B Té_chiiicai Note 138_}” '+ February 1977 .

THE LIFER MANUAL

S '_'f'_APPROVED FOR PUBLIC RELEASE

~ - 333Ravenswood Avenue o Menlo Park, CA 94025-3493 o (415)326-6200 o FAX: (415)326-5512 ¢ Telex:334486 .~

A Guide to Building Pract'llcal Natural
| "'_'Language Interfaces S R T

..-"_:_'Prepared by
.'.':"."Gary G. Hendrlx

- Artificial- Intelhgence ‘Center | .
.":;_"'Computmg and Bnglneermg Scxences DlVlSlOD

DISTRIBUTION UNLIMITED

e The work reported herem was conducted under SRIs Inlema} Reqearch
_and Development Program A e P o

The LIFER Manual Page 1
ABSTRACT

This document describes an application-oriented system for
creating natural language interfaces between existing computer
programs (such as data base management systems) and casual
users. The system is easy to use and flexible, offering a range
of capabilities that support both simple and complex interfaces.
This range of capabilities allows beginning interface bﬁilders
to rapidly define workable subsets of English and gives wmore
advanced builders the tools needed to produce powerful and more
efficient language definitions. The system includes an
automatic mechanism for handling certain classes of elliptical
(incomplete) inputs, a spelling corrector, a grammar editor, and
a mechanism that allows even novices, through the use of
paraphrase, to extend the language recognized by the system.
Experience with the system has shown that for many applications,

very practicable interfaces may be created in a few days.

The LIFER Manual

CONTENTS

I. AN OVERVIEW OF LIFER
II. THE LIFER APPROACH TO LANGUAGE

IITI. SPECIFYING A LANGUAGE DEFINITION

IV. USING THE LIFER PARSER
V. THE ELLIPSIS FEATURE

VI. SPELLING CORRECTION AND PARSER ERROR MESSAGES

VII. INITIAL CONTROL CHARACTERS
VIII. THE PARAPHRASE FEATURE

IX. AUXILIARY FEATURES

X. IMPLEMENTING PRONOUNS

XI. CURRENT SYSTEM IMPLEMENTATION
Appendix A. FUNCTION LIST

Appendix B. FUNCTION ABBREVIATIONS .

Appendix C. GLOBAL PARAMETERS

Page 2

13

. 37
. 40
n
. 46
. 47
. 51
. 57

61

. b2
. 65

66

The LIFER"Manual o ‘Page 3 oy

I, AN OVERVIEW:QOF:LIFER:

LIFER 1s a practlcal system for oreatlng Engllsh 1anguageh:ih

interfaces to other 'computer software (such as data basei”;_

management systems and expert consultant programs) ' Its purposevf?

is to make_ the oompetence of other computlng systems more ”.i_

”eadllY 3009831ble by overcomlns | thé" language “parriers

separatlng these _systems from potentlal users._ Empha3121ng?fh'

human englneerlng,” LIFER has_: bundled natural ' languageh:'f

specifiication and parslng technology 1nto one tldy paokage,f'
which includes an' automatic: facility: for " handling elliptiecal

(i.e., incomplete) - inputs, -a* spelling- correotor,n_a~grammargft

editor, and a mechanism:that allows:even: novices;: throughu'theEVx

use of * paraphrase, %$o. extend: the:language recognized by*theg;:

system.’ Offering a range of:. capabilities - that:.:supports both,;:

simple . and: complex interfaces,. LIFER:allows: beginning: 1nterfacez"

builders:to rapldly-create_workable:systems;and-glveSqaamblt;ous;ﬂw

builders the-toolsaneeded_toaproducefpowerfuliandfmore{éffioientefg

language definitions.: Experience with LIFER hasishOWn’thatfnfor;}a?

some applicatlons, very oomfortable 1nterfaoes may be oreated in

a matter of days. The resultlng systems are dlreetly usable' by

such people as bu51ness executlves, fflce workers and mllltaryh

offlolals whose areas of expertise are 'out31de the' fleld ofﬁha

computer solence

:Research .-in gartifioiaif;intelligence-_snd“iheomputstionalngg_

linguistics has not:developed atgeneraleappnoachgto[the_prohlems;¢;;

of understanding: English . and otherﬁnaturalalsnguages;' _However,:-'

The LIFER-Manual foveent Pager B

a number of mechanisms have: beenideveloped that make it possible
to deal w1th maJor fragments of 1anguage pertlnent te partlcular

appllcatlon _ areas.: For many appllcatlons, 'an ablllty to_

communlcate 1n terms of such fragments 1s both sufflclent fonn)

the task at hand and clearly preferable to forclng users tdr"“

1earn an awkward, 1nflex1b1e, error 1ntolerant machlne oriented o

1nput format ' LIFER' alm is to SEPV1CB ‘such nearerwterm,”d{”'

PPaOtlcal appllcatlons whlle ‘the search for':a unlfled and:""

elegant theory of 1anguage understanding contlnues.' ”

‘LIFER is: composed: of two basic;partsi.ja;set_ofzinteraetive,-~:

language specification . functions: and a:: parser...In standard. :

practice, an interface builder uses the :language.: specification:.::

functions to.:@define an application.language. This application

language is'a:subset' of a natural:language :(e:.g:, English) that:

is appropriate for - interacting . with uan.fexisting“:sOftwareﬁﬁ“

product’. . Using ‘this language specification, -the = LIFER - parser =

can “interpret: natural: language-:inputs;-translating'themfintenrv
appropriate?interactionslWith.the applieation software. - fonie

_ Example 1nteractlons w1th a LIFER appllcatxon 1aﬂguage for":f

a data base access system 'are presented 1n Flgure 1. (Thlsl

partleular 1anguage deflnltlon, called INLAND was developed by;es: '

Earl Sacerdotl' and others (Sacerdotl, 1977) as a part of SRI' -
LADDER project for ARPA.) The system user types in a query 'or'

command in° ordinary English;: followed by a ‘carriage return.-:The

LIFER parser ‘then prodesses the input. Whenfsyntaetic*ianalysisaxl

is complete, LIFER: types::-MPARSEDIM fand:-invokessapplieation

The LIFER Manual o0 ooos sl migsiys ©wwiin ¢ oooPage 5

software to respond.

An important feature of the LIFER parser is its;abilityszB.Lf?
process elliptical (incomplete) inputs. ._’-_l‘h.uS: _:'L_f-'thei'f-sys_tem-z has -
been asked HN L R RY MDD e BET R Tavh : SRR

| WHAT IS THE SPEED OF THE KITTY HAWK)

the subsequent 1nput o .
OF THE ETHAN ALLEN SO meieaTt sl

will be 1nterpreted as WHAT IS THE SPEED OF THE ETHAN ALLE ;

Analysis of incomplete 1nputs is performed automatlcally by;w:'

LIFER, making it unnecessary for' the 1nterface bu1lder toﬁﬂf;

explicitly define elliptical constructions in the applleatlon::1

languagg: o

If a user misspells a word, 'LIFER'atﬁémpts“tO'"éorrect”'thé:_if
error using the INTERLISP spelling corrector (Teltelman, 1975):,i .-
If the parser cannot account for an '1nput 1n terms of thefﬁ?*

applxcatlon' language deflnltlon, user-orlented error messages”;

are printed that 1ndlcate what LIFER was able to understand and ff;

that suggest means of correcting the error. (See example_)

“FIGURE 1 EXAMPLE INTERACTIONS WITH LIFER il Page 6

-What is the speed of the Kltty Hawk
PARSED!
((SPEED 357 KNOTS})):

-0Of the Ethan Allen:: - S
TRYING ELLIPSIS: WHAT IS THE SPEED OF THE ETHAN ALLEN
((SPEED 30 KNOTS))

=Displacement

TRYING ELLIPSIS: WHAT IS THE DISPLACEMENT OF THE ETHAN ALLEN -

{ (STANDARD-DISPLACEMENT 6900 HUNDRED- TONS))
-length of the fastest Soviet sub:-

TRYING ELLIBSTS: WHAT 18 THE LENGTH OF THE FASTEST SOVIET SUB

((LENGTH: 285 FEET / SPEED" 30.KNOTS}):

~who onws the KIEV.:
0 ~-(assumed spelllng error)

((COUNTHY USSR))

—who owns the JFK
TRYING ELLIPSIS: ELLIPSIS HAS FAILE

%ﬁg PARSER DOES NOT EXPECT THE WORD VJFK" TO FOLLOW "WHO OWNS

QPTIONS FQR-NEXT WORD. OR:-META-SYMBOL, ‘ARE:
<SHIF—NAME>

-Define JFK to be llke Kennedy o

PARSED! '
. {JFK 1s now a synonym for KENNEDY whlch is a Shlp name}
-REDO -2 h : {that 15, parse WHO owns THE JFK} '

((COUNTRY USA))

-7 BUILT LAFAYETT
TRYING ELLIPSIS: ELLIPSIS HAS FAILED
{ferror message omitted}

-Let "? built Lafayette" be a paraphrase of "who built the
Lafayette"
PARSED!

