HUMAN ENGINEERING FOR APPLIED NATURAL
LANGUAGE PROCESSING

Technical Note 139

February 1977

By: Gary G. Hendrix
Artificial Intelligence Center

SRI Project T40D32 CTC

International

The work reported herein was conducted under
SRi's Internal Research and Development Program.

333 Ravenswood Ave., & Menlo Park, CA 94025
Internat:on (415) 326-6200 « TWX: 910-373-2046 e Telex: 334-486

ABSTRACT

Human engineering features for enhancing the usability of practical
natural language systems are described. Such features include spelling
correction, processing of incomplete (elliptiecal) inputs, interrogation
of the underlying language definition through English queries, and an
ability for casual users to extend the language accepted by the system
through the use of synonyms and paraphrases. A11 of the features
described are incorporated in LIFER, an applioétions~oriented system for
creating natural language interfaces between computer programs and
casual wusers. LIFER’s methods for realizing the more complex human

engineering features are presented.

ii

I INTRODUCTION

This paper describes aspects of an applications-oriented system for
creating natural 1language interfaces between computer software and
"casual users. Like the underlying research itself, the paper is focused
on the human engineering involved in designing practical and comfortable
interfaces. This focus has lead to the investigation of some generally
neglected facets of language processing, including the processing of
incomplete inputs, the ability to resume parsing after recovering from
spelling errors, and the ability for naive users to 1input English
statements at run time that extend and personalize the language accepted

by the system. The implementation of these features in a convenient
.package and their integration with other human engineering features are

discussed.

A. HISTORICAL PERSPECTIVE

There has been mounting evidence that the current state of the art
in natural language processing, although still relatively primitive, is
sufficient for dealing with some very real problems. For example, Brown
and Burton (1975) have developed a usable system for computer assisted
instruction, and a number of language systems have been developed for
interfacing to data bases, including the REL system developed by
Thompson and Thompson (1975), the LUNAR system of Woods et al. (1972),
and the PLANES system of Waltz (1975). The SIGART newsletter for
February, 1977, contains a collection of 52 short overviews of research

efforts in the general area of natural language interfaces.

_There has also been a growing demand for application systems. At
SRI‘s Artificial Intelligence Center alone, many programs are ripe for
the addition of natural languége -capabilities, including systems for
data base accessing; industrial automation, automatic programming,
.deduction, and judgmental reasoning. The -appeal of these systems to
builders and users alike is greatly enhanced when they are able to

accept natural language inputs.

B. THE LIFER SYSTEM

To add natural language capabilities to a variety of existing
.software systems, SRI has developed a package of convenient tools,
.collectively called LIFER, which facilitate the rapid construction of
‘natural language interfaces. The idea behind the LIFER system (Hendrix
1976, 1977) is to adapt existing computational linguistic technology to
practical applications while extending the technology to meet human
needs. These human needs are perhaps not central {6 the science of
language but they are certainly central factors in its application.
- Subsequent sections of this paper present some of the human engineering
features for interface users included in LIFER.* Several of the
nonlinguistic features were inspired by or taken directly** from
INTERLISP (Teitelman 1975), an interactive LISP programming system which
is itself an excellent example of thoughtful human engineering in

computer software.

IT HUMAN ENGINEERING FOR INTERFACE USERS

Some of LIFER's human engineering features are exemplified in the
interactions shown in Figure 1. These particular interactions involve a
LIFER interface to a data base of information about employees of a
university. Analogous LIFER interfaces to other types of software may

also be constructed.

From a language processing view, LIFER's most interesting features
are the elliptical processor, the spelling corrector, and the

“paraphraser. However, the usability of LIFER is influenced not so much

The LIFER Manual (Hendrix 1977) - describes how to define special-
.purpose languages for particular applications. It —also includes
information about LIFER’s human engineering features for interface
builders and about issues concerning applied computational linguistics.

** |IFER makes direct use of the INTERLISP spelling corrector and the
USE and REDD features.

FIGURE 1: Example Interactions with LIFER

1-What is the salary of Eric Johnson?
PARSED!

- (ID 327-36-8172 SALARY 19250)

2~Position and date hired?
Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF ERIC JOHNSON
(ID 327-36-8172 POSITION Assoc-Prof DATE-HIRED 8/1/70)

3-0f Robert Morgan
Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF ROBERT MORGAN
(ID 437-26-1190 POSITION Assis-Prof DATE-HIRED 6/1/73)

4-Employee 282-93-5307

Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF EMPLOYEE
282-93-5307

(ID 282-93-5307 POSITION Secretary DATE-HIRED 3/13/69)

5~0f professors in the computer science department
Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF PROFESSORS
IN THE COMPUTER SCIENCE DEFT

(ID 131-20-8U462 POSITION Prof DATE-HIRED 8/1/55)
(ID 416-16-2749 POSITION Prof DATE-HIRED 8/1/74)
(ID 179-80-1360 POSITION Prof DATE-HIRED 1/1/63)
(ID 257-58-3058 POSITION Prof DATE-HIRED 15/7/71)
(ID 207-49-9271 POSITION Prof DATE-HIRED 8/1/69)

6-What is the avarage salary and age for math department secretaries
AVERAGE <== spelling
PARSED!

