 DEGREES EAST

WHAT SHIPS ARE WITHIN 100 MILES OF KENNEDY

- “As the size of the lexicon becomes large, the predlcs,te feature may be used to

. push certain large classes of words out of the natural language system and into the

databsase itself. For example, (SHIP»NAME) ‘could be defined in terms of a predi-

- .cate that accesseés the NAM field of the database. (This would slow the parsing
operatmn, of course, and spélling correction’ couId not be performed easﬂy)
" ACM Transactions on Database Systéms, Vol. 3, No. 2, June 1978.

Developing a Natural Lénguage Interface to Complex Daté . 12'1'

3 6 Acceptmg Metalanguage Inputs

" (1) Interrogating the Language System. Tt is poss:ble to define mput patterns that
make reference to the LIFER package itself. For example, LIFER contains a
- function called SYMBOL.INFO which t kes a metagymbol as its argument and

- prints lexical items, patterns, and predicates that may be used to match the symbol.
" 'The interface builder may incorporate this function in response expressions as in

'PD [(L T.G) T :
(HOW IS (SYMBOL} USED) :
(BYMBOL.INFO (SYMBOL})!

After this call to PD,* a user might ask the metaquestion
HOW IS (SHIP) USED

and receive the reply

(SHIP) MAY BE ANY SEQUENCE OF WORDS FOLLOWING
ONE OF THE PATTERNS:
(SHIP) = (SHIP-NAME)
THE (SHIP)
(CLASS) CLASS SHIP
(MOD) (SHIP).

- Using other system interrogation funetions, it is possible to provide in an appli-
cation language for such inputs as

PRINT THE GRAMMAR ON FILE APP.GRAM S
~DISPLAY THE PRODUCTIONS EXPANDING (SHIP) - .

SHOW LEXICAL ENTRIES FOR CATEGORY (SHIP-NAME)

WHAT PREDICATE DEFINES (NUMBER)

DRAW THE SYNTAX TREE FOR THE LAST INPUT

-‘HOW WOULD YOU PARSE “HOW FAST IS KENNEDY”

IN WHAT PRODUCTIONS DOES (S8HIF) APPEAR ON THE RIGHT.

- Metaquestions requesting general information about the system, such as

WHAT EIND OF INFORMATION DO YOU KNOW ABOUT
"~ WHAT’S IN THE DATABASE
HELP,

may easily be included in the application language. Top-level response expressions
for such inputs may simply return canned explanation texts. With more sophisti-
- cation, the expressions might sccess a semantic schema of the database to help

" formulate an up-to-date reply.

(2) Personalizing the Application Language. LIFER contmns & function called
SYNONYM that allows a new word to be defined as having the same meaning as
2 mode! word that is already known to LIFER. Using this function, an interface
~ builder may mtroduce structures mto the apphcatmn language that allow u,Sers to

S VAR apeclﬁed more fully in {10], the metasymbol (SYMBOL} msy lmelf be deﬁned by funct:on _
. MP, using a predicate that sees whether its argument is ineluded in the list of defined meta- .
* aymbols. Being so defined, (BYMBOL) can even mstch melf 80 t.hnt the mput. HOW IS (SYM :

BOL) USED msy be paraed and answered. . .-

ACM "I‘rnmacuom on Databue Syntems. Vol 3 No 2 June 1978

- 122 : G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Siocum

define their own synonyms at run time. In particular,

PD KL.T.G)
_(DEFINE (NEW-WORD) LIKE (OLD-WORD))
(SYNONYM (NEW-WORD) (OLD-WORD))]

- allows the parser to aceept inputs such as
_ DEFINE JFK LIKE KENNEDY.
. The symbols (NEW-WORD) and (OLD-W:OIRD) are defined by predicates that

will mateh any word. SYNONYM works by copying lexieal information from

{OLD-WORD) to (NEW-WORD).
LIFER also contains a function called PARAPHRASE that s.l]ows a new se-

quence of words to be defined as having the same meaning as a model sequence
of words that the parser already accepts as a complete sentence. Using function
PARAPHRASE in a response expression, the interface buﬂder may extend the
grammar by

PD{L.T.G} '
(LET (NEW-SEQUENCE) BE A PARAPHRASE OF (OLD-SENTENCE})

(PARAPHRASE (NEW-SEQUENCE) (OLD-SENTENCE))]

- where (NEW-SEQUENCE) matches any sequence of words and returns & list of
the matched words as its value, and (OLD-SENTENCE) matches any sequence
of words currently accepted as a sentence in the application language.

This new rule allows computer-naive users to personalize the syntactic con-
structions understood by the system at run time. For example, the user might say
LET “REPORT ON KENNEDY"” BE A PARAPHRASE OF
“PRINT THE LOCATION AND COMMANDER OF KENNEDY".
The expression associated with the top-level production that matches this input
sentence calls upon the paraphraser. Given the language definition defined above,
LIFER then automatically adds the new production

. {L.7.G) = REPORT ON (SHIP)

to the system, with an appropriate resﬁonse expression. This new, user-defined
" production will allow the system to accept such new inputs as
'REPORT ON THE KENNEDY
- REPORT ON OILERS
REPORT ON THE FASTEST AMERICAN SUBMARINES.

LIFER’s methods for learning paraphrases are discussed below.

- 3.7 Extendibility L B
“The precedmg subsectmns have mdlcated how a few sunple notions may be drawn o

“together to ¢reate a small interface. But can the same notions be used to create

- much ‘more sophisticated ‘systems? Until our recent expenence we would have -
- joined others in answering, ‘‘Not likely.” Long before reachmg an acceptable level

- of performance, previous language systems, including our own, have generally

‘grown so complex and unwieldy that further extension has been stlﬂod
. ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978, .

_ Daveloping & Natural Language Interface to Complex Data <123

In designing LIFER, much attention has been given to the problem of supplying
~ interface builders with an environment supporting the incremental development of
. relatively broad interfaces. All LIFER functions are interactive. Parsing -and

_language specification tasks may be in ermixed, allowing interface builders to
_‘operite in a rapid, extend-and-test mode. Tranmtxon trees, which are an efficient
representation for the parser to work with, are automatically produced from produe-
tions, which we have found to be an efficient representation for interface builders
to work with. The system contains a grammar editor and numerous special func-
tions for answering questions about the structure of the language definition and for
tracing and debugging a grammar. Details concerning these and other features of
LIFER are specified more fully in the LIFER Manual [10].

We believe that the support features of LIFER have enabled us to give the IN-
LAND language broader coverage than previous systems. Unfortunately, we know
of no adequate measure of “breadth of coverage.” However, some feeling for the
types of inputs accepted by LADDER may be gained by considering a sample of
acceptable inputs, such as that shown in Figure 1.

4. THE TRANSITION TREE PARSER

The LIFER parser is a top-down, left-to-right parser based on a simplification of
* the augmented transition network (ATN) system developed by Woods [23]. Rather

- than use true ATNs, LIFER works with transition trees. If (L.T.G) is defined by
the productions

{LT.G) = (PRESENT) THE (ATTRIBUTE) OF (SHIP) | el
= (PRESENT) (SHIP'S) (ATTRIBUTE) | e2
=+ HOW MANY (SHIP) ARE THERE | e3
= HOW MANY (SHIP) ARE THERE WITH (PROPERTY } | e4,

then the transition (not syntax) tree of Figure 5 would be constructed for use by
the parser,

Starting at the box labeled (L.T.G.), the parser attempts {nondeterministically)

to move toward the response expressions on the right. At each step, the parser may

" move to the right on a branch if the left part of the remaining portion of the input

can be matched by the symbol on the branch. Literal words on a branch can be

matehed only by themselves, A metasymbol, such as (PRESENT), may be matched

by a lexical item in the associated set created by MS. Or it may be matehed by the

predzce.te if any, that has been defined for the metasymbol. Or it may be matched

/ THE-s(ATTRIBUTE }—#OF —&{ SHIP)——”@

- 4(PRESENT) o - o __ .
/ S -\(smb"S)—é(A'rmeuTE)' o

(LT.G) .

\l-iérW—-h-M'ANv—HsmP}—sAnE—-vTHEné I UL P A
S S S o w:m—--wnopeh'rv)-—@
Flg 5. 'I’ranmtlon tree S R
. ACM Transactions on Database Systema. Vol 3, No 2, June 1978,

124 » G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

by successfully transversing some branch of the transition tree that encodes the
- productions expanding the metasymbol.
At the top level, if the parser reaches a response expression as a result of ac-
counting for the last word of an input, then a top-level mateh for the input has
‘been found and the response expression is evaluated to compute a response,

5. IMPLEMENTATION OF SPEGIAL LIFER FEATURES
"'This section presents an overview of LIFER’s implementation of the spelling cor-
rector, elliptical processor, and paraphraser.

5.1 Implementation of Spelling Correction

Each time LIFER’s left-to-right, ATN parser discovers that it can no longer follow
transitions along the current path, it records the failure on a failpoint list. Each
entry on this list indicates the state of the system when the failure occurred (i.e.
the position in the transition net and the values of various stacks and registers)
‘and the current position in the input atring. Local ambiguities and false paths make
it quite normal for many faiipoints to be noted even when a perfectly acceptable
input is processed. '

If a complete parse is found for an input, the failpoints are ignored. But if an

~ input cannot be parsed, the list of failpoints is used by the spelling eorrector, which
geleets those failpoints associated with the rightmost position in the input at which
failpoints were recorded. It is assumed that failpoints oceurring to the left were
not caused by spelling errors, since some transitions using the words at those posi-
tions must have been successiul for there to be failpoints to their right.?

The spelling corrector further restricts the rightmost failpoints by looking for
cases in which a rightmost failpoint G is dominated by another rightmost failpoint
F. G is dominated by Fif G is a failpoint at the beginning of a subordinate transi-
tion tree that was reached in an attempt to expand F.