;g gu1%t Lafayette
((BUILDER GENERAL.DYNAMICS))

-owns longest nuclear submarine
TRYING ELLIPSIS: 7 OWNS LONGEST NUCLEAR SUBMARINE
((COUNTRY USSR / LENGTH 426 FEET))

The LIFER Manual Do Page T o

<Although . the: language: specification:task:logically:precedes .. =

the . processing : of ~ inputs.. by .the: parser,:the:two may dctually ;.

proceed in parallel. That is, the application:language: need.not:.

be completely spe01fled 1n advance of any par51ng Rather,_some

types of 1nputs may be deflned first, and the parser :used on .

them. he Later,__the” language spe01fieation may be extendedﬁa

1nteract1vely This ablllty to 1nterm1x par31ng and language"

speciflcatlon activities allows 1nterface builders to functloef”‘

in a rapid, "extend—and-test mode.: The”_1mmed1ate feedback"m

produced by this mode of operation is an important factor 1n5""

reducing the time required.to construect interfaces.. Looked - at
another ~ way, it “externds -the richness of-the language fragment#;&

that ‘can be developed in a‘given length of time.:

An 1nterest1ng | aﬂa. 1mportant ramlflcatlon df}ﬂfﬁﬁ@ff:
intermixing of language specification and par51ng operatlons 1sL.:
that it is possible to bootstrap to the language speclflcatlon.
functions themselves. By defining an interface to LIFER!'s own
language sp901f1catlon: functlons (partlcularly the function
PARAPHRASE), it becomes p0331b1e fer naive users to glve natural.
language - commands: for ‘extending the . language. " This i'is

illustrated by the:paraphrase example of:Figure 1o

The LIFER parser uses an augmented finlte state tran31t10n'm'

network (Woods,_" 19?0) The LIFER language | specn‘lcatlon_':"

functlons eonstruct these 'underlylng _ tran51t10n networkse':

automatlcally j from language productlon rules of the tYPeT””

commonly used by both natural llngulsts and compller bullders."

The LIFER Manual Cupensk PAgE B

The - production: rules :may. be ‘modified easily: : and.-tésted

interactively, allowing sophisticated :language definitions:to: be =

produced. within:a: short: period. of time.::

LIFER is currently coded in INTERLISP on the PDP 10 Thlsﬁ

makes_ 1nterfaces to other INTERLISP programs most convenlent St

but 1nterfaces to programs wrltten in other languages have beeny"

bullt ' In fact, the LADDER system 'of SRI uses LIFER to o
1nterface over the Arpanet with remote computers whose' 10031)
programs accept only DATALANGUAGE .

~In - addition: to:: -:parsing - -and. - language . .specification:..

functions, the :LIFER.package also includes,a;comprehensive~aét..e

of utility routines .for . interrogating . and.. editing . the .

appllcatlcn language, and for compiling and saving language

speclflcatlons on flles

II. THE LIFER APPROACH TO LANGUAGE

:'The . .LIFER package. includes:: neither -a: grammar.;nor;é a%ﬁ:

semantics for any -langiage. . -Rather, .-it.-contains: a'setﬁofp;n

1nteractive functions that facilitate the grammatical

speclfieation of a language fragment that 15 orlented toward the

1nterface bullder E speciflc appllcatlon ' The semantlcs ‘of thlst?g

language speclflcatlon is' typlcally carrled by the existlnggg

programs to whlch the 1nterface builder w13hes to add a naturalft;

The LIFER:Manual Jmre PAge 9

language: front.endi: = "o

Each call to one Of the. LIFER lansuase Spe01flcat10n.f.“

functlons causes 1nternal structures to be bullt for subsequent“._r

use by the LIFER parser Typlcally, many of the speclflcatlon'

calls 'will: indicate- associations’' between ' certain linguistic

constructions and the application -software.:::The . principle . i:

internal: - structures that " are ° produced: by- the :language

specification : functions® are "transition :trees, . which -are: & ' i’

simplification of-ithe augmented: :transition networks. of Woods"

(1970).: ~Using-:the -trangition :trees < ‘'and ::other :internal ...

structures, the parser 1nterprets 1nputs 1n the appllcatlon
language 5 As a result of such 1nterpretat10ns certaln routlnese
speclfled. by the 1nterface bullder are 1nvoked . It is throughw;
these 1nvocat10ns that the back end appllcatlon programs 'areef_

actlvaped_:_

In using 'LIFER, interface builders typically (but’ not

necessairly!) embed’considerable semantic information in the the ™

syntax of the application language.' ' For ' example, words' like
JOHN and AGE would not bé' grouped togéther into a single <NOUN> -
category. Rather, JOHN would be treated asve$<PERSON>;*end“5AGEe
as ‘an “<ATTRIBUTE>. . Similarly; very specific sentence patterns.: -
such as - I R :
WHAT IS THE <ATTRIBUTE> OF <PERSON>
are typically used in LIFER instead of more . general :patterns:
such as PR e T :
1 KNOUN-PHASE> <VERB-PHRASE>.. . ': ..

The LIFER:Manual Do Pagei 10 s

For each syntactic pattern, the interface builder: suppliesL"adg"'

expre331on for computlng the 1nterpretatlon of 1nstances of the

pattern Express;ons for sentence-level patterns usually 1nvoke_ .

appllcatlon software to answer questlons or carry out commands

-An- example - sequence:.of - interactions: defining: a*;LIFER;*.-

application . language -is.shown in Figure 2. . At this'stage,;theugjg

reader:should not attempt to understand - the various-~ca115;vto_}:f

LIFER language specification-functions..-These will be explainédgwf-

in subsequent. chapters... The purpose of. the example. is . simply-to.. .-

give the flavor of the LIFER approaeh_to_language_specificatioh.f::-

Worklng through the example from the top, 'appllcatlon"

information concernlng blographlc ‘data for JEWELL FLEMING and
IVAN.FRYMIRE is first stored on’ prOperty llsts for later =
querying. Then function MAKE.SET is called to define some

word/phrase categories. The category <ATTRIBUTE>, for insténée;“;a

is defined. toinclude such words as AGE and OCCUPATION.:.. Next,
function PATTERN,DEFINE. is used~to.addithe,prqductions -
.. <ATTR-SET>. =>. (<ATTRIBUTE>). . T
and - *<ATTR~SET>:=>. (<ATTRIBUTE> AND- <ATTR-SET>) : L
to the language:definition, : establlshing ~an i <ATTR- SET> as: af;

sequence: of .one or more attributes separated:by ANDsf:;The-thlrd

call to PATTERN.DEFINE sets up a top-level sentence pattern -of -

the form
- WHAT. <IS/ARE>. THE <ATTR-SET>: OF: <PERSON>::
which can mateh such queries as
WHAT IS THE AGE AND OCCUPATION OF JEWELL.FLEMING

The: LIFER Manual @ oian 7 o0 fomirs whd el g oozl Page 11

The expre331on for computlng the value of thls query maps . down :

the llst of sought-after attrlbutes and extracts thelr values iJ

from the property list of the <PERSON>. (For this example,” the

"application:: software". is_:the:;eep;:of_ﬁLISPe,property-listg

functions.)

After calling the functlon LIFER INPUT all llnes of 1nput’f“

are sent to the LIFER parser for proce331ng f The flrst query of_:"

the example '13 - complete sentence, ‘but the : second 'is'“'

lllptlcal ~ Note that no spe01al patterns were needed to deal

with thls EIIlptlc query A more complex use of MAKE SET df:-

examples of -~ the- ‘ spelling::corrector: are' . shown in. latenTx

interactions.

+w FIGURE 2 DEFINING AN APPLICATION LANGUAGE.: - -.Page:

v W (i S) S T . R S o

{set . up data to:be guerled
~SETPROPLIST(JEHELL FL
“WEIGHT: 105)) =

—SETPROPLIST(IVAN FRYMIRE ~ (AGE ko OCCUPATION FARMER HEIGHT 6 2 “"f.

WEIGHT "225)}).

{MAKE.SET ‘and PATTERN.DEFINE extend the languagé:definition}-
-MAKE.SET(<PERSON> (JEWELL.FLEMING IVAN.FRYMIRE ...
-MAKE .SET(<ATTRIBUTE> (AGE OCCUPATION HEIGHT WEIGHT
-MAKE .SET{<IS/ARE> (IS ARE))
-PATTERN. DEFINE((ATTR—SET) (<ATTRIBUTE>)
. (LIST.<ATTRIBUTE>)). '
—PATTERN DEFINE((ATTR SET> (<ATTRIBUTE> AND <ATTR-SET>)
CONS <ATTRIBUTE> <ATTR-SET>)) -
-PATTERN DEFINE(WHAT <IS/ARE> THE <ATTR-SET> OF <PERSON>)
- (MAPCONC . <ATTR—SET> (FUNCTION (LAMBDA: (&)~
(LIST (GETPROP <PERSON> A))))))

MING (AGE 35 OCCUPATION TEACHER HEIGHT 5 5...