SALARY
5 items accepted
Average is T7631.4999

AGE
4 items accepted [Note: the birth date of one secretary
Average is 28.1471 was the value N/A for not available.]
- T-Maximum
Trying Ellipsis: WHAT IS TBE MAXIMUM SALARY AND AGE FOR MATH DEPARTMENT

SECRETARIES

SALARY 10730
AGE 32

FIGURE 1 (continued)

8-What assistant Professors in compsci were hired after 1975
Trying Ellipsis: ELLIPSIS HAS FAILED

~ THE PARSER DOES NOT EXPECT THE WORD "COMPSCI" TO FOLLOW
_"WHAT ASSISTANT PROFESSOR IN".

' Options for next word or meta symbol are:
* <DEPARTMENT-NAME> <DEPARTMENT>

9-What is a <{DEPARTMENT-NAME>
PARSED!

<DEPARTMENT-NAME> may be any member of the set
{ANTHRO ANTHROPOLOGY ART BS BUSINESS ... CS ... Z00 ZOOLOGY}

<DEPARTMENT-NAME> may be any sequence of words following a pattern:
<DEPARTMENT-NAME> => BUSINESS ADMINISTRATION
COMPUTER SCIENCE
HOME ECONCMICS

10-Use CS for Compsei in 8

"PARSED!

(ID 263-42-6062 POSITION Assist-Prof DATE-HIRED B8/1/76)
(ID 501-13-1171 POSITION Assist-Prof DATE-HIRED 6/15/76)

11~What are their names and ages

PARSED!

(ID 263-41-6062 NAME (John W. Francis) AGE 36)
(ID 501-13-1171 NAME (Martha K. Scott) AGE 28)

12-How many associate professors are there in the compscl department
Trying Ellipsis: ELLIPSIS HAS FAILED

THE PARSER DDOES NOT EXPECT THE WORD "COMPSCI" TO FOLLOW

_"HOW MANY ASSOCIATE PROFESSORS ARE THERE IN THE".

Options for next word or meta symbol are:

' <DEPARTMENT-NAME>

13-Define compsci like CS
PARSED!
-COMPSCI

- 14<Redo -2
~ PARSED!
-5

FIGURE 1 ({concluded)

15-List the compsei secretaries
(ID 490-81-2131)
(ID 512-37-3594)
(ID 572~15-4276)

16-Print salary Martin Devine

Trying Ellipsis: ELLIPSIS HAS FAILED

THE PARSER DOES NOT EXPECT THE WORD "SALARY"™ TO FOLLOW
"PRINT".

Options for next word or meta symbol are:

THE

17-Let "print salary Martin Devine" be a paraphrase of "print the
salary of Martin Devine"

PARSED!

LIFER.TOP.GRAMMAR => <PRESENT> <ATTRIBUTES> <EMFLOYEE>

finished

18~Print salary Martin Devine
PARSED!
{ib 131-20-8462 SALARY 31500)

19-Age and position
Trying Ellipsis: PRINT AGE AND POSITION MARTIN DEVINE
(ID 131-20-8462 AGE 57 POSITION Prof)

20-Show date hired compsci professors making over 30000
PARSED!

(ID 131-20-8462 POSITION Prof DATE-HIRED 8/1/55)
(ID 207-49-9271 POSITION Prof DATE-HIRED 8/1/69)

21-Let "DUMPALL Martin Devine"™ be a paraphrase of
"What is the ID, position, department and
salary of Martin Devine"
PARSED!
LIFER.TOP.GRAMMAR => DUMPALL <EMPLOYEE>
finished

22-Dumpall employees earning over 35000

PARSED!

(ID 122-22-8769 POSITION Prof DEPT Math SALARY 35500)

(ID 178-31-1942 POSITION Prof DEPT Physies SALARY 36000)
(ID 206-56-1620 POSITION President DEPT N/A SALARY 37500)

23-! (CONS °THIS “(INTERACTION USES INTERLISP DIRECTLY))
~ (THIS INTERACTION USES INTERLISP DIRECTLY)

by the power of individual features as by the aggregate effect of having
a number of features working together to support the user. It 1is the
mix of features at various levels of complexity that should be looked

for in studying the interactions of the example.

A, ENTERING AN INPUT

After INTERLISP (the language in which LIFER 1is currently
implemented}) outputs its prompt characters, the user may type in
queries, commands, or assertions to the system in ordinary English.*
There is no need to call the parser explicitly. Both upper and lower
case are allowed, and punctuation is optional. For example, in the
first line of Figure 1, the user asks the question "what is the salary
of Eric Johnson?" after INTERLISP types the prompt "1-".

B. FEEDBACK

LIFER parses typical inputs, such as interaction 1, in well under a
‘second of CPU time on the DEC PDP KL-10.** However, when the CPU is
heavily loaded, users may become concerned about their inputs after even
a brief delay. LIFER seeks to relieve this anxiety by providing a
constant stream of feedback. For example, the CRT cursor or teletype
print head follows the parsing operation as it works through an input
from left to right. This feedback is an important humanizing feature,
analogous to eye contact, head nodding, and beard stroking. Another
feedback is that the system types the message

PARSED!
when LIFER has finished analyzing an input and is ready to call
application software (i.e., the system tc which LIFER is providing an
interface) to answer the question, carry out the command, or assimilate

- -the assertion communicated by the input.