Working with the rightmost dominating failpoints, the spelling corrector finds all
categories of words that would be valid at the point where the suspected misspell-
ing occurred. This typically requires an exploration of subgrammars. Using the

- InTERLISP spelling corrector, the word of the input string associated with the right-
- most failpoints is compared with the words of the categories just found. If the
misspelled word is sufficiently similar to any of these lexical items, the closest
match is substituted. Failpoints associated with lexical eategories that include the
new word are then sequentially restarted until one leads to a successful parse. (This
may produce more spelling corrections further to the right.) If all restarts with the
- new word fail, other close lexical items are substituted for the misspelled word.
~1f these also fail, LIFER prints an error message

. Thla heunstlc can cause LIFER to fml to ﬁnd and correct certain errors. For example if the

‘user types CRAFT for DRAFT in WHAT DRAFT DOES THE ROARK HAVE, the spelling

© . error will not be caught since a sentence such as WHAT CRAFT ARE NEAR ROARK would
account for the initial sequence WHAT CRAFT Thm i tmded off agamst faster processmg
for the majority of spelling errors. : o . .

ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978,

Developing & Natura! Lenguage Interface to Complex Data . 125

5.2 Implementation of Ellipsis

LIFER’s mechanism for tredting elliptical inputs presumes that the application’
- language is defined by a semantic grammar so that a considerable amount of se-
"mantic information is encoded in the sy1 tactic categories. Thus similar syntactic
_constructions are expected to be similar semantically. LIFER’s treatment of
-ellipsis is based on this notion of similarity. During elliptical processing, LIFER is
prepared to accept any string of words that is syntactically analogous to any con:
" tiguous substring of words in the last input. (If the last input was elliptical, its
expansion into a complete sentence is used.)
LIFER’s concept of analogy appeals to the syntax tree of the last input that
was successfully analyzed by the system. For any contiguous substring of words
-in the last input, an “analogy pattern” may be defined by an abstraction process
that works backward through the old syntax tree from the words of the substring
“toward the root. Whenever the syntax tree shows a portion of the substring to be 2
complete expansion of a syntactic category, the category name is substituted for
that portion. The analogy pattern is the final result after all such substitutions.
For example, consider how an analogy pattern may be found for the substring

~ OF SBANTA INEZ,

asing the syntax tree shown in Figure § for a previous input, WHAT IS THE
. LENGTH OF SANTA INEZ.

" Note that the syntax tree used in Figure 6 refleets production rules similar to
those defined previously, but introduces a new metasymbol, (ITEM}, to add more
‘substance to the discussion. Since the SANTA INEZ portion of the substring is a
complete expansion of (SHIP-NAME), the substring is rewritten as OF (SHIP-
NAME). Similarly, since (SHIP) expands to (SHIP-NAME), the substring is
" rewritten as OF (SHIP). Since no other portions of the substring are complete
expansions of other syntactic categories in the free, the process stops and OF
(SHIP) is accepted as the most general analogy pattern. If the current input
matches this analogy pattern, LIFER will accept it as a legitimate elliptical input.
- For example, the analogy pattern OF (SHIP), extracted from the last input, may
be used to match such current elliptical inputs as

. OF THE KENNEDY
OF THE FASTEST NUCLEAR CARRIER

WHAT IS THE LENGTH OF SANTA INEZ

(PRESENT) (ATTRIB) (SHIP-NAME?

CATTRIBUTE) (SHIP)

_ L UITEM)
TR 73
‘¥ig. 6. Syntax tree . L R
ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978,

126 . G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

and
OF KITTY HAWK CLASBS SHIPS.
Note that the expansion of (SHIP) need not parallel its expansion in the old input
‘that originated the analogy pattern. For example, OF KITTY HAWK CLASS
" SHIPS is not matched by expanding (SHIP) to (SHIP-NAME) but by expanding
(SHIP) to (CLASS) CLASS SHIP. , _ _
To compute responses for elliptical inputs matching OF (SHIP), LIFER works
its way back through the old syntax tree from the common parent of OF {SHIP)
. toward the root. First, the routine for computing the value of an (ITEM) from
constituents of the produection

(ITEM) = THE {ATTRIBUTE) OF (SHIPS)

is invoked, using the new value of (SHIP) (which appeared in the current elliptical
input) and the old value of (ATTRIBUTE) from the last sentence. Then, using
the newly computed value for (ITEM) and the old value for (PRESENT), 2 new
value is similaily computed for (L.T.G), the root of the syntax tree.

Some other substrings with their associated analogy patterns are shown below,
along with possible new elliptical inputs matching the patterns:

‘substring: THE LENGTH
pattern: THE (ATTRIBUTE)
a match: THE BEAM AND DRAFT

substring: LENGTH OF SANTA INEZ
pattern: (ATTRIBUTE) OF (SHIF)
a match: HOME PORTS OF AMERICAN CARRIERS

substring: WHAT IS THE LENGTH
pattern: {(PRESENT) THE (ATTRIBUTE)
~ amatch: PRINT THE NATIONALITY

substring: WHAT IS THE LENGTH OF SANTA INEZ
- pattern: (L.T.G)
s match: [any complete sentence]

3

For purposes of efficiency, LIFER’s elliptieal routines have been coded in such a
- way that the actual generation of analogy patterns is avoided.? Nevertheless, the
effect is conceptually equivalent to attempting parses based on the analogy patterns
of each of the contiguous substrings of the last input.

5.3 Implementation of Paraphrase _

LIFER’s paraphrase mechanism also takes advantage of semantically-oriented
syntactic categories and makes use of syntax trees. In the typical case, the para-
‘phraser is given a model sentence, which the system can already understand, and &
“paraphrase. The paraphraser’s general strategy is to analyze the model sentence
and then look for similar structures in the paraphrase string. - R
. In particular, the paraphraser invokes the parser to produce a syntax tree of the

 ¥See Hendrix {11] for details of the algorithm. .
ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978,

£

Developing & Natural Language Interface to Complex Data - 127

‘model, Using this tree, the paraphraser determines all proper subphrases of the
~ model, i.e. all substrings that are complete expansions of one of the syntactic
“categories listed in the tree. Any of these model subphrases that also appear in the
paraphrase string are assumed to play the same role in the paraphrase as in the
" model itself. Thus the semantically-oriented syntactic categories that account for
" these subphrases in the model are reuseéd to account for the corresponding sub-
- phrases of the paraphrase. Moreover, the relationship between the syntactic cate-

gories that is expressed in the syntax tree of the model forms a basis for establishing
the relationship between the corresponding syntactic units inferred for the para-
phrase.

(1) Defining a Paraphrase Production. To find correspondences between the
model and the paraphrase, the subphrases of the model are first sorted. Longer
~ phrases have preference over shorter phrases, and for two phrases of the same
“length, the leftmost is taken first. For example, the sorted phrases for the tree of

Figure 6 are

1. (ITEM) ~ THE LENGTH OF SANTA INEZ
2. (PRESENT; WHAT IS

3. (SHIP-NAME) SANTA INEZ —not used

4. (SHIP) SANTA INEZ

5. (ATTRIB) LENGTH —not used

6

. {ATTRIBUTE} LENGTH.

‘Because the syntax tree indicates (SHIP) = (SHIP-NAME) = SANTA INEZ
both (SHIP-NAME) and (SHIP) account for the same subphrase. For such cases,
" only the most general syntactic category ((SHIP)) is considered. The category
* (ATTRIB) is similarly dropped.

Beginning with the first (longest) subphrase, the subphrases are matched against
sequences of words in the paraphrase string. (If a subphrase matches two sequences
of words, only the leftmost mateh is used.) The longer subphrases are given pref-
erence since matches for them will lead to generalizations incorporating matches
for the shorter phrases contained within them. Whenever a mateh is found, the
syntactic category associated with the subphrase is substituted for the matching
word sequence in the paraphrase. This process continues until matches have been

attempted for all subphrases.
For example, suppose the paraphrase proposed for the question of Figure 6 is

FOR SANTA INEZ GIVE ME THE LENGTH.
'Subphrases 1 and 2, listed above, do not match substrings in this paraphrase.
© Subphrase 3 is not considered, since it is dominated by subphrase 4. Subphrase 4
. does match a sequence of words in the paraphrase string. Substituting the associ-
‘ated category name for the word sequence yields a new paraphrase string:
* FOR (SHIP) GIVE ME THE LENGTH. o |
_ f Su.b.phrb."sé.:ﬁ is not coﬁsidéféd,:ﬁhﬁf :'l.subphra'sé 6 matches a'.se'cme!iée of words in -
" the updated paraphrase string. The associated substitution yields :
FOR (SHIP) GIVE ME THE (AFTRIBUTE). .~ . -~ .
: " ACM Transaétions on Database Systems, Vol. 3, No. 2, June 1978.

128 . (. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

Bince there are no more subphrases to try, the structure

] {LT.G) => FOR (SHIP) GIVE ME THE (ATTRIBUTE)

“is created as & new production to nccount for the paraphrase and for similar inputs
" suchas

" FOR THE FASTEST AMERICAN SUB GIVE ME THE POSITION AND HOME PORT.
' (2) Defining a Response Expression for the Paraphrase Produition. A new ge-
mantic response expression indicating how to respond to inputs matching this

- paraphrase production is programmed automatically from information in the syn-

tax tree of the model. In particular, the syntax tree indicates which productions
were used in the model to expand various syntactic categories. Associated with each .

- of these productions is the corresponding response expression for computing the

interpretation of the subphrase from subphrase constituents. The paraphraser
reuses selected response expressions of the model to create & new expression for the
paraphrase production. The evaluation of this new expression produces the same
effect that would be produced if the expressions of the model were reevaluated.
Metasymbols that appear in both the paraphrase production and the model remain
as varigbles in the new response expression. Those symbols of the model that do
not appesr in the paraphrase production are replaced in the expression by the

constant values to which they were assigned in the model.