{a call to LIFER INPUT sends subsequent 1nputs to the parser} h

-(LIFER.INPUT):

{start NL:interactions using: %rammar defined above} Lo
Eghat is the occupation of jewell.fleming
(OCCUPATION TEACHER)

e and wel

NG ELLIP IS WHAT IS THE AGE AND WEIGHT OF JEWELL.FLEMING
(AGE 35 WEIGHT 105)

MAKE SET is called to add_variety to persons' names}
! sends line to LISP'S EVAL, instead of to parser}
-!MAKE SET%(PERSON) (JEWELL . JEWELL. FﬂEMING)
IVAN . IVAN. FRYMIRE)
EJEWELL FLEMING) . JEWELL .FLEMING)
IVAN FRYMIRE) . IVAN.FRYMIRE))

{now more English input}
-what is the height of ivan frymier
(assumed spelling error)==>FRYMIRE
PARSED!
(HEIGHT 6.2)
-of jewell
TRYING ELLIPSIS: WHAT IS THE HEIGHT OF JEWELL
(HEIGHT 5.5)
{define a paraphrase in English}

-define "give the height of ivan" like "what is the height of ivan"

PARSED!

LLIFER.TOP.GRAM => GIVE THE <ATTR-SET> OF <PERSON>
output above shows LIFER's generalization of the paraphrase}
now try an input based on the paraphrase abovel

Eiﬁgg ?he age and occupation of jewell fleming

(AGE 35 OCCUPATION TEACHER)

12

The LIFER Manual Lot SUPage -3

ITI.~ SPECIFYING: A LANGUAGE DEFINITION:. -

The LIFER system contalns numerous funotlons for speclfylng -
components of a language. In thls seetlon, these funotlons are'r
presented 1n approx1mately thElP 'order of complex1ty Someb'fﬁ
applloatlons may requlre only a few flxed 1nputs.: Others may:'
best be served by the use of complex 'subgrammars to compute
1ntermed1ate results._ LIFER allows 1nterface bullders to plcki:b
only those features that meet thelr needs and the 1evel dfi_:

linguistic sophlstlcatlon requlred.

ln bhe disoussion tnetﬁfolloﬁs,'a wknowledée'.of.blNTEﬁbléE____

(Teitelman, 1975) will be assumed.
A. Fixed Patterns

1. Invariant Input -- Invariant Responseph"'

The essence of the LIFER?approech”torlanguageﬂspecificabion;“
is to allow the user to define a'set of input' patterns and their
associated responses. LIFER' 'then' factors ' the: patterns into:-
efficient transition trees ' for use by thée parser. Patterns may
be given to the system by calling the function “PATTERN.DEFINE.
PATTERN.DEFINE may “be called either by its full nime or by its

“niekname" PD. In 1ts 31mplest usage, PD is a functlon of two

arguments'_ a pattern and a response expres31on. A pattern is a

list of symbols. A sequence of words matchlng the sequence off.

symbols 'on the pattern list is to be accepted as a sentence 1n;'::

The :LIFER Manual Cunst Page- 14

the input language.: - The 'associated. response expressicn may be
any evaluable LISP S—expre881on _ When a glven pattern is

recognlzed by the parser the 335001ated response expre531on “is

evaluated to produce the response to the 1nput ' For most'n”'

appllcatlons, the response express1on wlll usually be a call tot

the underlylng software package to which LIFER is prov1dlng an :'t

interface. (If the response expre331on returns the speolal atom:'

ERROR. 'the 1nput is reJected on semantlo grounds, and the:”:”

parser looks for an alternative syntaotlo analy51s) o

As a 51mple example, suppose the system is to respond to
the 1nput : _ S e
THANK YOU
with the response
YOU'RE WELCOME
The pattern to be recognized is o
(THANK YOU)
and one possible response:expression is ..
. (QUOTE. (YOU'RE WELCOME)) . .
Thus, at the top-level of. INTERLISP, the call to.PD is.
s - PD ((THANK YOU);!(YOU'RE:WELCQME)):,,“_,.
or, if embedded-in-a larger. S-expression, : .
(PD. (QUOTE (THANK YOU)) (QUOTE (QUOTE (YOU'RE WELCOME))))

As soon as thlS oall to PD has been processed the 559sép*“?'

will reoognlze the pattern as a legal sentence 1n the 1nput’v'“

language The parsmng of the new pattern may be tested by_””
typing _ ;

I3

The LIFER Manual Cennsst v Page:s 185

; THANK YOU SR
when INTERLISP types 1ts prompt character LIFER spots the
1nit1al semlcolon before INTERLISP can procesa the 1nput llne 1n
the normal way (Thls is accompllshed through INTERLISP'
LISPXUSERFN feature. ‘See Section VII for other lnltlal control
characters.) Rather ‘than the Line gomg to EVAL or APPLY for
normal LISP proce331ng, everythmng to the rlght of the semlcolon:
is processed by the parser " For the example at hand the 1nput: _
matches the pattern (THANK YOU) ‘and causes the expre331on (QUO'I‘E.'_"'E
(YOU'RE WELCOME)) to be evaluated. The result of this

evaluation-is: then printed as a:response to:the:inpub.. .- =

2. Invariant Input -- Variant Response
..Even.with.fixed;inpat patteras,.scﬁe'ihtereatiné QuéS£ioﬁ§ﬂ_'”
may be asked. One of these 13 L
WHAT TIME IS IT o
Suppose, GETTIME is the name of a function of no argumeﬁtsﬁ'that
obtains the current tlme of day by consultlng the computer s _
clock.* Then the pattern (WHAT TIME IS IT) may be defined w1thﬁ"

an appropriate response by the call
PD((WHAT,TIME”IS_IT)A(GEITIME))_

Ll S LD L Ll o Dl - . o il 7l A

#For TENEX INTERLISP, the bod¥ of furietion GETTIME might bei"
(SUBSTRING (DATE) 11 18)

The: LIFER Manual crovn Y Page-16

B. Meta Symbols

Even w1th varlable responses, an applloatlon language Wou1d°'
be very llmlted 1f all 1nputs had to correspond on a word f0r~,
word ba31s Wlth one of the patterns To achleve greater_t..
flex1b111ty,_ variables that may match any number of words op;iﬂ:
phrases may be 1noluded in patterns Such varlables, -called't:f
"meta .Symbols" may appear both 1n patterns, where they areivnu
bound, 'and 1n Pesponse expre331ons where thelr values 1nf1uencei

computatlons

As an example. of the use-:of..meta symbols,-. suppose: the: ...

symbol
<PERSON>:: Do
iz used (by means desorlbed shortly) to stand for any of the
vords . R - | L o . -
JOHN, TOM, MARY, ': SUE -

and the pattern IR

o (wso ‘IS THE FATHER OF <PERSON>)
is 1noluded 1n the language deflnltlon Then sueh 1nputs as

o WHO IS THE FA’I‘HER OF TOM o o
and
WHO IS THE masn' oF“' MARY

will be recognized by the parser. The response expression that
answers these input queries will make use of the binding of the

variable <PERSON>. in its computations. .

The:LIFER Manual i u-Page. 1T

Each of the several methods for: defining. meta. symbols..
provides two pieces of information: ~specifications for what
words or phrases may be matched by the -mebtau:symbol; and
specifications (often.implicit) for-assigning values to.the meta .-

symbol:-based on the particular-match....

For example, <PERSON> may be defined in such a.wé§”thé£ Cif

<PERSON> - matches:JOHN, then the variable <PERSON> becomes bound
to the atom JOHN. This variable binding is then available for. .
use 1in response expressions for patterns that contain <(PERSON>.
To see the use of <PERSON> in.a response expression, assume that. . -,
atoms (e.g., JOHN) that name persons have the property FATHER.on..
their property lists. Then the’response:expression for

(WHO- IS:THE FATHER OF <PERSON>).
might be Sy
" (GETP. <PERSON> 'FATHER): .~ - o i
This pattern and associated response expression may be defined-: .
in the appllcatlon language by the functlon call

PD((WHO IS THE FATHER OF <PERSON>)

(GET? <PERSON> 'FATHER))

To simplify discussion, the examples of response functions
given in this manual will appeal to property lists. However, it
should be understood that application programs may be called
Just as _ea31ly _ Suppose,_ for_ example,_ that the 1nterface~- R
‘builder has a funcﬁlon FOOFUN for' computing the FOO of <X> and f.-Ef:

<> (e.g., the price of x delivered to y; the sum of x and vi

the distance between x and y; the children of x and y; ete.).

The LIFER Manual oo i Page-.18

Then a c¢all to PD of the form : . . S
=o(PDY '"(WHAT IS THE FOO OF '<X> AND <Y¥Y>) ool ot ool
- L{FOOFUN"<X> <Y>))"
will causé responses-to the inputs matching: the rpattern 'to: be .
computed by applying function FOOFUN to.the walues of the meta: ..
symbols <X> and <YI>.