Of course, only a subset of English is acﬁually accepted by any
"particular interface, but experience has shown that this subset can be
designed to have wide coverage in a particular application area.

Timings are based on a vocabulary of 1000 words and a grammar
containing over 600 production rules.

6

C. INCOMPLETE INPUTS

If the user has just asked
WHAT IS THE SALARY OF ERIC JOHNSON
- and now wishes to know Johnson’s position and date hired, it is far more
~ convenient and natural to simply ask
POSITION AND DATE HIRED
than to laboriously type out
WHAT IS THE POSITION AND DATE HIRED OF ERIC JOHN3ON
Accommodating the human tendency to abbreviate inputs is an important
consideration for applications systems. Although some other systems
make it possible to define grammars that accept incomplete sentences as
"complete" inputs,* LIFER makes this unnecessary by automatically
deducing possible elliptical (i.e., incomplete) structures from the
‘grammars supplied for complete constructions. (See interaction 2 of

Figure 1.)

LIFER first attempts to parse an input as a complete sentence.**
Only when this fails is elliptical analysis attempted. To give the user
feedback concerning this shift in operations, LIFER types the message

TRYING ELLIPSIS:

when the elliptical analysis routine is invoked. If elliptical analysis
is successful, then, as an additional feedback to the user, the system’s
expansion of the elliptical input is printed after the M"TRYING
- ELLIPSIS:" message, replacing the "PARSED!"™ message printed for

complete inputs.

Inputs 2 through 5 of Figure 1 are different elliptical variations
on the same basic sentence pattern, the pattern of input 1. Input 2
causes a substitution for the attributes sought. Inputs 3 through 5

_substitute for the individuals whose attributes are sought. Note that

.

See Walker (1976).

** But this cperation may be skipped by typing a comma as the first

character in an input that is o¢nly to be processed elliptically.

T

input 5 seeks the position and date hired for a whole c¢lass of

individuals.

D. SPELLING CORRECTTION

A significant consideration when dealing with human-generated
inputs is that they often contain spelling errors. Whether the user
“actually misspells a word or simply mistypes it, the effect is the same:
garbled input. In constructing a language system for the sake of
studying language understanding, there is no real need for a spelling
correction capability. But users of application systems are justly
irritated when spelling errors cause abortion of processing and result

in delays and tediocus retyping.

_ LIFER’s spelling correction ability, which makes use of INTERLISP's
“ spelling corrector, is illustrated by interaction 6. A message is
printed indicating that a spelling correction has been made, and the

respelling is printed directly below the originally misspelled word.

E. ERROR MESSAGES

Interaction 8 illustrates how LIFER responds when it cannot
successfully interpret an input. Having failed to parse at both the
sentence level and the ellipsis level, and being unable to proceed
through spelling correction, LIFER gives up and prints an error message.
This error message is not such cryptic nonsense as

ERROR TRAP AT LOC 13730,
but is a piece of useful information that can help a nailve user
understand the problem plaguing his input and aid in a reformulation.
'(Interface builders may call special diagnostic rbutines for
- sophisticated error information, but that is ancther story.) The
_current error message (one of several) indiecates that LIFER understood
_ WHAT ASSQCIATE PROFESSOR IN
but then had trouble with the word COMPSCI. It was expecting a
<DEPARTMENT-NAME>.

At this point, the user may realize that COMPSCI might not be
included in the system’s lexicon. Ancther way of expressing the
department name --such as COMPUTER SCIENCE-- could be tried. On the
other hand, the user may be stumped, having no idea what <DEPARTMENT-

- NAME> is. This brings up the next topic, and interaction 9.

F. INSPECTION OF THE LANGUAGE DEFINITION

LIFER provides easy access to information about the underlying
language definition through natural language. Sophisticated users and
interface builders may use this mechanism to refresh their memories on
the underlying structures and capabilities. HNaive users, as illustrated
in the last interaction, may need access to the language definition to

aid in the understanding of error messages.

Interaction 9 shows one type of question that provides access to
the underlying structures. The response to this input indicates both
words and phrases that may be substituted for <DEPARTMENT-NAME>.

G. EXPLICIT SUBSTITUTIONS

When a wuser wishes to ask some simple variant of an earlier
question but is not in the correct context for using ellipsis (e.g.,
there are intervening sentences), direct reference may be made +to the
garlier input, as is illustrated by interaction 10. Such references and
substitutions may save typing and so reduce both the user’s work and the
likelihocd of typing errors. This is a standard feature of INTERLISP

and is not unique to LIFER.

H. PRONOMTNAL REFERENCE

The rescluticn of anaphoric reference, especially pronocuns,
presents complex problems for language processing systems.*® LIFER has no
magic answers ¢to these problems, but does provide facilities for
handling some of the simpler cases. One such case is illustrated by

interaction 11.

1. DEFINING SYNONYMS

In interacticn 12, the user again attempts to use COMPSCI and again
receives an error message. It may very well be that he is accustomed to
using this abbreviation for computer science and does not want to adapt
tc any of the synonyms currently accepted by the systenm. Rather, he
wants the system to adapt to HIS preferences. In interaction 13, the
user tells the system to define COMPSCI 1like CS.** Henceforth, these

words will be synonyms.

In interaction 14, interaction 12 is reinvoked through INTERLISP's
REDO feature. This time, COMPSCI is understced. In interaction 15,

COMPSCT is used in a new input.