6. DISCUSSION

As implied by Figure 1 and the examples given in the Appendix, the INLAND
system is a habitable, rather robust, resal-time interface to a large database and is
fully capable of successfuliy accepting natura! language inputs from inexperienced
users. In the preceding sections, we have indicated some of the key techniques

" used in creating this system. We now seek to place our previous remarks in perspec-

tive by considering some of the limitations of the system, the roles played by the

“nature of our task and the tools we built in developing the system, and some of
-the similarities and differences between other systems and our own.

"8.1 Limitations

In considering the limitations of our work, the reader should distinguish between
limitations in the current INLAND grammar and limitations in the underlying

. LIFER system,

- (1) Syntactic Limitations
{a) The Class of Languages Covered by LIFER. Consider the set of sentences

that LIFER can accept. Becruse in the worst edse a special top-level production

may be defined in LIFER to cover any (finite-length) sentence that an interface

" -builder may wish to include in the ‘application language, it is impossible to exhibit a
- single sentence that the LIFER parser cannot be made to accept. Therefore, the
*.only mesaningful questions concérning syntactac limitations of LIFER must relate

to LIFER’s ability to use hrmted memory m covenng mﬁmte or large finite sets
of sentences, . S C

" ACM 'I‘l-mucbomonDutabm Synterm Vol 3, No 2, June 1978

Developing a Natural Language Interface to Complex Data < 129

LIFER application languages are specified by augmented context-free? gram-
“mars, Each rule in the grammar, as discussed previously, ineludes a context-free
" production, plus an arbitrarily complex response expression, which is the ‘“aug-
mentation.” Although a purely context-‘ree system would severely restrict the
- set of (nonfinite) languages that LIFER could actept, the use of augmentation

. gives the LIFER parser the power of a Turing machine. The critical question is
whether or not the context-free productions and their more powerful augmenta-
tioris ean be made to support one another in meaningful ways,

To see the interplay between augmentation and context-free rules in the recog-
nition of a classic example of non-context-free languages, consider the language
composed of one or more X’s followed by an egual number of Y’s followed by an
equal number of Z's, Let (x) be defined as

=X |1
() = X {x) | (PLUS 1 {x}).

Thus {(x) matches an arbitrary sequence of X’s and takes as its value the number
of X’s in the string. Similar definitions may be made for {y) and (z). A top-level
sentence may be defined by the pattern (x){y)(z), but the augmentation must
check to see that the numeric values assigned to the metasymbols are all equal.
If they are equal, the augmentation expression returns some appropriate response.
~ But if they are unequal, the expression returns the special symbol *ERROR*,

which the LIFER parser traps as a “semantic’” {as opposed to syntactic) rejection.

The Turing machine power of LIFER is illustrated by the following trivial
grammar:

{PRE-SENTENCE) = (WORD) | (LIST (WORD))
= {(WORD) (PRE-SENTENCE)
| (CONS (WORD)
{PRE-SENTENCE})

'{'B.ENTENCE) = {(PRE-SENTENCE)
' | (TMPARSE (PRE-SENTENCE))

This grammar simply collects all of the words of the input into a list which is
then passed to function TMPARSE, a parser of Turing machine power. In this
extreme case, the LIFER parser makes virtually no use of the context-free pro-
ductions, but relies exclusively on the augmentation. LIFER is best used in the
“middle ground between this extreme and a purely context-free system.

In other words, the class of languages for which LIFER was designed may be
characterized as those allowing much of their structure to be defined by context-free
‘rules but requiring occasional angmerntation. It has been our experience that much
of the subset of English useu for askin’g questions about a’command and control

- database falls in this elass. However, we have not considered certain eomplex types
cof transformatlons which will be discussed in the next subsection. :
' (b) Troublesmne Syntactzc Phenmnena Englzsh speakers and wnters often :

:' ’ Bee Hopcroft and Ullman |12} for deﬁmtlons of terms auch as “context—free” and “context.- -
" sensitive.” _
. ACM T‘rnmchom on Database Syatems Vol 3, No. 2, June 1978,

130 . G. G. Hondrix, E. D. Sacerdoti, D. Sagafowicz, and J. Slocum

- omit from a sentence s series of words that do not form a complete gyntactic unit,
: For example consider the followmg family of conjunctive sentences:

_ (1) WHAT LAFAYETTE AND WASHINGTON CLASS SUBS ARE WITHIN 500 MILES
. OF GIBRALTAR
(2) WHAT LAFAYETTE cmss AND WASHINGTON CLASS SUBS ARE WITHIN 500
“MILES OF GIBRALTAR o . _
- (3) WHAT LAFAYETTE CLASS SUBS AND KITTY HAWK CLASS CARRIERS IN THE
ATLANTIC ARE WITHIN 500 MILES OF GIBRALTAR
. (4) WHAT LAFAYETTE CLASS SUBS IN AND PORTS ON THE ATLANTIC ARE
WITHIN 500 MILES OF GIBRALTAR
(6) WHAT LAFAYETTE CLASS SUBS IN THE ATLANTIC AND KITTY HAWEK CLASS
CARRIERS IN THE MEDITERRANEAN SOON WILL BE WITHIN 500 MILES OF
GIBRALTAR.

.Sentence (1) omits the fragment CLASS SUBS ARE WITHIN 500 MILES OF
GIBRALTAR from the “complete” question WHAT LAFAYETTE CLASS
SUBS ARE WITHIN 500 MILES OF GIBRALTAR AND WHAT WASHING-
TON CLASS SUBS ARE WITHIN 500 MILES OF GIBRALTAR. Note that the
omitted fragment does not correspond to any well-formed syntactic unit, but
. -begins in the middle of the noun phrase WHAT LAFAYETTE CLASS SUBS
“and continues to its right. Moreover, the fragment of the noun phrase that is left
behind, namely, WHAT LAFAYETTE, is not likely to be a well-formed syntactic
. unit, because one would expect to have WHAT combine with LAFAYETTE-
'CLASS-SUBS rather than have WHAT-LAFAYETTE combine with CLASS-
'SUBS. As the family of sentences above illustrates, the omission of words, signaled
by the conjunction AND, may be moved to the right through the sentence one
word at a time, slicing up the well-formed syntactic units at arbitrary positions.
INLAND has no difficulty in accepting either conjunctions or disjunctions of
well-formed syntactic categories, but LIFER provides no general mechanism for
dealing with omissions that slice through categories at arbitrary points.
In the BYSCONJ facility of Woods [24], special mechanisms for handling =
~ large (but not exhaustive) class of conjunction constructions were built into the
parser. Roughly, when SYSCONJ encounters the conjunction “AND” in an input
X AND Y, it nondeterministically attempts to break both X and Y into three (pos-
-gibly empty) parts X1-X2.X3 and Y1-Y2-Y3, such that X1-X2-X3-Y2-Y3 and
X1-X2-Y1-Y2-Y3 parse as sentences with the same basic syntactic structure. In
perticular, X2-X3-Y2 and X2-Y1-Y2 must be expansions of the same metasymbol.
‘Theeffect of SYSCONJ is to transform X1-X2-X3-AND-Y1-Y2-Y3 into X1-X2-X3-
“Y2.Y3 and X1-X2-Y1.Y2.Y3. -
. For example,

WHA’I‘ LAFAYETTE AND WASHINGTON CLABS SUBS ARE THERE

ma.y be snalyzed as

WHAT empty LAFAYETTE AN D WASHINGTON CLA.SS SUBS ARE THERE
X1 . X2 X3 . and - Yl : Y2 Y3
ACM Transactions on Database Systems, Vol, 3, No. 2, June 1978 : :

Developing a Natural Language Interface to Complex Data . 131

Both X1-X2-X3-Y2-Y3 (WHAT LAFAYETTE CLASS SUBS ARE THERE)
and X1-X2-Y1-Y2-Y3 (WHAT WASHINGTON CLASS SUBS ARE THERE)

_ are parsed by what would correspond in INLAND to the sentencé-level production

{L.T.G) => WHAT (SHIP) ARE THERE

~and both X2-X3-Y2 (LAFAYETTE CLASS SUBS) and X2.Y1.Y2 (WASHING-

‘TON CLASS BUBS) are expansions of the same metasymbol, (SHIP). In effect,
the original input is transformed intc WHAT LAFAYETTE CLASS SUBS ARE
THERE and WHAT WASHINGTON CLASS SUBS ARE THERE.

. Handling conjunctions is just one example of the general need to perform trans-
formations at parse time. A similar phenomenon oecurs with comparative clauses,
but much more is omitted and transformed. For example,

THE KITTY HAWK CARRIES MORE MEN THAN THE WASHINGTON
may be viewed as 2 transformed and condensed form of

THE KITTY HAWK CARRIES X-MANY MEN AND
THE WASHINGTON CARRIES Y-MANY MEN AND
X ISMORE THAN Y.

For further discussion of this subjeet, sce Paxton [15].
(c) YES/NO Questions. A limitation of INLAND, although not of LIFER,
is that few YES/NO questions are covered. The reason for this is pragmatic—

'INLAXND users do not ask them. Upon reflection, the motivation for this is clear—

WH questions (i.e. questions asking who, what, where, when, or how) preduce more

- information for the questioner at a lower cost. A user might ask

IS THE KENNEDY 1000 FEET LONG,
but it is shorter to ask
HOW LONG 18 THE KENNEDY,

_and if the answer to the first question is NO (and if the system is so inconsiderate

as to not indicate the correct length), then the user may still have to ask for the

length.
Creating a grammar for YES/NO questions is easy enough. For example,

" PDL.T.G)
(IS (NUMBER) (UNIT)} THE (ATTRIB) OF (SHIP})
(YESNO.NUM.ATT (NUMBER} (UNIT) (ATTRIB) (SHIP))]

might be used to allow the input
IS 1000 FEET THE LENGTH OoF THE ICENNEDY

- Funetion YESNO. NUM.ATT ﬁnds the (ATTRIB) of (SHIP) using IDA Imowmg

the units in ‘which the database stores values of (ATTRIB), YESNO.NUM.ATT

. .converts the returned answer into the units specified by (UNIT) and compares the -
. ‘converted valie to (NUMBER). If the units are valid and the numbers match, -
- YES is returned; otherwise NO is returned and the correct answer 8% computed 0
.by IDA, is prmted . L S N

B ACM "I"rumnctiom on Damba'sé Sywems. Vol. 3. No. 2, J une 1978.'