This very common type of pattern may be géneralized-to the
more powerful - - :
"(WHAT IS THE <FOO0> OF <X> AND:<Y¥>).

where <FOO> is"a meta symbol that becomes bound " to - a function: -
name ‘and ¢ : e e el '
~ (APPLY*. <FOO>: <X> <¥>)
is used as the response expression. For example, in

WHAT IS THE SUM QF 2 AND 3 P
<FO0> would match SUM and become bound: to the:LISP function name
PLUS.

Although it is a good idea to name meta symbols in some
distinguished way (éuch és uSiﬁg nen ahd.">"tdélimiters), CIEER

will accept any literal atoﬁ'és a méta:sjmboi.*

¥An atom used as a meta Symbol may also act as a word in the application
language, - but only if-it-is recognized by using the predicate mechanism
discussed below. ' '

The LIFER Manual Page 19

C. Meta Symbols as Sets of Words and Phrases .

‘One ‘of the 'ways to define a méta Symbol is' to allow it "to "
take any value ‘from ‘an explicit set of atoms. This is
accomplished through a call to MAKE.SET of the form " - "

(MAKE.SET symbol ‘set-specification) -

where symbol is the meta symbol being: ‘defined’ “and’ -
set-specification is a 1list of atoms (and, as will be seen
shortly, more complex S~expre531ons) that may match symbol For
example, the call

(MAKE .SET '<PERSON> '(JOHN TOM MARY SUE))
defines <PERSON> to be a meta symbol that stands for any member
of the set {JOHN, TOM, MARY, SUE} If the parser matches_
<PERSON> to an atomic member of thls set—3p801flcatlon llst |

then that member becomes the value of the varlable <PERSON>

_ Sometlmes it 1s lnconvenlent for the atom that matches a
meta _symbol to become the symbol's value For example, suppose _
<ADJ> is to be taken from the set {TALL HEAVY OLD} and a___i
pattern of the form | o

(HOW <ADJ> IS <PERSON>) e
is to be defined. If atoms matchlng <PERSON> (euch as JOHN)
have properties on their property llsts such as HEIGHT, WELGHT
and AGE, it would be convenient for <ApJ>_.tq _match the words
TALL, HEAVY and OLD bug,tékeeas_iﬁs values the_atpme;HE;GHT,_“ .
WEIGHT and AGE. . . o) -

The”ﬁIFER Manual SERTERE J.ﬁagGGZC

To accomplish this'énd;fHAKE.SET'éilﬁwé"the list ‘that is
its second argument to include both atoms and dotted pairs.
Each atom on the list will both matech the meta symbol and become . -
bound as the symbol's value. 1If a pair.abpeans:in_thg list; the..
CAR of the pair will match the symbol but the CDR: will be taken

as the associated value.

Thus, <ADJ> may be deflned by

" (MAKE.SET '<ADJ>
'((TALL . HEIGHT)
 (HEAVY . WEIGHT)
(OLD . AGE)))

and the new 1nput pattern may be deflned by o
(PD T(HOW <ADJ> IS <PERSON>) =
" '(GETP <PERSON> <ADJ>))

"It is important to note that the CDR of a palr need not be
an atom. be”'example, Some comparatlve adgectlves might be
defined by T _ R .. S
(MAKE.SET '<CADJ>
'((TALLER HEIGHT GREATERP)
' (SHORTER HEIGHT LESSP)
(OLDER AGE GREATERP) -
(YOUNGER AGE LESSP))) '
where ‘the CDR of each pair is a 1ist whose CAR is an attribute

name and whose CADR is the name of an ordering predicate. =

"The 'LIFER Manual el o Page: 21

Suppose meta symbol '<CADJ>‘is- to be ‘used ‘in: processing

inputs such as
I3 JOHN TALLER THAN SUE...:
To handle such inputs in a general way, a pattern along the line
of '
(IS <PERSON> <CADJ> THAN <PERSON>) ,

seems suitable. - However, the suggested ' pattern: inecludes : two
instances of the meta symbol <PERSON>. Although.the parser will. . .
accept such patterns, the interface builder must be. -aware: that
when varlable <PERSON> is bound for the second tlme the first
blndlng w111 be 1ost To 01rcumvent thls problem, 1et <PERSON1>
and <PEBSON2> have the same deflnltlon that <PERSON> had before |
This allows members of the same set to be matched twice 'in_' the
same pattern whlle blndlng the results of the two matches to two'J'

separate varlables *

“rUsing. <PERSON1>, "<{PERSON2> and <CADJ>, - a: general pattern . :
for:-accepting inputs such as’
:IS. JOHN: TALLER- THAN SUE:
may be sef up by

#The best way to set up <PERSON1> and <PERSON2> ‘given (PERSON> is by
u51nE subgrammar definitions such as (PD- '(<PERSON>) '<PERSON>
'<PE SON1>) See later comments about subgrammars.

The LIFER Manual - v Page. 22

- (PD'(IS <PERSON1> <CADJ> THAN <PERSON2>)
' (APPLY® (CADR <CADJ>)
(GETP - <PERSON1> . : -
(CAR.<CADJ>))
(GETP <PERSON2>
(CAR. <CADJ>))}):.

The input "IS JOHN TALLER THAN SUE" will then. ultlmately be.. .

anawered by what amounts to SRR RN CR R .
(GREATERP (GETP 'JOHN 'HEIGHT) (GETP 'SUE 'HEIGHT))

For convenlence ln codlng, MAKE SET may be calléd"bfulthé '

nlckname M3. If MS 1s called twice w1th the same first argument""

(symbol) but dlfferent second argument (setwspeclficatlon), then“:'

the symbol becomes' deflned over the union of the sets. If a

word or phrase is twice indicated to belong to a given symbol's

set, no action is taken unless the second deflnltlon cohfiiCté '
with the first. (This circumstance is-brought about.by the use
of pairs, e.g., set = ((FAST . SPEED) (FAST. ... VELOCITY) (LONG ..

LENGTH) ...).) Conflicts produce error-messages, and the most

recent definition overrides all others.

MAKE.SET may also be used to define a meta symbol in terms
of fixed phrases. If an element of the set-specification has a
CAR that is a 1list, then the meta symbol will match that list as
a complete phrase For example,
| (MS ' <PERSON> R
' (((TOM SMITH) . TSMITH)
((JOHN DOE) . JDOE)))

The. LIFER Manual c.. .+ - Page 23

will extend the definition of <PERSON> to -include. the. phrases
"TOM SMITH" and "JOHN DOE.":-If <PERSON> matches: "JOHN DOE;": then
the variable <PERSON> will take the atom JDOE as its:value.

D. Meta Symbols as Predicates

4 second way of defining meta"éymﬁbis'éllbﬁs.ﬁhe'symbél €6_
match any S-expression (atom, string, or list) that satisfiesi
some predicate. This is accomplished by a call to b
MAKE.PREDICATE (nicknamed MP). of the form :

- (MAKE.PREDICATE. symbol predicate) :
where:predicate. is a' LISP- function of one argument.. . After. such. .
a call, . the: symbol will match any S-expression for.which the
application of the predicate returns a non-NIL : value. . .When. a-.
match oceurs using the predicate mechanism, the symbol. takes as
its value the (necessarily non-NIL) guantity:. returned .by - the .-

application of. the predicate.

One of the most 1mportant uses of predlcates ié:'ih'
pr009331ng numbers,' whlch cannot fea31b1y be enumerated 1n an'v'
expllclt set A meta symbol for an_ arbltrary number may " be o
deflned by : AR DR Tk

(MAKE . PREDICATE '<N1> 'NUMBERP)
To avoid having the same symbol appear twlce in the same

pattern, it may be necessary to define an <N2> and so on.

The LIFER Manual D Page 2U

‘Given appropriate definitions for <N1>-and <N2>, the-call
“(PD ' '(WHAT IS THE SUM 'OF <N1> AND <N2>) '
2 V(PLUS <N1>:<N2>)) - ' '

will set up the necessary internal structures to allow LIFER to

respond to
; WHAT IS THE SUM OF 123 AND 56
. L - RN
579.

Much of the power of the predicate feature comes - from : the:
ability to tear atoms apart by:. using UNPACK.- Through this
means, coded names {such as part designations,. ID : numbers," . and
the ' like) '‘may be broken apart and analyzed. For example, the
chemical - formulas:H20 and C2H50H may be broken.up into:the lists
(H 2 0)..and (C: 2°°H 5 .0 :H) for further processing. This. .=
processing. (including the rejection of words. that:.ought. not.. to ..
match the meta symbol) may be done by the interface builder's
spe01allst routlnes As one option, the 1nterface builder may
make a subordlnate call to the LIFER parser w1th a graﬁmar__
especlally de31gned to 1nterpret .or regect | sequences "of
characters constltutmng speclal coded symbols (See dlSCUSSlon :
of function SUBPARSE below.)