* See Grosz {1977} for an interesting discussion of discourse problems
and scphisticated mechanisms for dealing with them.

*¥ Synonyms may alsc be defined through the more general concept of
paraphrase. A paraphrase interaction equivalent to the use of synonyms
in interaction 13 is the following:

13-Let "“How many associate professors are there in the COMPSCI
department" be a paraphrase of "How many asscciate professors
... -are there in the CS department®
PARSED! .

.- 'MAY LIFER ASSUME THAT "COMPSCI" MAY ALWAYS BE USED
o - FOR nCs©
(TYPE YES OR NO)
CYES -
<DEPARTMENT-NAME> => CS3
finished
14— ..

i0

J. DEFINING PARAPHRASES

The synonym feature presented above allows LIFER to adapt to
individual users by learning new words. The paraphrase feature allows
LIFER to adapt %o new grammatical constructions. For example, a user
“may grow tired of typing syntactically "correct" English queries and
wish to use an abbreviated format. In interaction 16, the user attempts
to use a condensed format and is confronted with an error message. In
interaction 17, an ordinary English construction is employed to tell the
system that the abbreviated form is henceforth to be accepted as
legitimate. LIFER analyzes the specific paraphrase it has been given as
~an example, seeking to generalize the paraphrasing to other cases.
(More will be said about this later.)} Production rules showing the
results of this generalization are printed for the benefit of the more

sophisticated user.

_ In interaction 18, the new abbreviated format is tested.
Interaction 19 illustrates an elliptical expansion based on the user-
defined format. Interaction 20 illustrates the fact that LIFER has
generalized the original paraphrase example to cover other abbreviated

constructions that are similar.

Interactions 21 and 22 provide further illustrations of LIFER s
paraphrase ability. Through interaction 21,
DUMPALL x
comes to have the meaning

INDICATE THE ID, POSITION, DEPARTMENT, AND SALARY OF x

K. ACCESSING THE HOST LANGUAGE

The user who knows INTERLISP may wish to mix interactions with the
LIFER parser and interactions with INTERLISP. As illustrated 1in
" interaction 23, this 4is easily done by preceding inputs for INTERLISP
with the symbol ™IV,

11

R i

L. PROVIDING COMFORTABLE LINGUISTIC COVERAGE

In the final analysis, the most important piece of human
engineering for users is that of supplying an interface language
covering the range of linguistic structures needed to communicate
.comfortably with the application software. Such features as spelling
correction and elliptical processing, although important, can never make

up for deficiencies in basic linguistic capabilities.

Given the current state of the art in language processing, it would
be futile toc attempt to provide a definitive specification of English
having sufficient generality to cover all potential applications.
'LIFER’s approach to adequate coverage is not to pursue a definitive
specification, but rather to supply the framework, guidance, and
mechanisms that allow an interface builder, in a reasocnable amount of
time, tc create a solid, practicable, special purpose language
definition, covering the spectrum of linguistic structures most relevant

to a particular application.*

No attempt can be made here to detail the particular set of
interactive functions that LIFER provides for specifying an application

language,** but a few key points may be mentioned:

(1) Interface builders work within the framework of
INTERLISP, a powerful and flexible host language with advanced
debugging facilities. Lower level languages may have faster
execution, but flexibility and programming ease are what count
in building workable systems with reasonable amounts of
effort.

{(2) Extensions and modifications to the language
specification may be freely mixed with calls to the parser.
There is no grammar compilation phase. This allows interface
builders %o operate in a rapid, extend-and-test mode, and
supports features that medify the language at parse time, such
as the paraphraser.

¥ Special purpose languages are perhaps most easily created with LIFER
‘by adopting the notion of a "semantic grammar," as advocated by Brown
and Burton (1975).

** thorough discussion of this topic is contained in The LIFER Manual
{Hendrix, 1977).

12

(3) The interface builder is isclated from the internal
structures that LIFER builds for purposes of inereasing
parsing efficiency. In particular, the user communicates with
LIFER in terms of simple producticon rules maintained
internally as transition networks (Woods 1970)}.

(4) LIFER has a powerful grammar-editing facility (which
uses the INTERLISP editor).

(5} LIFER has a package of functions for grammar
interrogation and debugging.

(6) Elliptical constructions are handled automatically
and so need never be considered by the interface builder.

(7) There is a reasonable manual describing how to use
the system.

III IMPLEMENTATION OF SPECIAL FEATURES

This section presents an overview of LIFER’s implementation of the

spelling correction, elliptical processor, and paraphraser.

A, IMPLEMENTATION OF SPELLING CORRECTION

LIFER uses a left-to-right parser following a simplification of the
ATN system of Woods (1970). Each time the parser discovers that it can
no longer follow transitions along the current path, it records the
‘failure on a failpoint 1list. Each entry on this list indicates the
state of the system when the failure occurred (i.e., the position in the
transition net and the values of various stacks and registers) and the
current position in the input string. Local ambiguities and false paths
make it guite normal for failpoints to be noted even when a perfectly

accepitable input is processed.

if a complete parse is found for an input, the failpoints are
ignbred. But if an input cannot be parsed, the 1list of failpoints is
:used by the spelling corrector, which selects those failpoints
associated with the rightmost position in the input at which failpoints

‘were recorded. It is assumed that failpoints occurring tc the left were

13

not caused by spelling errors, since some transitions using the words at
those positions must have been successful for there to be failpoints to

their right.