132 . G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Stocum

(d) Assertions. INLAND was designed for retrieval and therefore does
_ not handle such inputs as
THE LENGTH OF THE KENNEDY 18 1072 FEET -

- LET THE LENGTH OF THE KENNEDY BE 1072 FEET
SET THE LENGTH OF THE KENNEDY TO 1072 FEET.

" Moreover, IDA itself does not provide for updating the database Extendmg the
language with new productions such as

' (LT.G) = SET THE (ATTRIBUTE) OF (SEIP} TO (VALUE)

would be easy, but there are serious database issues involved regarding consistency,
security, and priority. Such database problems are beyond the scope of our re-
search.

(e) Irregular Coverage. One of the consequences of the ease with which
interface builders can add new patterns to a LIFER grammar is that gaps may
appear in coverage. For example, suppose a given language definition contains no
passive constructions. Through the use of paraphrase or by direct action on the
part of the interface builder, the language may be extended to cover some, but
perhaps not all, passive constructions. That is, the system might be made to ac-
cept

{1) THE KENNEDY IS OWNED BY WHOM,

- but not
(2) THE KENNEDY IS COMMANDED BY WHOM.

(The semantically-oriented syntactic categories for OWNED and COMMANDED
may differ.) If a user knows that the system accepts (1) and that the system ac-
“cepts the active

{3) WHO COMMANDS THE KENNEDY,

then he is likely to be upset when input (2) is not accepted.
~In creating the language specification for INLAND, we have tried to minimize
such irregularities in coverage by applying standard techniques of modular pro-
-gramming to the grammar specification. We feel this has been reasonably successful.
Because LIFER gives the inference builder the freedom to add particular instances
and subelasses of linguistic phenomens, it is his responsibility to avoid the gaps in
coverage that may result,
(2) Limitations Regarding Ambiguity. The LIFER parser does not deal with
syntactic ambiguity directly, but accepts its first successful analysis as being the
‘sole interpretation of an input.’® Because English contains truly ambiguous eon-

® On October 31, 1977, LIFER was modified to allow optionsl production of all syntactically -

" eorreet readings of &n input. However, INLAND has not yet been revised to take advantage
of this new option. When ambiguity is ‘discovered, LIFER calls & user-defined subroutine
“with the list ‘of parse trees (including response expressions and variable bindings at each non-

. terminal node) for all readings.’ One of the trees is to be returned for execution of the root-

- level response expression_ A default *“‘user’”” subroutine is supplied with LIFER that prints

" the various parse tiees and asks the user to select one by number.:More ‘sophisticated sub-

routines are expected to be written that will enter into more natural clarification dialogues.

_ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978,

Developing a Naturel Language Interface to Complex Data . 133

-gtructions, even when semantic considerations {the “augmentations”) are taken
. into account, this limitation can be serious. For example, in the request
(1) NAME THE SHIPS FROM AMERICAN HOME PORTS
. THAT ARE WITHIN 500 MILES OF NORFOLK .

: 'the phrase THAT ARE WITHIN 500 MILES OF NORFOLK mlght modify
either the SHIPS or the PORTS. The choice will, of eourse, influence the response
made to the user. The current LIFER parser is biased against deep parses and
will only consider the interpretation in which the c¢lause modifies SHIPS. Even a
single word can produce difficulties. For example, the word NORFOLK in request
(1) could refer to a port in Virginia, a port in Great Britain, an Ameriean frigate,
or a British destroyer. Thus the request is at least eight ways ambiguous,

Codd [3] has studied at some length the problem of ambiguity in the context of
practical database systems and has developed the strategy of engaging in a dialogue
. in which the system articulates ambiguities (and other problems) and asks ques-
tions of the user to clarify the intent of his requests.

In addition to the simple syntactxc Torm of ambiguity, exemplified by request
(1), other forms of ambiguity may arise. For example, the question

(2) I8 KENNEDY IN RADAR RANGE OF THE ENOX

" . is syntactically unambiguous, but the meaning might be either

IS KENNEDY IN ENOX'S RADAR RANGE

¢ or

18 KNOX IN KENNEDY'S RADAR RANGE.

This example represents a purely semantic ambiguity.
Similarly,

- (3) I8 EENNEDY NEARER TO GIBRALTAR THAN KITTY HAWK
might be considered syntactically unambiguous in its present form, yet it has two

" possible meanings. By adding “missing words” at two different points in the in-
put it is possible to produce the readings

I8 THE KENNEDY NEARER TO GIBRALTAR THAN
the kennedy is near to THE KITTY HAWK

and

- I8 THE KENNEDY NEARER TO GIBRALTAR THAN
THE KITTY HAWK is nesr to Glbra.ltar

Examples of amblgmty such as queries (1), (2), and (3) Just given begm to show
the difficulty of dealing with the problem in any general way. However, in the
- domain of INLAND, ambiguities have tended to arise only infrequently and have
- presenited only minor problems for our- particular application. Fortunstely, our’

~users have been very helpful by tending to avoid the use of the long and complex | '

constructions that are most likely to'lead to ambiguities. Perhaps this'is because -

. the teletype médium inclines users to prefer short, simple constructions.

- Even though LIFER does not deal with ambiguity directly, certain Itypcs of -
ACM 'I‘ramacuons on Database Systems, Vol. 3, No. 2, June 1978.

. 134 . G. G. Hendrix, E. D. Sacsrdoti, D. Sagalowicz, and J. Slocum

o -atribiguities may be trapped and treated by using the response expressions of
- LIFER production rules. For example,
CPDLTG) . L
(IS (SHIP1) IN (RANGE-TYPE) RANGE OF (SHIP2)
(COMPUTE.RANGE (SHIP1) (SHIP2) (RANGE-TYPE)]

.will aceept such inputs'as
IS KENNEDY WITHIN RADAR RANGE OF ENOX

. and call the function COMPUTE.RANGE to respond. COMPUTE.RANGE is
given the two ships and the range type as an input. Knowing the pattern to be in-
herently ambiguous, COMPUTE.RANGE may enter into & (formal) conversation
with the user to resolve the ambiguity.

The INLAND grammar also tries to avoid ambiguity whenever possible. For
example, the phrase AMERICAN ARMORED TROOP CARRIER might mean
a ship (of any nationality) that carries armored troops from the U.S. military, or
an American ship that carries armored troops (of any nationality), or a ship that
carries troops that were armored by the U.S., or a ship that was armored by the
U.S. and that carries troops, or any one of several other combinations. In INLAND,
ARMORED-TROOP-CARRIER is recognized as a fixed phrase and all the prob-
lems with ambiguity vanish.

(3) Limitations Regarding Definite Noun Phrases

. (a} The Restricted Confext Problem. A phrase such as THE AMERICAN
SUBS may be used to refer to different American submarines, depending upon the
‘“‘context” in which it appears. For example, if the Washington, the Churchill, and
the Lincoln are being diseussed, then THE AMERICAN SUBS in

HOW OLD ARE THE AMERICAN SUBS

-refers to the Washington and the Lincoln. Had the current context eoneerned the
Roosevelt, Jefferson, and Leninsky Komsomol, then THE AMERICAN SUBS
‘would have referred to the Roosevelt and the Jefferson. The point is that the mean-
ings of certain noun phrases are dependent upon the contexts in which the phrases
appear.
INLAND has only a limited ability to handle phrases such as THE SHIPS,
- THE AMERICAN SUB, and THOSE CRUISERS, which are said to be “definitely
determined.” As opposed to indefinitely determined noun phrases (such as A
-SHIP), which refer to the existence of objects not currently in context, definite
“noun phrases are often used to refer to a particular object or set of objects that is
.already in context. In dealing with a database, “in context” may usually be taken
to mean “in the database.” Thus the phrase THE AMERICAN SUBS generally
~ means “the American subs in the database,” and this is the interpretation’ that
- INLAND almost always places on'this phrase. -But suppose the ‘user has just

- asked WHAT SUBS ARE IN THE MEDITERRANEAN sand has been answered

by ‘a list of several subs, some of which are American and some of which belong
‘to other countries. If the user now asks WHAT ARE THE POSITIONS OF THE
/AMERICAN SUBS he expects only the positions of American subs in the Medi-
ACM Transactions on Database Systems, Vol. 3, No. 2, June 1978. '

Developing a Natural Language Interface to Complex Data . 135

" terranean, but is given information about all American subs in the database. The
. problem is that the local context established by previous questions is more restricted
~than the total database and INLAND has not received enough lexical and syn-
tactic clues to recognize this. (Had the input been WHAT ARE THE POSITIONS
-OF THE AMERICAN ONES, the use of the pronoun would have signaled the

" local context and INLAND “ould bave replied properly.) _
. Where the context is very clear, INLAND can sometimes handle a restricted

~ perspective on the databsse. For example, following
SELECT A MAP OF THE NORTH ATLANTIC

the query
DISPLAY THE AMERICAN SUBS

will cause the retrieval of only those subs in the North Atlantie, because others

could not be displayed on the map in any case.
We know of no applied language system that deals adequately with this problem.
However, significant experimental results are described in Grosz [7].
(b) Some Methods for Treating Pronouns. Even though the general problem
of properly resolving pronouns is quite difficult, simple techniques can cover a
large number of cases. For example, there arc many trivial uses of pronouns in
which no resclution is needed at all. Examples include

“'WHAT TIME IS IT .
WAS IT 1968 WHEN THE KENNEDY WAS LAUNCHED

and instances in which the pronoun references an earlier phrase in a pattern as in

WHEN WILL (SHIF) (HAVE) ITS (PART) {REPAIRED)
{e.g. WHEN WILL THE KENNEDY GET ITS RADAR FIXED).