E. Meta Symbois as Subgrammars

A third method for defining a meta symbol allows the symbol
to match phrases that are defined in terms of patterns such as

those discussed previously for defining sentence-level

The LIFER Manual Pl v Page: 25

structures. - The : patterns . used - to, define -a meta symbol may
themselves contain meta - symbols, : including the symbol : being -

defined.

| Each pattern used in the deflnltion of a meta symbol -iésT-*
associated w1th .a response expre531on, such as those descrlbed fm:
earlier. However, the -value computed _:by this f'response:
expression is -not prlnted as a top—level response, but becomes
the value of the defined mebta:symbol.: ' By this means, the wvalue
is available for use in "higher level" responsge: expressions in-
which the meta symbol is referenced. -This : 'notion will be

clarified shortly by examples.

1. Using PD to Define Subgrammars: ...

The function PD (or PATTERN.DEFINE) was discussed above éé7f
a device for specifylng sentence~leve1 patterns, but 1t may be o
used to associate patterns w1th meta symbols also. PD is
actually a function of three arguments. (In previous examples,
the third argument has implicitly been NIL) If PD 'is called
with a meta symbol: (i.e., non-NIL atom) in either:the first or
third position of the argument -listy;' then' the pattern and
response -expression-have no ‘dirdct effect on what constitutes a:
complete sentence in the ' application : language. :: Rather, ' the:

pattern and response expression become part of the-definition of ..~

the meta symbol.

The LIFER Manual S i Page .26

For example, the following two: calls to PD. both use .meta - -
symbol - <ADDRESS> as'a third argument...:In the call at the left,
the meta symbol is in the first position of the 1list. of:

arguments In the call on the rlght it is in the last

p051t10n ' The calls are equlvalent

PD(<ADDRESS> ' ' PD(E<N1> (STREET-NAME>)
E(N!) <STREET-NAME>) (LIST <N1> <STREET—NAME>) :
LIST <N1> <STREET-NAME>)) <ADDRESS>)

Both callis allow symbol <ADDRESS> to match the pattern
(<N1> <STREET-NAME>}

Hence, <ADDRESS> can match such phrases as -

333 RAVENSWOOD ..

909 BROADWAY PIREH D s
When such a match is made, variable <ADDRESS> becomes bound to a
list such as (333 RAVENSWOOD). This.. value can be used in
computing responses to sentence-level inputs following such
patterns as S IR L S

' (WHAT BUSINESS IS LOCATED AT <ADDBESS>)

2. Recursive qugréﬁﬁars
Suppose there is a need to recognize phrases like. .
MARY' AND. SUE AND..TOM

which join an arbitrary number of names with ANDs. - .This may.. be.
done by defining a recursive subgrammar as follows. First, a
call to.PD is used to set up a meta. symbol. called <PEOPLE>, .
which will be used to combine one or more instances of <PERSON>. .

The LIFER Manual fuoww o Page 27

* PD((<PERSON>) °
t-..(LIST <PERSON>) . "
<PEOPLE>) o E
This call creates structures allowing the meta . symbol <PEOPLE>
to match the pattern
(<PERSON>). . =~
Thus,

T . JOHN . : . . .
(which is a <PERSON>) matches <PEOPLE>. The variable <PEOPLE>
is bound to the value returned:bf'thé:respthe.éiﬁhéésidﬁ; So,
if <PEOPLE> matches JOHN, <PEOPLE> is bound to the list (JOHN).

Using a second call to " 'PD, ' the 'patterns that specify
<PEQPLE> are extended. R
PD((<PERSON> AND <PEOPLE>)
(CONS <PERSON> <PEQOPLE>) "
<PEQPLE>)
After this call, <PEQOPLE> will match patterns of the form
(<PERSON> AND <PEQPLE>) ..
as well as patterns of the form
(<PERSON>)
Thus, sometimes through recursive . applications of its
definition, each of the following will be matched by <PEQPLE>.
JOHN
TOM AND. JOHN =
SUE AND TOM AND JOHN
MARY AND SUE AND TOM AND JOHR

The LIFER Manual iao v - Page.-28

The'patterns and response expressions for <PEQPLE>:- have
been defined in such a way that <PEOPLE> is always bound to a
list of individuals such as:
- (JOHN)
(TOM JOHN)
(SUE TOM JOHN)
(MARY SUE TOM JOHN)

To see how the two patterns :féf' <PEOPLE> work together,
con31der the recognltlon of the phrase' o o) '
~TOM AND JOHN. “
This phrase will match <PEOPLE> using pattern -
(<PERSON>. AND <PEOPLE>). _
if TOM matches <PERSON>, and <PEOPLE> matches JOHN.-. .

The phrase
JOHN"
will match <PEQPLE> using the pattern
: (<PERSON>) _ L .

if JOBN matches <PERSON>. Since JOHN does match

<PERSON> with <PERSON> = .JOHN, JOHN matches <PEOPLE>

with AR T

_-<PEQPLE> = (LIST .'JOHN)
= '(JOHN) . : _ e

Because JOHN matches <PEQOPLE> with <PEQOPLE> = '(JOHN) and TOM
matches <PERSON> with PERSON = TOCM, - TOM. -AND- JOHN matches

{PEOPLE> with

.The LIFER Manual <o . Page 29

(CONS 'TCM '(JOHN)). .-
t (TOM JOHN)

{PECPLE>

Once a subgrammar meta symbol such - as- <PEOPLE> has : been ...
defined, it may be used in other patterns. Indeed, <PEOPLE> was
used above in the definition of itself. Consider now the use of
<PEOPLE> in establishing a pattern for: sentences such as-

JOHN AND TOM WORK IN DEPARTMENT A .
SUE AND MARY AND GENIE WORK IN DEPARTMENT B
The following PD call might be used to allow these inputs:
- - PD{(<PEOPLE> ‘WORK IN DEPARTMENT <DEPT.NAME>) -
(PROGN : '
(MAPC <PEQPLE>
(FUNCTION: (LAMBDA (P)-
- (PUT P 'DEPARTMENT - ~
. <DEPT.NAME>)}))
(QUOTE (I UNDERSTAND)))) [
where <DEPT.NAME> is & meta ‘symbol,: which matches 'department
names. - The response -expression maps down the.list of people . -
making <DEPT.NAME> the value of the DEPARTMENT property of 'each :
person on the list. After completing the map,; the response
expression returns the message ' : i :
(I UNDERSTAND)
for output by the system. e

‘The LIFER Manual it i Page: 30

3. Multiple Word Names

One use of subgrammars ‘that is of importance in many
applications is the recognition of names composed of multiple
words such as :

~ SAM: HOUSTON
GENERAL ELECTRIC
DODGE DART SWINGER -
SAN MATEQO COUNTY
These names may be recognized as : phrases. and associated. with .-
single-atom internal names (such as GE for GENERAL ELECTRIC) by
a subgrammar. Such a subgrammar could be set up by.. .
(MAPC '(((SAM HOUSTON) . HOUSTON)
((GENERAL ELECTRIC) . GE).:
((DODGE DART -SWINGER) . DART-SWG)
((SAN MATEOQ COUNTY) . SMATCO))
(FUNCTION (LAMBDA (N) K S
(PD (CAR N) (LIST 'QUOTE .(CDR-N))} '<NAME>)))).
Equivalent internal structures may be created by MAKE.SET, using..
the call .
(MAKE. SET - ' <NAME>. _ EETRRE e
' (((SAM HOUSTON) . HOUSTON) . .
((GENERAL ELECTRIC)..-GE)
((DODGE DART SWINGER) . DART~-SWG)
((SAN MATEQ COUNTY) . SMATCO)))

The LIFER Manual ek Page - 31
F. Additional:Information about .PATTERN.DEFINE
1. Semantic Tests: and Context Sensitivity

a. The ¥ERRCR¥* Feazature

For some appllcatlons, 1t 1s convenient (or even necessary)
to allow phrases to be regected on semantlc grounds, even when
they are syntaetlcally correct For example, a sentence might
be defined by the pattern ' '

(<SUBJECT> <PREDICATE>)
with the restriction that the <SUBJECT> must be “appropriaten
for the <PREDICATE>. For the <PREDICATE> "I3S THE FATHER OF
JOHN", the CSUBJECT> "WHO" or "SAM" is appropriate; but the
(SUBJECT> "SUE", or "THE TABLE" is mot.

The response expression associated: with a' pattern may
perform tests to deftermine whether a particular combination of
bindings for the pattern variables makes sense. If the bindings
do make sense in combination,: then. a-composite value: should be
returned as usual. However, if the test fails; -the ' response
expression should return the special atom ¥*ERROR*. The LIFER
parser will detect this error condition and reject the - phrase
combination. Such " semantic-oriented:: phrase rejections may be
made at both the sentence level and in’ . subgrammars.. - After a
failure, the parser continues to look for alternative syntactic

analyses, just as if the failure were due to syntax.