The spelling corrector further restricts the rightmost failpoints
by locking for cases in which a rightmost failpocint G is dominated by
ancther rightmost failpoint F. G is dominated by F if G is a failpoint
in a subgrammar that was PUSHed to in a futile attempt to follow a PUSH
arc from F. Since G and F are both rightmost failpoints, G represents a
stall at the start node of the PUSHed-t¢ subgrammar. {(Had any
transition been made, G would be tc the right of F.) Hence, if F is
restarted, G 1is reattempted as one means of transferring from F. G,
therefore, does not need to be considered independently. A1l dominated

rightmost failpoints are dropped from consideration.

Working with the rightmost, dominating failpoints, the spelling
corrector examines the assocciated ares to find all categories of words
that would allow a transition. (For PUSH arcs, this requires an
-exploration of subgrammars.) Using the INTERLISP spelling corrector,
the word of the input string associated with the rightmest failpoints is
'compared with the lexical items of the categories just found. If the
"misspelled" word is sufficiently similar to any of these lexical items,
the closest match is substituted. Failpoints associated with lexiecal
‘categories that include the new word are then sequentially restarted
until one leads to a successful parse. (This may produce more spelling
correction further to the right.) If all restarts fail, other close
lexical items are substituted for the "misspelled" word. If these also

fail, LIFER prints an error message.

LIFER encourages the use of semantically oriented syntactice
categories, such as <EMPLOYEE> and <DEPARTMENT-NAME>, rather than such
standard categories as <NOUN>. The use of these more specialized
.categories greatly facilitates spelling correction by severely

restricting the number of possibly valid words at any point in the

* [See footnote on next page.]

14

B. IMPLEMENTATION OF ELLIPSIS

LIFER s mechanism for treating elliptical inputs takes advantage of
the assumption that specifications for application languages tend to
encode a considerable amount of semantic information in the syntactic
- categories. Thus, similar syntactic constructions tend to be similar
semantically. LIFER’s treatment of ellipsis is based on this notion of
 similarity. During elliptical processing, LIFER is prepared to accept
any string of words that is syntaectically analogous to any contiguous
substring o¢f words in the 1last input. (If the last input was

elliptical, its expansion intc a complete sentence is used.)

LIFER s concept of analogy appeals to the syntax tree of the LAST
input that was successfully analyzed by the system. For any contiguous
substring of words in the LAST input, an "analogy pattern" may be
defined by an abstraction process that works backwards through the old
syntax tree from the words of the substring toward the roct. Whenever
the syntax tree shows a portion of the substring to be a complete
expansion of a syntactic category, the category name is substituted for
that portion. The analogy pattern is the final result after all such

substitutions.

For example, consider how an analogy pattern may be found for the
substring
OF MARTIN DEVINE,
using the syntax tree*® shown in Figure 2 for a previous input, WHAT IS
THE SALARY OF MARTIN DEVINE? Since the MARTIN DEVINE portion of the
substring is a complete expansion of <NAME>, the substring is rewritten
as OF <NAME>, Similarly, since <EMPLOYEE> expands toc <NAME>, the

substring is rewritten as QF <EMPLOYEE>. Since no other portions of the

An example LIFER system (described by Sacerdoti, 1977) has a
_vocabulary of over 1000 words, excluding numbers and coded symbols.
.This vocabulary is divided among 131 categories, 113 of which contain 10
“or less words. 15 categories contain 11 to 50 words, and the largest
contains 144.

** WpRESENT" is used in the sense of "tc show for inspection.®

15

substring are complete expansions of other syntactic categories in the
tree, the process stops and OF <EMPLOYEE> is accepted as the most
general analogy pattiern. If the current input matches this analogy
~ pattern, LIFER will accept it as a legitimate elliptical dinput. For
. example, the analogy pattern OF <EMPLOYEE>, extracted from the last

input, may be used to match sueh current elliptical inputs as

OF ERIC JOHNSON
OF EMPLOYEE 494-81-7207
and OF PROFESSORS IN THE MATH DEPARTMENT

Note that the expansion of <(EMPLOYEE> need not parallel its expansion in
the old input that originated the analogy pattern. For example, oF
EMPLOYEE 494-81-7207 4is not matched by expanding <EMPLOYEE> to <NAME>
but by expanding <EMPLOYEE> to EMPLOYEE <ID-NUMBER>.

WHAT IS THE SALARY OF MARTIN DEVINE?

AUV ! ! \ /7
<PRESENT> ! <ATTRIBUTE> | <NAME>
\ i \ | i
\ \ \ ! <EMPLOYEE>
\ | S—— NN/
\ NN/ /
\ <ITEM>
\ /

<LIFER.TOP.GRAMMAR>

FIGURE 2: A Syntax Tree

To compute responses for elliptical inputs matching OF <EMPLOYEE>,
LIFER works its way back through the old syntax tree from the common
parent of OF <EMPLOYEE> toward the root. First, the routine for
computing the value of an <ITEM> from constituents of the production

<ITEM> => THE <ATTRIBUTE>
.:is invoked, using the new value of <EMPLOYEE> (which appeared in the
current elliptical input) and the ¢1ld value of <ATTRIBUTE> from the last
.sentence. Then, using the newly computed value for <ITEM> and the old
value for <PRESENT>, a new value 1is similarly computed for
{LIFER.TOP.GRAMMAR>, the roct of the syntax tree.