Very often pronouns are used in natural language queries to refer to things
~mentioned in the previous question. Thusin the sequence

-WHAT IS THE LENGTH OF THE KENNEDY
WHAT IS HER SPEED,

the pronoun HER refers to THE KENNEDY. Suppose the first sentence above is
interpreted by means of the production

{L.T.G) = (PRESENT) THE {ATTRIBUTE} OF (SHIP)

7 and the second sentence by

_ {L.T.G) == (PRESENT) {(SHIP'S) (ATTRIBUTE).
~The primary method for matching (SHIP’S) might be through a production such -

.. as .

. (SHIP’S) = {SHIP) -'8) - . .

_ -where (—’S) is the possesswe—formmg sufﬁx “hlch is stnpped oﬁ' by 8 preprocessor -

oo Alt,erns.t.wely, 8 net of poasessnve houns nammg shlps could be defined and the stripper not
used, or, a8 is the case in INLAND, possessives could be thrown away aitogether snd (SHIP'S)

could be made equivalent to (SHIP).
ACM ‘I‘ranaacﬁons on Dauba.se Syst.ems, Vol. 3, No. 2, June 1978.

136 - G. G. Hendrix, €. D. Sacerdoti, D. Sagalowicz, and J. Slocum

This primary method may be extended so that (SHIP'S) may also match HER
‘or ITS or THEIR if a (SHIP) was used in the last input. This will allow WHAT
1S HER SPEED to be interpreted as WHAT IS KENNEDY'S SPEED.

© To extend the definition of (SHIP'S) to match pronouns, first define a predicate

- SHIP.PRONOUN that will return a non-NIL value if its argument is a possessive

'pronoun and the last input contained a (SHIP). The ‘predicate may be defined as
{LAMBDA (WORD) .
C (AND (MEMBER WORD '(HER ITS THEIR)) - . .
(LIFER.BINDING '(B8HIP}})) '

where LIFER.BINDING is a LIFER function that determines whether the

metasymbol given as its argument had a binding in the interpretation of the last

input and, if so, returns the binding.!* Using predicate SHIP.PRONOUN, the
definition of metasymbol (SHIP’S) may be extended by the call

MP((SHIP'S) SHIP.PRONOUN).

Another technique, which works nicely for some classes of anaphoric references,
involves the use of global variables (sometimes called “registers”). For example,
‘suppose that each response expression associated with a pattern defining the meta-
symbol (SHIP) is so constructed that it will set the global variable LATEST-SHIP
to the value it returns as the binding of (SHIP). To be concrete,

PDSHIP)

(SHIP-NAME))
(SETQ LATESTSHIP o
(LIST (LIST 'NAM 'EQ (SHIP-NAME))))]

causes (SHIP) to match a (SHIP-NAME) as defined previously. The response
expression that computes the value of (SHIP) will return the same value as de-
fined above, but, as a side effect, it will now also set the global variable LATEST-
SHIP to the same value. Later, when phrases such as THE SHIP or THAT SHIP
are used to refer to the last ship mentioned, the global variable LATEST-SHIP
may be used to recall that ship. For example, if (DET-DEF) is defined to match

definite determiners (e.g. THAT, THE), then

PD{SHITF}
((DET-DEF) SHIP)
LATEST-SHIP]

will define structures that allow (SHIP) to match THE SHIP and take as its value
the value of the LATEST-SHIP. Note that LATEST-SHIP is always ready with
the value of the latest (SHIP) mentioned, but (LIFER.BINDING ’(SHIP)} is of
. help only if (SHIP) was used in the last input. -
(&) Lénitations in Processing Elliptical Inputs. After successfully processing the
_completesentence . . . _ o _
' 1)’ HOW MANY CRUISERS ARE THERE .-
B If there were multiple occurrences of the symbol in the laat input, the leftmost-topmost
instance s returmed. - .o oo oL o '
.ACM Transactions on Databise Systems, Vol. 3, No. 2, June 1978,

Developing a Natural Language Interface to Complex Data - 137

LIFER will accept the elliptical input
{2} CRUISERS WITHIN 600 MILES OF THE ENOX

‘but not

(3) WITHIN 600 MILES OF THE KNOX.

The elliptical processor is based on syntactic analogies. Input (2) is & noun phrase
whieh is analogous to the noun phrase CRUISERS of input (1). Input (3), on the
other hand, is a modifier that is intended to modify the CRUISERS of input (1).
Because input (1) has no modifiers, elliptical input (3) has no parallel in the origi-
nal input and hence cannot be accepted.

(5) Other Limifations. A few other important limitations of INLAND and LIFER
are worth mentioning briefly. .
First, LIFER has no “core grammar’ that is ready to be used on any arbitrary
database. This is because LIFER was designed as a general purpose language
processing system and makes no commitment whatever to the types of programs
and data structures for which it is to provide a front end or even to which natural
language is to be accepted. LIFER might, for example, be used to build a Japanese
language interface to a program that controls a robot arm. This could not be done
if assumptions had been made restricting LIFER to database applications and to
the English language. Thus LIFER contrasts with systems such as Thompson
" and Thompson’s REL (rapidly extendable language) [20], which provides a core

grammar but which requires ref ormatting of data into the REL database.’?

.Some systems, such as ROBOT (Harris [8, 9]), use the information in the data-
base itself as an extension of the language processor’s lexicon. The LIFER inter-
face may do this also but need not. If one elects not to usc the database as lexicon,
and this choice was made in INLAND, then the lexicon must be extended when-
ever new values are added to the database that a user may want to mention in
his queries.* The price of using the database itself as an extended lexicon is that
‘the database must be queried during the parsing process. For very large data-
bases, this operation will probably be prohibitively expensive.

INLAND, of course, is basically a question answerer that relies on a database
as its major source of domain information. In particular, INLAND cannot read
newspaper articles or other extended texts and record their mesning for subsec-
quent querying. Moreover, although it is perfectly reasonable that the LIFER
~ parser might be used for a text reading system, LIFER itself contains no particular
" facilities other than calls to response expressions for recording or reasoning about
* complex bodies of knowledge.

6.2 The Role of the Task Domain o
. “The limitations presented in the last ‘subséction would cause major difficulties in
dealing with many areas of natural language application. However, for our particu-

-u Fragmen.ts ‘of foreign-language '_Ve'rsior:xﬁ' of INLAND have been used to access the naval -

" database in Swedish and Japanese.

‘1Because LADDER accesses dsta over the ARPANET, we felt the overall system would be
intolerably elow if the sctual database was used at parse time.

.. ACM Transactions 6n Database Syrtems, Vol. 3, No. 2, June 1974,

138 - G.G.Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

lar application, the limitations did not prevent the creation of a robust and useful
system. In the next few paragraphs, we briefly outline some of the key features of
- the application that simplified our tagk, ..+ .. - L
~ The creation of INLAND was greatly facilitated by the nature of the particular
interface problem that was addressed-—providing & dedision maker with access to
. information he knows is in & database. Because the user is expected t6 know what
kinds of information are available and is expected to follow the technical terms
. and styles of writing that are typical in his domain of decision making, we can
establish strong predictions about a user’s linguistic behavior and hence INLAND
needs to cover only a relatively narrow subset of language.

A second factor in facilitating the creation of the natural language interface
was the interface provided by the IDA and FAM components of the LADDER
system. By providing a simplistic view of what is in fact a complex and highly
intertwined collection of distributed date, IDA and FAM helped greatly in simpli-
fying the Lisp response expressions associated with productions in the INLAND
grammar, -

In short, IDA allows the datsbase to be queried by high-level information re-
quests that take the form of an unordered list of two kinds of items: fields whose
values are desired, and conditions on the values of associated fields. Using IDA,
the INLAND grammer need never be concerned with any entities in the database

-other than fields and field values, Furthermore, because the input to IDA is un-
ordered, the construction of segments of a call to IDA ean be done while parsing
lower-level metasymbols. : _

. The performance of INLAND for a given user is also enhanced ‘by the user’s

‘own, often subconscious, tendency to adapt to the system’s limitations. Because
INLAND can handle at least the most straightforward paraphrases of most re-
quests for the values of any particular fields, even a new user has a good chanee of
having his questions successfully answered on the first or second attempt. It has
‘been our experience that those who use the system with some regularity soon
adapt the style of their questions to that accepted by the language specification.
The performance of these users suggests that they train themselves to understand
the grammar accepted by INLAND and to restrict their questions whenever pos-
gible to forms within the grammar, Formal investigation of this subjectively ob-
served phenomenon might prove very interesting,

6.2 The Role of Human Engineering
‘Although the basic language processing abilities provided by LIFER are similar
to those found in some other systems, LIFER embodies a number of human engi-
.. neering features that greatly -enhance its usability. These humanizing features
~include its ability to deal with incomplete inputs and to allow users to extend the
~ linguistic coverage at run time. But, more importantly, LIFER provides easy-to-
_.understand, highly interactive functions for specifying, extending, modifying, and
debugging application languages. These features provide a highly supportive en-
vironment for the incremental development of sophisticated interfaces, Without
~ these ‘supporting features, a language definition rapidly becomes too complex to
manage and is no longer exténdable. With support, the relatively simple types of
ACM Transactions on Database Systems, Vel. 3, No, 2, June 1978, ‘

Developing & Natural Language interface to Complex Data . 139

linguistic constructions accepted by LIFER may be used to produce far more
sophisticated interfaces than was previously thought possible. _

Creating a LIFER grammar that covers the language of a particular application
may be thought of construetively as writing a program for a parser machine. All

' the précepts of good programming—top-down design, modular programming, and

" the like—are relevant to good design of a semantic grammar. A well programmed
grammar is easy to sugment, because new top-level patterns are likely to refer to
lower-level metasymbols that have already been developed and shown to work
reliably. Thus the task of adding new top-level productions to a grammar is anal-
ogous to the task of adding new capabilities to a more typical body of computer
code (such as a statistics package) by defining new eapabilities in terms of existing
subroutines.