The LIFER Manual R - Page. 32

In the <SUBJECT>~<PREDICATE> example, assume:that the value
of both the <SUBJECT> and the <PREDICATE> is a 1list of
properties. For the <PREDICATE> “1IS THE FATHER.. OF..JCHNY,. . the
property list might be

(RELATION FATHER-OF
OBJECT (FIRST NAME JOHN LAST-NAME SMITH) '
' +SUBJECT RESTRICTIONS (PERSON) o
—SUBJECT RESTRICTIONS (FEMALE CHILD))
POSSlble candidates for <SUBJECT> and their values are
 (FEATURES (QUERY ANIMATETPERSON))

.SAM SMITH

| (FEATURES (PERSON ANIMATE MALE ADULT)
FIRST-NAME SAM
LAST-NAME - SMITH) . . =

SUE - : RN L -
. (FEATURES (PERSON- FEMALE CHILD):. :
FIRST-NAME SUE)

-THE: TABLE
(FEATURES (INANIMATE FURNITURE SURFACE):
- LOCATION DINING-ROOM)

The. LIFER Manual Pt o Page 33

A response expression for ~the ' ({SUBJECT> <PREDICATE>)}
pattern might behave 1like this: . Before combining a <SUBJECT>

with a <PREDICATE>, the response expression checks whether all
features 1listed in the +SUBJECT-RESTRICTIONS of the <PREDICATE>
are included in the FEATURES 1list ..of the <SUBJECT>. The
<SUBJECT> must . have every one of these.positive features if it
is to be combined with the <PREDICATE>. A further test is . made
to . determine . if any . of: the -SUBJECT-RESTRICTIONS of .the :°
<PREDICATE> are included on the FEATURES list of the . <SUBJECT>.
The <SUBJECT> must have none of these negative features if it is
to be combined with the <PREDICATE>.. If these tests are passed,
an appropriate response is computed. If the tests fail, the
atom *ERROR¥* is returned.

b. Tradeoffs

.There exist languages (e.g., ' context-sensitive languages). -
that. necessarily require the use of the *ERROR* feature (or . .
something like it} for their .recognition. - However, in: building:: -
practical: - systems, the . *ERROR* feature is seldom- really
required.: - The piece of language specified by a pattern . of: the.
form . .- Coo

s (KX> YD)

that: requires . semantic testing :can -usually = be: specified

alternatively by a sequence of patterns

The LIFER Manual wonees ¥ Page: 34

(KX <Y 1)
(€X2>. <Y2>) -

(<Xn> <¥n>). "

The various <Xi>. and <Yi> match subsets of the phrases. matched

by <X> and <Y¥>, respectively. Further, for each i, the {Xi> and
<Y¥i> are so cdonstructed that any phrase matching <Xi> B will: be
compatible with any phrase matching <Y¥i> in the pattern

(<Xi> <Yi>).
Thus, the syntactie restrictions on <Xi> and <Y¥i> eliminate' the

need for compatibility tests in defining the unifying pattern.

In general, if the splitting of <X> and <Y> produces a

relatively small number of new patterns and meta symbols, and if
most of the new meta symbols have a '"natural™ semantic

interpretation, then the #*ERROR* feature should not be used.

The reasoning behind this rule of thumb is simple: LIFER. 1is.
syntax . oriented. .. By -recording semantic distinctions in the:
syntax -rather than in special test. procedures,.-knowledge . .of.
these '~ distinctions becomes directly.. manipulatable by various. -

LIFER procedures. In particular, LIFER has more information-.

from which to generate user-meaningful error messages, and upon
which to base elliptical analysis and paraphrase generalization.
On the other hand, use of the ®ERROR* feature.-leads to smaller

grammars.

The LIFER Manual w00 tiiPagen 35

2. Left Recursion':

There are no feet%icéienswen:ﬁﬁelﬁipee of:p;t£ehne:that.may'm
be used in'defiﬁing'eﬁﬁgfamﬁefé In partlcular, left recur31onr:"
is permitted,'elé.;:<ﬁ> 55'(<h$ A). To allow left recursion, o
the . LIFER parser optionally traps entries info subgrammars. that
would cause the level of recursion to . exceed a given depth.
This depth, which is the value : of- . global . variable -
LIFER.MAXDEPTH, is initially set to 6, but may be changed to

meet the needs of a particular application:language. The lower

the number, the more efficient the parser s Operatlon In
partlcular, if.left fecurs;on is not to be used LIFER. MAXDEPTH
should be set to zero. Only left recursion 'is affected by
LIFER.MAXDEPTH. Other forms of recursion may extend to

arbltrary depths’ (belng llmited “naturally"' by the number of

words in the 1nput strlng)

:-In general, left recursion leads to inefficient : processing
and - system . bullders - are . advised :to. avoid it.: If the system
builder finds LIFER accepts short (shallow) inputs but: rejects
longer (deeper) inputs, it is likely that the value of:
LIFER.MAXDEPTH is too low.:

3. Redifining and Editing

If PD is called more than once w1th the same pattern' forﬁl"
the ~same meta symbol a message will be prlnted asklng whether

the response expre531on for the pattern should be' redeflned

The- LIFER Manual St 0 Page 36

The user may type either YES or NIL. (If the user doesn't
answer thls questlon within 30 seeonds, the system answers YES.)
Response expre331ons Wlll be redeflned w1thout the prlntlng of
error messages 1f the flag REDEFINE PATTERNS is non-NIL

To edit-the . total collection: of patterns: and: response -
expressions . associated. with a meta - symbel, use the function =
EDIT.GR, described in Section IX.

4. Compiling Response Expressions:

To 1ncrease the run tlme efflclency of the LIFER system, _'
all but the most tr1v1a1 response expressions are automatlcally. :
eonverted lnto calls to functlons of no arguments._: ThlS
conver31on, whlch is optlonal, allows the response expre331ons_
to be compiled. (See discussion of SAVE.GRAMMAR below) The.:
rules for expression conversion are the followlng Atoms are
never converted. . Single member. lists. (i.e:, calls to: functions
of no arguments) are not converted. . Any S-expression whose: CAR i
is QUOTE is not converted.. . Lists of multiple . elements.:. of -the
form - S L : S
, (FUN ARG1 ARG2 ... ARGn)
are replaced by

(new. function)
where new.function is a newly created function deflned as
(LAMBDA NIL (FUN ARG1 ARGE ARGn) | |
A llst of names of functlons defined in thls manner 15 saved 'as'
the value of the global varlable LIFER. FUNCTIONS If the same.

The: LIFER Manual s S Page . 37

response expression is ‘used . in‘ the' definitions of multiple -
patterns; - :all occurrénces ~will use. ' thei:same” new function.
Converson of response expressions to- functions may be turned off’

by setting FUN.FLAG to NIL.:

5. Efficiency Advice

A useful method for inorea31ng parse tlme effmclency 13 Eo_:
delay costly computatlons until a top level pattern has been:
accepted. Stated 1n the negatlve, costly computatlons in _
respense expressions assoclated with subgrammars should _be'
avoided, because the parser is likely to accept temporarily sdmé
subgrammars that -will later .be . discarded.. :One..method for
delaying computations is to have subgrammers return ' expressions:
for computing wvalues rather than the values themselves. - Such
expressions need be evaluated only after a top-level pattern has... -

been accepted.

IV. USING THE LIFER PARSER

- The LIFER parser may be iﬁ#ékéd’ as soon as even one
top-ievel sentence pattern"has been speelfled There are
multiple methods for sendlng 1nformat10n to the parser. ‘The
first method is convenient for intermixing calls- to the parser
with ordinary top-level requests.. to:: INTERLISP. When the
INTERLISP * prompt character 4is - typed, the user may type a

The LIFER Manual Cwinnlt T Page: 38

gemicolon, the sentence to be processed by . the: parser, -and . a..
carrage return. For example, if the. INTERLISP prompt character: . -
is "-" and the input sentence is "How old.-is- John",.-then . the:
interaction with LIFER would look like this:

PARHOW OLD IS JOHN (carriage return)

15 YEARS OLD _
The semlcolon need not be separated from the sentence by a
blank. The semlcolon 1s only one of a number of 1n1t1a1 control
characters that may be used to 1nvoke the LIFER parser and:
affect par51ng behav1or, but 1t enables the most general set of' |

features.

I all-inputs.are (for.-a time at least) to: be given to . the :
parser . and not interpreted by INTERLISP, then the user may set:
the flag LIFER.INPUT to . the character . ";". . This: may: be
accomplished by the function call

(LIFER.INPUT)
After this change, EVERY line typed into the system will be sent
to the parser. Such inputs may omit the initial semicolon (but
need not). To return to normal INTERLISP processing, the input
sentence
RESTORE
may be used. Thls sentence is predeflned at the top-level of

the appllcatlon language when LIFER is inltlallzed

~The parser may be invoked- directly by-the.call-
(PARSE . input.list)

where input.list is-a 1list of - words composing a . (possible)

The. LIFER Manual ..o - Page 39

sentence.. For example,.to parse ﬁhe:sentenee
HOW OLD IS JOHN
function PARSE may be called directly as in
(PARSE '(HOW OLD IS JOHN))

The function SUBPARSE provides an entry into the parsing
procedures that is useful for the defining of certain
predicates. (See discussion of predicates above.) Calls to this
function are of the form o _ .