16

Some other substrings with their associated analogy patterns are
shown below, along with possible new elliptical inputs matching the

patterns.

substring: THE SALARY
pattern: THE <ATTRIBUTE>
a match: THE AGE AND DATE HIRED

substring: SALARY OF MARTIN DEVINE
pattern: <ATTRIBUTE> QF <EMPLOYEE>
a match: AGE OF CS SECRETARIES

substring: WHAT IS THE SALARY
pattern: <PRESENT> THE <ATTRIBUTE>
a matech: PRINT THE DATE HIRED

substring: WHAT IS THE SALARY OF MARTIN DEVINE
pattern: <LIFER.TOP.GRAMMAR>
a match: fany complete sentence]

For purposes of efficiency, LIFER's elliptical routines have been
coded in such a way that the actual generation of analogy patterns is
avcided.* Nevertheless, the effect is conceptually equivalent to
attempting parses based on the analogy patterns of each of the

contiguous substrings of the last input.

C. IMPLEMENTATION OF PARAPHRASE

LIFER ‘s paraphrase mechanism also takes advantage of semantically
oriented syntactic categories and makes use of syntax trees. In the
typical case, the paraphraser is given a model sentence, which the
system can already understand, and a paraphrase. The paraphraser’s
general strategy 1is to analyze the model sentence and then look for
similar structures in the paraphrase string.

¥ [See footnote on next page.]

17

1. The Basic Method

In particular, the paraphraser invokes the parser to produce a
. syntax tree of the model. Using this tree, the paraphraser determines
all proper subphrases of the model, i.e., all substrings that are
complete expansions of one of the syntactic categories listed in the
tree. Any of these model subphrases that also appear in Lhe paraphrase
string are assumed to play the same role in the paraphrase as in the
model itself. Thus, the semantically oriented syntactic categories that
account for these subphrases in the model are reused to account for the
corresponding subphrases of the paraphrase. Morecover, the relationship
between the syntactic categories that is expressed in the syntax tree of
the model forms a basis for establishing the relationship between the

corresponding syntactic units inferred for the paraphrase.

* [Footnote from last page.] Abstractly, the actual algerithm is as
follows. If the last input was parsed by the top-level production
<LIFER.TOP.GRAMMAR> => <X1> <X2> ... <XN>

then elliptical processing begins by attempting to match the new input
to the left portion of the right side of this production. If the new
input matches <X1> ... <Xj>, leaving <¥j+1> ... <Xn> unused, then
<Xj+1> ... <Xn> are assumed from the old input. If the new input does
not match the left portion of the pattern <X1> ... <¥n>, then the
process restarts, using the 1left-truncated pattern <¥2> ... <¥n>. In
general, if the new input matches subpattern <Xi> ... <X]J>, then the
old <Xi1> ... <Xi-1> and <Xj+1> ... <Xn> are used to expand the
elliptical input into a new top-level sentence.

The process is complicated by the fact that any of the <X> may

itself have been expanded in the last input by a producticn
<¥> => <Y1y K¥2> ... <Ym>

If the new input does not account for <Xi> when attempting the match
<Xi> ... <Xn>, then <¥1> ... <¥n> is substituted for <Xi>, with the
hope that the elliptical input may begin somewhere in the middle of the
expansion of the o0ld <X¥i>. Only after the <Y¥> have been exhausted by
- left truncation will <Xi+1> become the left-most sSymbol for a matching
~attempt. Similarily, if <Xi> ... <Xi+m> has accounted for the left
portion of an elliptical input, but <Xi+m+1> does not matech the left
part of the remainder of the input, then the expansion of <Xi+m+15,
taken from the last input, is substituted for <X+m+1> and the match
continues. As sometimes happens, the elliptical input may end somewhere
in the middle cof the expansion of <Xi+m+1>.

18

a. Defining a Paraphrase Production

To find correspondences between the model and the
paraphrase, the subphrases of the model are first sorted. Longer
phrases have preference over shorter phrases, and for two phrases of the

' same length, the 1leftmost is taken first. For example, the sorted

phrases for the tree of Figure 2 are

. <ITEM> THE SALARY OF MARTIN DEVINE
. <PRESENT> WHAT IS
<NAME> MARTIN DEVINE -~-not used

<EMPLOGYEE> MARTIN DEVINE
<ATTRIBUTE> SALARY

U Eo N —

Since the syntax tree indicates <EMPLOYEE> => <NAME> => MARTIN DEVINE,
both <NAME> and <EMPLOYEE> account for the same subphrase. For such
-cases, only the most general syntactic category (<EMPLOYEE>) is

considered.