No matter how well programmed a grammar might be, as the complexity of the
grammar increases, the interactions among components of the language specifi-
cation will grow. This leads the language designer into the familiar programming
cycle of program, test, and debug. With many systems for parsing and language
definition, the cycle may take many minutes for each iteration. With LiFER,
when a new production is interactively entered into the grammar, it is immediately
usable for testing by parsing sample inputs. The time required for the eycle of
program, test, and debug is thus dependent on the thinking time of the designer,

- not the processing time of the system. Because the designer can make very effective
use of his time, he can support, meintain, and extend a language specification of
far greater complexity than would otherwise be possible.

. The basic parsing technology of LIFER is not really new. But the human engi-

_neering that LIFER provides for interface builders has allowed us to better man-
age the existing technology and to apply it on a relatively large scale. '

6.4 Related Work

. As indicated by the February 1977 issue of the SIGART Newsletter {5], which
contains a collection of 52 short overviews of various research efforts in the general
ares, interest in the development of natural language interfaces is widespread.
Our own work is similar to that of several others.

"The LIFER parser is based on a simplifieation of the ideas developed in the
LUNAR parser of Woods and others [23, 26). In particular, LIFER manipulates
- internal structures that reflect Woods’s ATN formalism. Woods’s parser was used as

& component of a system that accessed a database in answering questions about
‘ the chemical analysis of lunar rocks. The system did not use semantically-oriented

syntactic categories and the database was smaller and less complex than that used

‘by INLAND, although the database query language was more general than that
“accepted by IDA. R o , R
" . .Woods’s ATN formalism has been used in & variety of systems, including a speech -
- understanding system {25, and the semantically-oriented systems of Waltz [22],

* Brown and Burton [1}, and Burton [2]. Thesé latter systemis do not usé the LUNAR o

‘parser, but rather compile the ATN formalism into procedures that in' turn per-
form the parsing operation directly, without using a parser/interpreter to interpret
a grammatical formalism. Compilation results in greater parsing speed, which is of

ACM Transactions on Database Systemis; Val. 3, No. 2, June 1978.

140 . G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Siobum

importance for many applications. However, compilation also makes personsliza-
tion features, such as PARAPHRASE, much more difficult to implement and in-
ereases the time of the program-test-debug eyele,) _

. The first natural language systems to make extensive use of semantie grammars
were those of Brown and Burton [1] and Burton {2]. These systems were designed
for computer-assisted instruction rather than as interfaces to databases. _

In'work very similar to our own, Waltz [22] has devised a system called PLANES

~ which answers questions about the maintenance and flight histories of airplanes.

. PLANES uses both an ATN and a semantic grammar. Apparently the system does
not include a paraphrase facility similar to LIFER’s, It 8oes support the processing
of elliptical inputs by a technique differing from our own and supports clarification
dialogues with users,

The PLANES ianguage definition makes less use of syntactic information than
INLAND. In particular, PLANES looks through an input for constituent phrases
matehing certain semantically-oriented syntax categories. When one of these con-
stituent phrases is found, its value is placed in a local register that is associated
with the given category. Rather than attempt to combine these constituents into a
complete sentence by syntactic means, “concept case frames” are used. Essentially,
PLANES uses case frames to decide what type of question has been asked by look-
ing at the types and values of local registers that were set by the input. For ex-

. ample, the three questions

“WHO OWNS THE KENNEDY
- BY WHOM IS KENNEDY OWNED
THE KENNEDY IS OWNED BY WHOM

would all set, say, an (ACT) register to OWN and a (SHIP) register to KENNEDY.
The case frames can determine what question is asked simply by looking at these
registers. Performing a complete syntactic analysis such as INLAND does require
different constructions for each question pattern.!s
If the input following one of the three questions asked in the preceding para-
graph is the elliptical fragment “KNOX,” the (SHIP) register is reset. Because no
case frame is associated with (SHIP) alone and because (SHIP) was used in the
last input, the (ACT) register is inherited in the new context and the elliptical
-input properly analyzed. When more than one case frame matches an input,
PLANES enters into a clarification dialogue with the user to decide which was in-
tended. (This conversation prints interpretations of inputs in & formal query lan-
guage.)
- The use of case frames is very attractive in that it allows many top-level syntactic
. patterns to be accounted for by a single rule. However, it is inadequate for complex

¥ LIFER may be used to support ¢ase frames, although this was not done in INLAND, In
particular, (I.T.G) may be defined &s an arbitrary sequence of (CONSTITUENT)s, where
{CONSTITUENT) may be expanded a& any of the semantically-oriented syntax eategories
-used by the case system. The response expression asscciated with the expansions of {(CON-
STITUENT) cauee global registers to be set, and the response expression associated with
({L.T.G) = (CONSTITUENTS) may make use of these registers and the case frames in com-
- “puting a’top-level fesponse. A case frame system supported by LIFER would, of course,

‘inherit LIFER’s Tun-time personalization and introspection features. _

" ACM Transactions on Databsse Systems, Vol. 3, No. 2, June 1976,

Developing a Natural Language Interface to Complex Data . 14

inputs. The question IS KNOX FASTER THAN KENNEDY contains two
{SHIP}s. Only the syntax tells us which to test as the faster of the two. Com-
pound-comiplex sentences would be extremely difficult to process without extensive
use of syntactic data. Waltz is investigating ways of supplementing his ease frames
“with nominsl pieces of syntactic information.
- Codd’s concept of the RENDEZVOUS system [3] for interface to relational
- databases provides many ideas concerning clarification dialogues that might be in-
cluded in LIFER at some later date. RENDEZVOUS is failsafe in that it can fali
* back on multiple choice selection if natural language processing fails eompletely.
Another applied natural language system whose underlying philosophy is akin
to that of LIFER is the REL system developed by Thompson and Thompson [20].
REL is a data retrieval system like LADDER, though REL requires data to be
stored in a special REL database. The grammar rules of REL contain a context-
free part and an augmentation very much like those of LIFER. As its name im-
plies, REL was intended to be easily extendable by interface builders. Mueh effort
has gone into making REL run rapidly and it is almost certainly faster than LIFER.
However, this speed was gained by a Iow-level language implementation with the
unfortunate side effect that response expressions are not easily written.
Recently, the Artificial Intelligence Corporation introduced a eommereial product
caelled ROBOT for interfacing to databases. As deseribed in Harris [8], ROBOT
“ealls for mapping English language questions into a language of database semanties
that is independent of the contents of the database.” The database itself is used as
" an extension of the dictionary, and the structure of files within the database helps in
guiding the parser in the resolution of ambiguities. Our own research indicates
that the types of linguistic construction employed by users are rather dependent

~on the content of the database. We also worry that extensive recourse to a databasc
of substantial size may greatly slow the parsing process, unless the file is indexed
on every field, Moreover, our database is coded largely in terms of abbreviations
that are unsuitable as lexical entries. Nevertheless, the notion of using the data
itself to extend the capabilities of the language system is very attractive,

In addition to the work on near-term application systems, a number of workers
are currently addressing longer-range problems of accessing databases through
natural language. See, for example, Mylopoulos et al. [14], Sowa [18], Walker et
al. {21), and Sacerdoti [16]. There are, of course, many people engaged in research
in the general ares of natural language processing, but & survey of their work

is beyond the scope of this paper.

7. CONCLUSION

"~ ‘We have deseribed s system ealled LADDER that provides natural language access
to a large, distributed database. We have shown that the language proecessing
-component of this system, although based on simple principles and subject to cer-

tain limitations, is sufficiently robust to be useful in practical applications. More- -

over, we have indicated that LADDER is not an isolated system but that other
*applied language systems have achieved significant lévels of performance as well,
" particulatly in interfacing to ‘databases. We believe that the evidence presented

ACM Transactions on Database Systems, Vol, 3, No. 2, June 1978,

142 .

G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

"indicates clearly that, for certein restricted applications, natural language access
* - to databases has become a practieal and practicable reality.

8. GLOSSARY

. . DBMS Databsse management system. L
FAM TFile access marager. Maps generic file names onto specific file names -
" on specific computers at specific sites. Initiates network connections,
S opens files, and monitors for certain errors.
“IDA - Intelligent data access. Presents a structure-free view of a distributed
database.

INLAND Informal natural language access to Navy data. The natural language
interface to IDA, which incorporates a special-purpose LIFER gram-
mar.

LADDER Language access to distributed data with error recovery. Our total
system composed of INLAND, IDA, and FAM.

LIFER Language interface facility with ellipsis and recursion. The general
facility for creating and maintaining linguistic interfaces,

MP Mske predicate. The LIFER function for defining a metasymbol as a

' predicate function.
M8 Make set. The LIFER funetion for defining 2 metasymbol as a set
of lexical itemns,

PD Pattern define. The LIFER function for defining a metasymbol as a
pattern expansion. ‘

© VLDB Very large database.

APPENDIX. AN EXAMPLE SESSION WITH LADDER

SLADDER

._ Please type in your name: TOD S.

Do you want instructions? (type FIRST LETTER of reaﬁonae) No

Do you want to use 2 Data Computera? Ho

Do you want to specify a current location {default = Norfolk)? No

Do you wish distance/direction calculations to default to GREAT CIRCLE,

or RHUMB LINE? (you can override by specifying in the gquery) Great Circle

1_What 1is the current position of the Kennedy?

* PARSED!

Parse time:

.68 seconds

This counts cpu time used by INLAND.

.jIDA: {(? PTP) (7 PTD) (NAM EQ 'KENNEDYZ JF'))

. ® This is the call to IDA.

"Connecting to Datacomputer at CCAT:

. % PAM indicates which computer is béing accesaad..-The'next'
;% 13 1ines are interactions between FAM and the Datacomputer.