.. (SUBPARSE: meta.symbol input.list)

where input.list is to be parsed in accordance with: the grammar -

named - by meta.symbol. . If the parse fails, SUBPARSE returns the. -
atom *ERROR®. If successful, the wvalue . of. the. mafching~
pattern's response expression. (which may be NIL) is returned.
SUBPARSE suppresses. the.. .printing .of all. parser .. messages,
including error messages. If the user has defined a grammar for ..
chemical formulas, then a call to SUBPARSE such as.

(SUBPARSE '<CHEMICAL> '(H 2 0))
might be appropriate.

The parser dpératéé iﬁ'é“fbp:daﬁn, left to figﬁf:ﬁddé} :.E§:'
an input is processed, the teletype bfiﬂt hééd or:the disblaj"'
cursor will follow the progress of thézupéﬁSing':Bf positioning
itself beneath the word currently being inteﬁpréééd. {When the
time-sharing system is heavily loaded, this feedback assures the
user . that the input- is . being ' processed.) When parsing is
complete, LIFER types the message PARSED!: before evaluating the:.

top-level response function. This message lets the user kriow ...

The LIFER Manual ceiri L page BO

that the input has been :"understood" -and - that : response -

computations are underway.

V. THE ELLIPSIS FEATURE
Because it becomes - tiresome to type: . :complete . - input
sentences when several inputs involving the same input pattern
are to be processed in. sequence, . LIFER . provides an ellipsis
(incomplete sentence) processing facility to permit abridged
inputs that match only portions :of existing patterns. :. For:
example, suppose the pattern
(HOW <ADJ> IS <PERSON>)---

is contained in the system and that the user wishes "~ answers . to::
the questions.

HOW OLD I3 JOHN: -

HOW TALL IS JOHN - °

HOW TALL IS MARY
Rather than type out each of these querles in _full,” it takes
less effort and is more natural to type just .J:IL: o

HOW OLD IS JORN -

HOW TALL

MARY

The: first query in the latter sequence matches the pattern:

cited: above and 1is processed :in the normal way.. However; HOW
TALL. does not match - the pattern. If in .. fact. there is no

The LIFER Manual Joee. o Page U1

sentence~level pattern in the system that:matches HOW TALL, . .the - -

parser turns processing over to a special ellipsis routine.
This routlne remembers the pattern (or' patterns) used 'in .
proee331ng the last acceptable lnput and attempts to match thed -
current _1nput agalnst the various contlguous pattern fragments._"
that may be extracted from the old pattern (and the patterns of |
subphrases that were recognized by subgrammars) If the system
has just. processed-HOW: OLD-IS. JOHN, .then the old pattern is. (HOW
<ADJ> IS <PERSON>). A fragment:of this old pattern is

{HOW: <ADJ >},
which matches HOW TALL.: By supplementing the current. input with
information extracted: from the last, the ellipsis routine. ...
expands HOW TALL into - HOW TALL I3 JOHN.

Similarly, wlth the system rememberlng the (expanded) 1nput
HOW TALL IS JOHN, the abrldged 1nput MARY is matched agalnst the
pattern fragment :
(<PERSON>)
and expanded 1nto HOW TALL I8 MARY

.The user. who - watches . the. terminal dlsplay during the.: :
processing. - of . an . elliptical input may see the cursor.or prlnt;sg
head move as the parser tries to match -the: input : against a
complete - pattern at the sentence level. Once the parser has-
given up on a sentence~level match, the message TRYING ELLIPSIS:
will: be printed. . If the ellipsis facility: succeeds in: finding a:
partial match, the expanded' interpretation - of the :inpubt.: is:

printed so that the user may know whether or not the incomplete

The LIFER Manual RV :Page: U2

input was expanded-as intended..

For many appllcatlon languages, the time spent in
determlnlng that an 1nput does not flt a. sentence~1evel pattern”.
is relatlvely small However, the user may ‘skip thls process::
and try 61119513 dlrectly by typlng a comma at the begmnnlng ofn

the 1nput 11ne in place of the semlcolon dlscussed above

It is often possible for the ellipsis routines: to match: . an
input against multiple fragments. of the previous. input.
However, the system will make that.substitution that is leftmost
in the- sentence sequence. and - at the least possible depth of . .
recursion. Consider, for example, the pattern.. -

(IS <PERSON1> <CADJ> THAN <PERSON2>)
which was dlscussed above In the context of 1nput
| | IS JOHN TALLER THAN SUE_
the input o

SAM

will be expanded into IS SAM TALLER THAN SUE. Although SAM is
capable of matching both CPERSON1> aund <PERSON2> in the old
pattern, *the ellipsis facility makes . the - substitution - for
{PERSON1> because it is the leftmost of the possibilities..: It .~
should be noted that language users are more likely to ask - "IS - ..
SAM"™ or "THAN SAMY than "SAM," because humans implicitly realize.
the ambiguity of "SAM". and, through years. of . natural . language-
training, ... are . in - the . habit = of ' providing . clues for
disambiguation. - LIFER - will use - such clues. when they are - .

furnished. .

The LIFER Manual Dot 1 Page U3

Using the pattern
(IN WHICH DEPARTMENT DO <PEOPLE> WORK)
the inﬁat : L LTl e S |
' IN WHICH DEPARTMENT DO JOHN AND TOM AND MARY WORK
will cause the meta symbol <PEOPLE> to be expanded on multiple:
levels. Thus the 1nput . _
' SUE AND GENIE
conceivably could be expanded into such interpretations as

% TN WHICH DEPARTMENT DO JOHN AND TOM AND SUE. AND GENIE WORK.
By forcing substitution at the least depth.. of recursion,; the
system will, in: fact, interpret. SUE AND GENIE as

IN. WHICH DEPARTMENT DO SUE AND GENIE WORK,; -

which in most cases seems to be the substitution preferred by .

humans.

:The system allows elliptical- inputs to begin in the: middle: -
of one: subgrammar and end: in the middle of another. To see
this, suppose the pattern

(NP VP)
appears at the top-level and that NP may be expanded 1nto
'_ (WHAT <CLASS NOUN> FROM <PLACE>) o

and VP 1nto (<VERB> <OBJECT>) Given the 1nput

| WHAT PEOPLE FROM FACTORY F MAKE SHOES
the subsequent 1nput STORE Q SELL will expand into WHAT PEOPLE
FROM STORE Q SELL SHOES A couple of additlonal possibllitles "”
are: MACHINES goes to WHAT MACHINES IN FACTORY F MAKE SHOES o
SEW goes to WHAT PEOPLE FROM FACTORY F SEW SHOES.

The LIFER Manual foon 0 H Page MY

VI. SPELLING CORRECTION AND PARSER ERROR-MESSAGES

As the parser works its way'thrbaéh an inbat”:it' remembers
those p01nts at which 1t fails and is forced to back up. If'thé
parser fails to find any path through the patterns of the
appllcatlon language ‘that will ‘match the 1nput then thlS:

history of failpoints is used to ald recovery processes

For complete inputs (or inputs that are at first assumed to
be complete); the first type of failure processing attempted by
the parser is spelling correction. . When LIFER believes . a. word
to be misspelled,. it ~will " type the "correct™ spelling
immediately below the misspelled word ' and . resume the parsing

process..

For inputs preceded by the semicolon control character, the
rejection. of an attempted analysis for a complete sentence or
question will automatically cause elliptical processing . to - be

invoked.

If all attempts at parslng and error recovery are
unsuccessful then the hlstory of fa11p01nts is used to glve the
user some guidance concernzng where his 1nput falled to meet the
language definition.: 'Becausev it is normal for the parser to
explore a number of false paths in 1nterpret1ng a' sentence, a
heurlstlc is applled to determlne whlch fa11p01nt to report to
the user. Thls fa11p01nt is the rlghtmost (and in case of tle,

shallowest) fa11p01nt in the fa11p01nt hlstory

The: LIFER Manual Jtionl i 'Page U5

The parser recognizes three major categories of errors. In
the first, the parser is able to account for the entlre 1nput
but needs more 1nput on the rlght to complete a pattern. That
is, the parser ean flnd a pattern that swallows up the 1nput, t:
but the 1nput is exhausted before some of the symbols at the end:'.
of the pattern are matched For thls error, the system prlnts a:.
list or those words and meta symbols that may be used to extend S

the 1nput

In the second type of error, the parser finds‘a word in-the
input that- it cannot interpret:in the context of those words -
appearing to the word's left. The system indicates to the . user
what words or meta symbols may be recognized in that context. .
The user may find which terminal words match.-a meta symbol : by
using the function SYMBOL.INFQO discussed below.