Beginning with the first (longest) subphrase, the
subphrases are matched against sequences of words in the paraphrase
string. (If a subphrase matches two sequences of words, only the
leftmost match 1s used.) The longer subphrases are given preference
since matches for them will lead to generalizations incorporating
matches for the shorter phrases contained within them. Whenever a match
is found, the syntactic category associated with the subphrase is
substituted for the matching word sequence in the paraphrase. Tnis

process continues until matches have been attempted for all subphrases,

For example, suppose the paraphrase proposed for the

question of Figure 2 is

FOR MARTIN DEVINE GIVE ME THE SALARY
Subphrases 1 and 2, listed above, do not match substrings in this
“paraphrase. Subphrase 3 is not considered, since it is dominated by
-subphrase 4. Subphrase U4 does match =a sequence of words in the
paraphrase string. Substituting the associated category name for the
word sequence yields a new paraphrase string:

FOR <EMPLOYEE> GIVE ME THE SALARY

19

Subphrase & matches a seguence of words in this updated paraphrase
atring. The asscciated substitution yields
. FOR <EMPLOYEE> GIVE ME THE <ATTRIBUTE>
Since there are no more subphrases to try, the structurs
<LIFER.TOP.GRAMMAR> => FOR <EMPLOYEE> GIVE ME THE <ATTRIBUTE>

is created as a new production to account for the paraphrase.

b. Defining a Respcnse Function for the Paraphrase
Producticn

A new semantic function indicating how to respond to
inputs matching this paraphrase production is programmed automatically
from information in the syntax tree of the model. In particular, the

syntax tree indicates which productions were used in the mocdel to expand

various syntactic categories. Associated with each of these productions

is a function for computing the interpretation of associated subphrases
from subphrase constituents. The paraphraser reuses selected functions

of the model to create a new function for the paraphrase production.

The manner in which this is done is best illustrated by example.

Continuing the example of Figure 2, the syntax tree
indicates that the production

<LIFER.TOP.GRAMMAR> => <PRESENT> <ITEM>
was used. Associated with this production is a function F1 (not shown
in the figure, but referenced in the actual tree) that computes a value
for <LIFER.TOP.GRAMMAR> from the values of <PRESENT> and <ITEM>.* Using
the notation "#<X>" to indicate "the wvalue of <X>," the role of F1 may
be expressed by the eguation
_ #<LIFER.TOP.GRAMMAR> = FI1{{#f<PRESENT>, #<ITEM>)
Another production indicated by the model syntax tree is

<ITEM> => THE <ATTRIBUTE> OF <EMPLOYEE>

This production is associated with a function F2, where

#<ITEM> = F2(#<ATTRIBUTE>, #<EMPLOYEE>)

* Since <LIFER.TOP.GRAMMAR> is the sentence-level syntactic category,
this value is, in fact, the response to the total input.

20

The paraphraser must define a new function FN for the

paraphrase production

LIFER.TOP.GRAMMAR> => FOR <EMPLOYEE> GIVE ME THE <ATTRIBUTE>
Moreover, the value computed by FN must be the same as the value
~computed as a response to the model sentence. Since the categories
| {EMPLOYEE> and <ATTRIBUTE> appear on the right side of the paraphrase
production, the paraphraser assumes that FN is a function of #<EMPLOYEE>
and #<ATTRIBUTE>. Since FN must produce the same value as produced by
the model c¢all to F1, the paraphraser assumes that

FN(#<EMPLOYEE>, #<ATTRIBUTE>) = F1{#<PRESENT>, #<ITEM>)

The syntax tree indicates that the expansion of <PRESENT>
is independent of the expansions of <EMPLOYEE> and <ATTRIBUTE>. BHence,
the paraphraser assumes #<{PRESENT> to be a constant in the computation
of FN. That is, the value of <PRESENT> used in the model will always be
used as the value of <PRESENT> in computing FN in terms of F1.

In contrast, the syntax tree shows <ITEM> fo incorporate
both <EMPLOYEE> and <ATTRIBUTE>. Hence, both of these parameters tc FN
may influence #<ITEM>. Function F2 indicates the nature of this
influence. Therefore, in the equation defining FN, the paraphraser
replaces #<ITEM> by the expression that computes it:

FN(#<EMPLOYEE>, #<ATTRIBUTE>) =
F1(#<PRESENT>, F2(#<ATTRIBUTE>, #<EMPLOYEE>))
This new equation completely specifies FN in terms of constants, formal
parameters of FN, and previcusly defined functions. That is, FN is
defined in terms of the constant #<PRESENT> (taken from the original
model input), the formal parameters #<EMPLOYEE> and #<ATTRIBUTE>, and

the previously defined functions F1 and F2.

2. Greater Generalization

_ The goal of the paraphrase routine is to account for the
.paraphrasé in the most general terms possible, s¢ that new constructions

created to account for a particular paraphrase will cover a maximum

21

number of new input possibilities. For certain cases, the coverage
produced by the basic method presented above 1is extended by the
paraphraser as follows. Suppose some model subphrase S that matches a
substring of the paraphrase is associated with the syntactic unit <M> in
: ihe model syntax tree. Such an <M>, in turn, will appear in the tree as
a direct component of a more general unit <G> such that
G> => x My

where X and y are socme (possibly empty) sequences of linguistic units.
Since the subphrase for <G> itself was not matched in the paraphrase,
either the x or the y or both did not appear in the paraphrase (at least
not in the necessary juxtaposition to <M>}. Nevertheless, if the
grammar allows the production

<G> => M
- and if the value assigned tc <G> is the same for both

<G> => <M

and <G> => x M> ¥y

then <G> 1is substituted for <M> in the paraphrase %to produce a

construction with broader coverage.