. 5> ;0031 771108184236 IONETI: CONNECTED TO SRI-KL-22700010 S
5> ;3150 771108184238 FCRUN: V='DC-4/10.00.1" J=3 DT='TUESDAY, WOVEMBER
B, 1977 13:42:38-EST? S2UCOAT S Lol

" 33 100k1 771108185239 . DNCTNX: ‘DATACOMPUTER GOING DOWN IN 505 MIN BECAUSE

SYSTEM IS GOING DOWN AT WED HOV 9 77 5:00:00AM-EST FOR 280 MIN DUE TO

© ACM Transsetions on Database Systems, Vol. 3, No. 2, June 1978, -

Developing a Natural Language Interface to Complex Data .

SCHEDULED PM
2> 3J200 771108184239 RHERUN: READY FOR REQUEST
%> Set parametersa
LLY Exit
CCAY:"Z
%> Set parameters
oy Verbosity (-1 to 5): 1
*p PROCEED with Datalanguage {confirm with <CR>] N
#* The connection has now been established. FAM now logs in
. * and opens the pecessary files.
CCAT:LOGIN $TOP.ACCAT.GUEST ;
CCA1:0PEN STOP.ACCAT.SAGALOWICZ .NSTDPORT1 WRITE;
- CCAY:QPEN %TOP.ACCAT.NTRACKHIST READ;
CCA1:0PEN ITOP.ACCAT.NNSHIP READ;
® FAM now transmits the query.
CCA1:FOR R1 IN NNSHIP WITH (RAM EQ 'KENNEDY JF') FOR NSTDPORT1 » R2 IN
CCA1:NTRACKHIST WITH R2.UICVCN EQ R1.UICYCN BEGIN STRING1 = R2.PTP STRING2 =
CCA1:R2.PID END;
%> Total bytes transferred: 27
IpA = ((PTP '"6000NO3000W' PTD 7601171200))
¥ This is the value returned by IDA.
Computation time for query: 4.077 seconds
‘ ® This counts cpu time used by IDA and FAM. Extra time is
* needed to establish the network connection, log in, and
® open fileas.
Real time for query: 22U.725 seconds .
* This measures real time from the time the request 1s made
* to IDA until IDA returns the answer.
(POSITION 60CONG3000W DATE 7601171200) \
® Xennedy was last reported to be at 60 degrees North,
* 30 degrees West, at noon on January 17, 1976.

2_of kitty hawk
Trying Ellipais: WHAT I3 THE CURRENT FOSITION OF KITTY HAWK
Parse time: .97 seconds

IDA: ({7 PTP)} (7 PTD) (NAM EQ 'KITTYS HAWK'))

CCA1:FOR R1 IN NKSHIP WITH (NAM EQ 'KITTY HAWK') FOR NSTDPORT1 s R2 IN
'CCA1:NTRACKHIST WITH R2.UICVCN EQ R1.UICVCK BEGIN STRINGT = R2.PTP STRINGZ =
" CCA1:R2.PTP END; : :

%> Total bytes transferred: 27

IDA = ((PTP '3T00NO1TOOE' PTD 7601171206))
- Computation time for query: 1.077 ssconds
Real time for query: 78.105 seconds
(POSITION 3700N01T00E DATE 7601171200)

3_To what country does sach merchant ship in the north atlantic belong
PARSED!
Parse time: .386 sesconds

-IDA: ({7 NAT) (7 NAM) ((TYPE EQ 'BULK') OR (TYDPE EQ 'TNKR'})

{PTPNS EQ 'H'} {PTPEW EQ 'N') {(PTPY GT 600} OR (PTPX LT 3600) OR
~{PTPX GT 33900}) (? PTP) (% PID))
-CCA1:OPEN $TOP.ACCAT.SAGALOWICZ .NSTDPORT2 WRITE;

CCA1:0PEN 3TOP.ACCAT.NNMOVES READ; .) B
CCA1:FOR R1 IN NNMOVES WITH {(TYPE EQ 'BULK') OR (TYPE EQ "TNKR'}) FOR R2 IN
CCAV:HTRACKHIST WITH ‘(PTPNS EQ 'N') AND (PTPEW EQ 'W') AND .)
CCRl:((PTPY_GT_GDO)_DR {PTPX LT 3600) OR {PTPX GT 3300)) ‘AND R2.UICVCN EQ
. CCAY1:R1.UICVCR FOR NSTDPORTZ2 s -R3 IN KNSHIP HITH_ﬁS.UICVCH-EQ'RE.UICVCH BEGIN
CCA1:STRING1 = R2.PTP STRINGZ = R2.PTD STRING3 = R3.NAT STRINGY = R3.MAM END;
- %> Total bytes transferred: 4582 T N R

“IDA = {(NAT 'US' NAM TGREENVILLEY VICTORY' PTP *1533N03010%' PTD - .
TE011T1200) (NAT 'US*' NAM 'TQULES~J* PTP '1533N03010W' PID 7601171200)

s

ACM Transactions on Dntabue'S'yatams, Vol. 3, No. 2, Juﬁe 1978,

143

144 . G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum

Compubatioh time for query: 5.702 seconds
Real time for query: 228.231 seconds
1 have 79 answera; do you want to see them all? ...Yes

WAT ‘SHIP - POSITION DATE .
'US GREENVILLE VICTORY 1533N03010W 7601171200
US TOULE J 1533N03010W 7601171200
. _{nther entries omitted here}
‘WG TRANSQUEBEC #633N02129W 7601171200
RO TALABOT © 060ONO1130W 7601171200

4_the fastest sub
Trying Ellipsis: TO WHAT COUNTRY DOES THE FASTEST SUB BELONG
Parse time: 1.484 seconda

IDA: {{? NAT)} (7 NAM) (® MAX MCSF) (TYPE' EQ '5') (TYPE2 EQ 'S'"))
* In the interests of brevity and clarity, the remaining
® interactions with the Datacomputer are omitted.

IDA = ((NAT 'US' NAM ‘'LOSEX ANGELES' MCSF '30.0'))

Computation time for query: 2.317 seconds

Real time for query: 173.3 seconds

(NAT US SHIP LOS ANGELES MXSPD 30.0)

HS.what shipa are en route to america

Trying Ellipsis: Ellipsis has failed.

The parser does not expect the word "AMERICA"™ to follow

PWHAT SHIP ARE EN ROUTE TO"

Options for next word or symbol are:

<COUNMTRY>, <PORT>

end-of-11lat
® LIFER cannot parse the question; "America®™ is not in
® the vocabulary.

f_what is a <country>
PARSED!
% In addition to questions about the data base, INLAND can
* answer questions about the grammar itself.

“<COUNTRI>" may be any sequence of words following one of the patterna:
<COUNTRY> => THE {COUNTRY>

<COUNTRY> =>
- {COUNTRY> =>
KCOUNTRY> =>
<COUNTRY> =>
<COUNTRY> =>
{COUKTRY> => SOVIET UNION

<COUNTRY> => UNITED STATES

<COUNTRY> => UNITED XINGDOM

LCOUNTRY> => SOUTH AFRICA

<COUNTRY> => WEST GERMANY

<COUNTRY> => SAUDI ARABIA

KCOQUNTRY> => GREAT BRITAIN
" COUNTRY> => HM S
-"<COUNTRY>" may be any member of the aet {ANGOLA ANGOLAN ABABIA ARABIAN .
 ARGENTINA ARGENTINAN BRITAIN BRITISH CANADA CANADIAN DUTCH EGYPT EGYPTIAN
_ENGLAND ENGLISH FOREIGM FRANCE FRENCH GERHAH'GERMAN¥_H.M.S. HMS ITALIAN
ITALY LIBERIA LIBERIAN NETHERLANDS NORWAY NORWEGIAN PORTUGAL PORTUGUESE
"RUSSIA RUSSIAN SOVIET SFAIN SPANISH U.K. U.5. U S5.A. U.5.5. U.8.8.R. UK
'US UBA USS USSR VEHEZUELA VENEZUELAN}

~«Finished . L

7_define america 11ke usa’

"PARSEDI . B B)
w0 ® The user may ndd new: aynonyms to the vocabulary
: FIHISHED
8_redo 5

ACM Transachona on Dal.abn.qe Syatema, Vol 3 No. 2, June 1978

R

coaaco
mhrwvwn
> W»

Developing a Na'tura!' Lﬁnguaée Interface to Complex Data

: " . % Here we are using the "redo™ feature of INTERLISP.
PARSED!
‘Parse time: ,356 seconds

IDA: ({? NaM) (DSC EQ 'US'))

- IDA = ((HAM 'KENNEDYS JF') (NAM 'LOSS ANGELES') (NAM 'BATONS ROUGE')
“{NAM 'PHILADELPHIA') (NAM *POGY') (NAM 'ASPRO') (NAM 'SUNFISH') (HAM
VKAWISHIWI'))

Computation time for query: 1.098 seconds

- Real time for query: 67.16 seconds
SHIP = XENNEDY JF, LOS ANGELES, BATOM ROUGE, PHILADELPHIA, POGY, ASPRO,

SUNFISH, KAHISHIHI

9_how many of them are navy ships
THEM => ({DSC EQ 'US'))
PARSED!
® 'Them' or 'she' is currently always interpreted as a
® peference to a set of ships in the previcus query.
Parse time: ,505 seconds

IDA: ({7 NAM) (DSC EQ 'US') ({TYPE NE 'BULK') ARD (TYPE NE *TNKR")))

IDA = ((NAM 'KENNPDY$ JF') (NAM 'LOS% ANGELES') {NAM 'BATONS ROUGE')

(NMAM *PHILADELPHIA') (NAM "POGY') (NAM TASPRO') (NAM 'SUNFISH') (NAM

YEAWISHINI'))

Computation time for query: 1.205 seconds

Real time for gquery: B9.417 seconds

8 of them:

SHIP = KERNEDY JF, LOS ANGELES, BATON ROUGE, PHILADELPHIA, POGY, ASPRO,
SUHFISH KAHISHIHI

.10ugive astatus kitty hawk

Trying Ellipsis: Ellipsis has failed.