For example, suppose that the model input is
WHAT IS THE 3ALARY OF EMPLOYEE MARTIN DEVINE
and that the syntax tree is like that of Figure 2 except that <EMPLOYEE>
- eX¥pands as
EMPLOYEE MARTIN DEVINE

\ \ /
<TITLE> <NAME>
\ /
{EMPLOYEE>

Suppose further that the paraphrase is again

_ FOR MARTIN DEVINE GIVE ME THE SALARY
Unlike the earlier example in which <EMPLOYEE> was substituted for
MARTIN DEVINE, the substitution algorithm of the last section now only

© allows <NAME> to be substitufted. The resultant paraphrase is

_ FOR <NAME> GIVE ME THE <ATTRIBUTE>
This structure accounts for the given paraphrase, but not for
FOR PROFESSOR MARTIN DEVINE GIVE ME THE AGE

22

However, using the generalization process just ocutlined, if

the system allows
<EMPLOYEE> => <NAME>
and if the value of <EMPLOYEE> defined in this fashion is the same as
the value using
<EMPLOYEE> => <TITLE> <NAME>
then <EMPLOYEE> will be substituted for <NAME> in the paraphrase
structure to produce
FOR <EMPLOYEE> GIVE ME THE <ATTRIBUTE>
This more general construction accounts for the inputs
FOR PROFESSOR MARTIN DEVINE GIVE ME THE AGE
FOR EMPLOYEE 205-56-1620 GIVE ME THE DATE HIRED
FOR MATH DEPARTMENT SECRETARIES GIVE ME THE SALARY

3. Confinement to Subgrammars

Consider paraphrases of the form "x y z", where the model is
of the form "x S y" and S is a proper subphrase assoclated with a
syntactic category <C». The paraphraser traps this type of conditicon
and asks the user if y is always a paraphrase of 3 or is simply a
paraphrase in the context of x and z. If the user indicates a context
dependency, then processing proceeds as usual. If the user indicates
that y is a paraphrase of 3 in every context, then LIFER will make ¥y a
paraphrase of 3 in the subgrammar accounting for <C>. The influence of
this paraphrase will then be felt everywhere that category <C> 1is used.

{(For example, see footnote of section II-I.)

23

IV CONCLUDING REMARKS

During the last year, a number of interfaces have been constructed
using LIFER, and the respense from users has been enthusiastic. It is
worth noting that interfaces for several of the simpler applications
toock less than a week to create. Most of these simple interfaces were
to small, relational data bases. However, interfaces were also
constructed for a task scheduling and resource allocating system, a
computer-based expert system, and a program that answers questions about

the relationships between procedures in a large body of computer code.

_ LIFER has also been used in e¢reating more ambitious interfaces.
One of these, developed with several man-months (but not several man-
years) of effort, is the INLAND component of the LADDER system described
by Sacerdoti (1977). This system, which incorporates a grammar with
over 600 "productions" and a lexicon with over 1000 words (not to
mention numbers and numerous coded symbols), provides natural language
access to a relatively large collection of data that is distributed

among multiple remote computers on the ARPA net.

In summary, the experience with LIFER indicates that genuinely
useful natural language interfaces can be created and that the creation
process takes c¢onsiderably less effort than might be expected. Human
engineering has played a key role in making this possible. The
application of similar engineering ©o more sophisticated language
processing technology, such as that developed in the SRI Speech
‘Understanding Project (Walker 1976), promises to produce practical

systems having much greater fluency in their user’s natural language.

24

REFERENCES

Brown, J. 5. and Burton, R. R. Multiple Representations of Knowledge
for Tutorial Reasoning. In Bobrow, D. G. and Collins, A. (Eds.)
Representation and Understanding, Academic Press, New York, 1975,
311-3449,

Grosz, Barbara J. The Representation and Use of Focus in Dialogue
Understanding. Ph.D. Thesis, University of <California, Berkeley,
California, June 1977.

Hendrix, G. G. LIFER: A Natural Language Interface Facility.
Technical Note 135, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, 1976.

Hendrix, G. G. The LIFER Manual: A Guide to Building Practical Natural
Language Interfaces. Technical Note 138, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park, California, 1977.

Sacerdoti, E. D. Language Access to Distributed Data with Error
Recovery. Adv. Papers of 5th Intl, Joint Conf. on Artificial
Intelligence, Cambridge, Massachusetts, August 1977.

Teitelman, W. INTERLISP Reference Manual. XEROX Palo Alto Research
Center, Palo Alto, California, 1975.

Thompson, F. B. and Thompson, B. H. Practical Natural Language
Processing: The REL System Prototype. In Rubinoff, M. and
Yovits, M, C. (Eds.) Advances in Computers, Academic Press, New

Tork, 1975, 109-168.

Walker, D. E. (Ed.) Speech Understanding Research. Annual Report,
Project 3804, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, 1976

Waltz, D. L, Natural Language Access to a Large Data Base: An
Engineering Approach. Adv. Papers Hth 1Intl. Joint Conf. on
Artificial Intelligence, Tbilisi, U.3.3.R., September 1975, 868-872.

Woods, W. A. Transition Network (Grammars for Natural Language
Analysis. CACM 13, 10, October 1970, 591-606.

Woods, W. A., Kaplan, R. M., -and Nash-Webber, B. The Lunar Sciences
Natural Language System: Final Report. Report No. 2378, Bolt
Beranek and Newman Inc., Cambridge, Massachusetts, 1972.

25