The parser does not expect the word "STATUS" to follow
| WGIVE"

Options for next word or aymbol are:
<RELATIVE.CLAUSE>, <SHIP>, <YALUE.SPEC>, THE
end-of-list

‘1 define {glve status kitty hawk)
1like {list the employment schedule, state of readiness, coinanding
_officer and position of kitty hawk)

PARSED!
% This is an example of the paraphrase feature of LIPER, A
$ pew pattern is defined by example.

Parse time: .70% seconds
® The system answers the query as a side-effact of parsing
® the paraphrase.

IDa: ((? ETERM) (7 EBEG) (7 EEND) (7 READY) (7 RANK) (? CONAM)

~{? PIP) (? PTD) (NAM EQ 'KITTYS HAWK'))

IDA = ((ETERM 'SURVOPS' EBEG 760103 EEND 750205 READY 2 RANK 'CAPT'
-CONAM 'SPRUANCE® R' PTP '3700N01T7O00E' PTD 7601171200))

Computation time for gquery: 2.725 seconds

Real time ‘for query: ‘173.404 seconds :
{EMPLMNT SURVDPS EMPBEG 760103 EMPEND 760205 READY 2 RANK CAPT NAME
'SPRUANCE R POSITION 3700NO1TO0E DATE 7601171200)

LIFER.TOP.GRAMMAR :=> :GIVE STATUS <SHIP>

% The generalized pattern for the paraphraae 15 added to
S § the grammar, . - .
F00B6 (GIVE STATUS <SHIP>) .

i % FOOB6 4im the new LISP runction created to be hhe reaponsa
b expreaaion for thia pattern. I’)

ACM 'l"mmactlons on Dauba.se Syntema, Vol. 3, No. 2, J une 1978

145

146 - G.G. Hendrix, E. D. Sacérdoti, D. Sagalowicz, and J. Slocum

12_give status us cruisers in the wediteranean
R spelling-> MEDITERRANEAN

PARSED!) .

“parse time: 2.855 seconds - : PR S
IDA:. {(? ETERM} (7 EBEG) (? EEMD) (7 RRADY) {7 RANK) {7 CONAM} -
A7 PIF) (7 PTD) (7 MAM) (NAT EQ 'US8') (TYPE1 BQ *Ct) (TYPE2 NE 'V')
(TYPE NE 'CGO')) C :)

IbA = ((ETERM 'CARESC' EBEG 760101 EEND 760601 READY 1 RANK 'CAPT!
CONAM 'MORRISY R' PTP T4000NOOGOOE" PTID 7601171200 NAM 'CALTFORNIA')
(ETERM 'CARESC' EBEG 751231 EEND T60615 READY 1 RANK "CAPT' CONAM
YHARMST J* PTP '3T00NOITOOE! FTD 7601171200 NAM *DANIELSS J') ...)

‘Computation time for query: 3.T738 saconds
Real time for query: 195.698 seoonds

_ EMPLMNT: CARESC CARESC CARESC CARESC
EMPBEG: 76010% 751231 51231 751231
EMPEND: 760601 * 750645 760615 760615
READY: 1 1 1 1
RANK: CAPT CAPT CAPT CAPT
HAME: MORRIS R EARMS J EVANS 0 FRENZINGER T

POSITION: YOOONOOGOOE 3700NO1700E 3T00NO1TOOE 3TOONOVTOOE
 DATE: 76017174200 7601171200 7601471200 7601171200
SHIP: CALTFORNIA DANIELS J WAINWRIGHT JOUBTT

{information about 8 other ships omitted}

13_done
- PARSED!
® The user indicates that he is finished with the sesaion.
File closed 8-Nov-77 11:11:17
Thank you
]

ACKNOWLEDGMENTS

Our debugging of LIFER and the continuing development of human engineering
~ features have been strongly influenced by interactions with interface builders. In
- particular, we would like to thank the following people for using the LIFER system
_ extensively and sharing their experiences with us: Staffan Lof (Swedish version of
LADDER and extensions to INLAND), Martin Epstein (medical database system
of melanoma cases), and Harry Barrow and Keith Lantz (interactive aid for car-
tography and photo interpretation). We would also like to thank Gordon Novsak
for recent revisions to the elliptical processor.

REFERENCES . . L
‘1. Baowx, J.8., axo Bunron, R.R. Multiple represéntations of knowledge for tutorial rea-
. poning. In Representation and Understanding, D.G. Bobrow and A. Collins, Eda., Academic
.~ . Press, New York, 1975, pp. 811-348. o L
2. BurTon, R.R. “Semantic grammar: An engineering technique for constructing natural
language understanding systems. BBN Rep. 3453, Bolt, Beranek, and Newrian, Boston,
. “Mase.; Dec. 1076. - e BT e e
3. Copp, E.F. Beven steps to rendezrvous with the casual user. In Dale Base Management,
. .J.W.Xlimbie and K.1. Koffeman, Eds.; North-Holand, Amaterdam, 1874, pp- 179-200. .
4. Computer Corporation of America. Datacomputer ‘yersion 1 user manual. CCA, ‘Cam-
. bridge, Mass., Aug, 1975, oo e T R
. Erman, LD, Ep. ACM BIGART Newsletter 61, Feb 1977 . "7 .~ " .
. Farrery,; J. The Datacomputer—A network data utility. Proc. Berkeley Workshop on
Distributed Dats Management and Computer Networks, Berkeley, Calif., May 1976
ACM Transactions on Databése Systems, Vol. 3, No. 2, June 1978.

=2~

- 10,

1,

13.
4.

15.
18.
17.
18.

19.

R g B BN

.8_.

Developing & Natural Language Intetace to Complex Data . 147

. Grosz, B.J. The representation and use of focus in dialog understanding. Ph.D. disserta-

tion, U. of California, Berkeley, May 1977.

. Harris, LR. ROBOT: A high performance natural Janguage processor for data base query.
. ACM SIGART Newsletter 61, Feb. 1977, pp. 36-40.

. Hanrrs, L.R. User oriented data base query with the ROBOT natural langusge query
- gystem. Proc. 3rd Int. Conf. on Very Large Dats Bases, Tokyo, Japan, Oct. 6-8, 1877.
Henparz, G.G. The LIFER manual: A guide to building practical natural language inter-

faces. Tech. Note 138, SRI Artificial Intelligence Center, Menlo Park, Calif., Feb. 1677.
Henprix, G.G. Human engineering for applied natural langusge processing. Proc. 5th
Int. Joint Conf. on Artificial Intelligence, Cambridge, Mass., Aug. 1977.

. Horcroer, J.E., anp Unwman, J.D. Formal Languages and Their Relaiion lo Aulomata.

Addison-Wesley, Reading, Mass., 1969.

Mornis, P., aNp Sacarowicz, D. Managing network access to a distributed data base.
Proc. 2nd Berkeley Workshop on Distributed Data Management and Computer Networks,
Berkeley, Calif., May 1877,

MryropouLos, J., Borarpa, A., CorEen, P., RoussorovLos, N., Tsorsos, J., anp Wone, H.
TORUS—A natural language understanding system for data management. Proc. 4th Int,
Joint Conf. on Artificial Intelligence, Thilisi, U.8.8.R., Aug. 1975.

Paxron, W.H. A framework for speech understanding. Tech. Note 142, SRI Artificial
Intelligence Center, Menlo Park, Calif., June 1877.

Sacerport, E.D. Langusge access to distributed data with error recovery. Proc. 5th
Int. Joint Conf. on Artificial Intelligence, Cambridge, Mass, Aug. 1977,

Sacarowicz, B. IDA: An intelligent data access program. Proc. 3rd Int. Conf. on Very
Large Data Bases, Tokyo, Japan, Oct. 1877,

Sowa, J.F. Conceptual graphs for a database interface. IBM J. Res. Develop. 20, 4 (July
1976), 336-357.

Terreiman, W. INTERLISP reference mapual, Xerox PARC, Palo Alto, Calif., Dec.
1975,

. Tompsox, F.B., aND TrompsoN, B.H. Practical natural language processing: The REL

system as prototype. In Advances in Compulers 18, M. Rubinoff snd M.C. Yovits, Eds.,
Academic Press, New York, 1975.

. Warger, D.E., Grosz, B.J., Hexorix, G.G., Paxron, W.H., Ropinson, A.E., anp Sro-

coM, J. An overview of speech understanding research at SRI. Proc. 5th Int. Joint Conf.
on Artificial Intelligence, Cambridge, Mass., Aug. 1677.

. Warrz, D. Natural language access to a large dats bese: An engineering approach. Proc.

4th Tot. Joint Conf. on Artificial Intelligence, Thilisi, U.S.8.R., Sept. 1975, pp. 868-812.

. Woons, W.A. Transition network grammars for natural language analysis. Commt. ACM

1%, 10 (Oct. 1970}, 501-606.

. Woops, W.A. An experimental parsing system for transition network grammara. In Natu-

ral Language Processing, R. Rustin, Ed., Algorithmics Press, New York, 1873.

. Woops, W.A., Bares, M., Brown, G., BRUCE, B., Cook, C., KrovsTap, J., MARBOUL,

J., Nasa-WEBRER, B., Scawartz, R., WoLF, J., anp Zus, V. Speech understanding eys-
tems, Final technical progress report. Tech. Rep. 3438, Bolt, Beranek, and Newman, Cam-
bridge, Mass., Dec. 1976.

. Woops, W.A., Earran, R.M., anp Nase-WEBBER, B. The lunar sciences natural language

information system. BBN Rep. 2378, Bolt Beranek and Newman, Cambridge, Mass.,
1972.)

Becéifed June 1977; reviseﬂ Novéinb’er 1977

ACM '.I‘ruisnction:a.o.r: Database Sy'ntemi, Vo, 3, No. 2.. Juhé 1978