In the thlrd type of error, the parser flnds an acceptable
syntactic analy51s of the 1nput but response expre351ons
associated with some syntaotlo unit have returned '*ERROR*
causing the ana1y31s to be regected on' semantiec grounds.
Because LIFER is syntactloally oriented, it ecan prov1de no real

help for users confronted w1th thlS type of error._'

The LIFER Manual c.oons o Page

VII. INITIAL CONTROL. CHARACTERS

46

After LIFER has been loaded into INTERLISP, the first

character of each 11ne typed by the user lls examlned to'

determlne how the 1nput 13 to be treated by the system. If the o

flrst character is taken from the set of symbols {!,.,@+*} then
proce351ng follows the ccrrespondlng rule c1ted below. If the_
initial character is not a member of this set then the ‘value of
the global variable LIFER.INPUT 1is wused as the control

character. .- If this wvalue is-not in the set, character "I" is

used. Normally, an interface builder should set . LIFER.INPUT to. .

one of these characters so that the actual end user need not be

concerned with input control.

-

== Input line is.given to LISP for normal processing. -
; == Attempt to parse input as complete sentence.

If this fails, try to do spelllng correctlcn. .
if thlS falls try ell1pt1ca1 proce331ng

Qe_Attempt to parse lnput as complete sentence.

e

If this falls, try spelllng correctlon, but no
'he111p51s. o
'é -—HAttempt tc parse 1nput as complete sentence. ' . q
Don't try spelling correction or ellipsis. o

, == Attempt to parse as an elliptical input.

+ -— resume last input at the point which caused the
error.
¥ —— Treat line as a comment.

The control character Feature of LIFER is implemented via a

The LIFER Manual Cooew o Page. WY

LISPXUSERFN.. Hence,- system - builders wishing to use their own.
LISPXUSERFN should ADVISE the one supplied by LIFER.

VIII. THE PARAPHRASE FEATURE

A. The Function PARAPHRASE

The function PARAPHRASE allows naive users - to: expand the
language definition without knowing the underlying grammar or
the nature of the language specification routines. ;- PARAPHRASE
takes three arguments: NEW-PHRASING, OLD-PHRASING . and
META-SYMBOL. If META~-SYMBOL.is NIL, then OLD~PHRASING should be
a legal sentence-level input in the application language. If -
META-SYMBOL is non-NIL, then - OLD-PHRASING should be a legal
expansion of META-SYMBOL.. In either case, hereafter:the parsing

of NEW-PHRASING is to produce the same: effect as the parsing of
OLD-PHRASING.

As an example of the use of PARAPHRASE assume that
o (WHAT <AUXB> THE <ATTRIBUTE SET> OF <PEOPLE>) |
is a pattern at the sentence level and that <ATTRIBUTE—SET$.ahd'”.
<PEOPLE> may be expanded as follows:
{ATTRIBUTE-SET> . => (<ATTRIBUTE>) . :
=> (<ATTRIBUTE> AND <ATTRIBUTE~SET>). ...
- <PEOPLE> . =>. {<PERSON>). :
. (<PERSON> AND. <PEOPLE>)

The LIFER Manual i page B8

Assume also that <AUXB> includes members of: the :set {IS: ‘ARE}, ..
that <ATTRIBUTE>- includes. members of {AGE HEIGHT: WELGHT}, and"
that <PERSON> includes members of {JOHN TOM SUE}. Then the
system will accept such inputs as

WHAT ARE THE AGE AND WEIGHT OF TOM

To expand the lanéﬁége: ébééifﬁcafioﬁ withoﬁt having to
mention such things as meta symbols or patterns, PARAPHRASE may
be called as follows: N B

PARAPHRASE((PRINT AGE FOR TOM) . .-

. ~(WHAT IS THE AGE OF TOM)) :
PARAPHRASE creates new structures that will cause the : LIFER-
parser to recognize

PRINT AGE FOR TQM- i v
as a paraphrase of"
< WHAT IS THE AGE OF TOM

In particular, PARAPHRASE creates the new top-level pattern -

- (PRINT <ATTRIBUTE-SET> FOR <PEOPLE>).
and an appropriate response expression for carrying out - the
commands that match the new pattern. The naive user need know
nothing about the new pattern and its associated response
expression. o - o o .

Note that the new pattern - generated by . PARAPHRASE: will -
match many more inputs than just NEW-PHRASING. : For. the: current
example, such inputs as

PRINT THE AGE AND HEIGHT FOR SUE 'AND JOHN

will be matched and produce appropriate responses.

The LIFER Manual S i Page U9

~Sometimes- the: funetion PARAPHRASE -~ makes changes in =
subgrammars, ' even. :when . it is: called with respect to . :the -
sentence-level grammar. ' For example, consider
PARAPHRASE((WHAT ARE THE AGE AND HEIGHT OF THE BOIS)
(WHAT ARE THE AGE AND HEIGHT OF JOHN AND TOM))

PARAPHRASE recognizes:that the difference in'these-inputs can be
accounted for solely in terms of a change in <PEOPLE>.
Therefore, it asks _ B | R o

 MAY LIFER ASSUME THAT "THE BOYS" MAY ALWAYS BE USED o

IN PLACE OF "JOHN AND TOM"? | A
if the user answers YES, PARAPHRASE extends the:'defiﬁitien éf”
<PEOPLE> to 1nclude the pattern '_ o
- (THE BOYS),
and 1ndlcates thlS extension to the (more sophzstlcated) user by':J
typing e o
CPEOPLE> => (THE BOYS).
The phrase THE BOYS will subsequently match <PEOPLE> in any
pattern in which <PEOPLE> appears. 1in partleular, the input
PRINT HEIGHT FOR THE BOYS o
will now be parsed and 1nterpreted as
WHAT IS THE HEIGHT OF_JOHN_Aﬁb_TOM -

Suppose the user types NO to the system-generated ‘query
above.. Then “PARAPHRASE ' assumes only that THE BOYS means JOHN
AND TOM in the context of queries following the pattern

(WHAT <AUXB> THE <ATTRIBUTE-SET> OF THE BOYS).

Therefore, PARAPHRASE extends the sentence-level grammar to

The LIFER Manual S+ . - Page: 50

include this . new pattern. The response. expression. -that

PARAPHRASE creates to answer queries folleowing: this pattern will..
find the attributes of. the <ATTRIBUTE-SET>.. for exactly the .

constants JOHN and TOM.

B. Accessing PARAPHRASE Through.Natural Language .

The reason for having a PARAPHRASE function is to make it
easy for computer-naive users f©o extend and_pebsona;iéé.éh
application language without having to know anythihg“ about
formal language speclflcation procedures Therefore, if users
are forced to create their own expllclt calls to this fuﬁéﬁioﬁ,J
its wutility will be largely lost Thus,' it ”is:'strongly'
recomended that interface bullders prov1de a natural language
link to PARAPHRASE. For example, the calls

PD((LET <S1> BE & PARAPHRASE or <SZ>)
(PARAPHRASE <S15 s2»))
MAKE . PREDICATE(<S1> LISTP)
MAKE. PREDICATE(<82> LISTP) .
will create the internal structures necessary to allow users to
simply say things such as AR

LET (PRINT AGE FOR JOHN) BE A PARAPHRASE OF (WHAT IS THE

AGE OF. JOEN)

If a predicate STRING.TC.LIST +that . recognizes strings and
converts them to lists is used in place of LISTP, then the more

natural input

The LIFER Manual ~ooee - Page 51

- LET "PRINT AGE FOR JOHN"™ BE A PARAPHRASE OF "WHAT IS THE
AGE. OF JOHN"

may be used. ::: -

IX. AUXILIARY FEATURES

The central funetions are supported by a humbefu"of

auxiliary routines.

A. GRAMMAR.ANALYSIS

One of these 1s the functlon GRAMMAR ANALYSIS whlch causes
a complete and ea311y readable dlscrlptlon of the current'.
appllcatlon language to be written on a file. Arguments to_ _
GRAMMAR. ANALYSIS are FILE. NAME and WIDTH where WIDTH is the:1 _
maximum line length to be used in wrltlng the file. FILE.NAME
defaults to the name GRAMMAR. ANALYSIS and WIDTH defaults to 72

B. PRINT GRAMMAR

» The: function . PRINT,.GHAMMAR may be used to . print .. the . -.
production.. patterns associated with the top-level of . the:
application language:or any of its . subgrammars. The function
takes two arguments: SYMBOL. and FLAG. . SYMBOL: may.be-a meta -

symbol whose associated patterns are to be printed. It may also
be the atom LIFER.TOP.GRAMMAR or NIL, in which case the

The LIFER Manual S v Page 52

top-~level patterns ‘are printed.: If FLAG: is: non-NIL, ' the
response expression (or its functional conversion, see Section
III.F.4) associated with each pattern is also printed. -. The
grammars are printed as sequences of production rules of the
form

Meta-Symbol => pattern

C. SYMBOL.INFO

The function SYMBOL.INFO +takes a meta symbol : as. its -
argument and prints all the ways in which that meta symbol may
be matched. This includes sets, predicates and. subpatterns.
Because various error messages make reference to meta symbols,
parser users may wish to obtain 1nformatlon 'about them For
those users who do not know INTERLISP the system bullder may:
wish to prov1de natural language access to the SYMBOL INFO:_'
functlon. To do thls a pattern such as

" (HOW IS <SYMBOL> USED)
may be deflned w1th response expr6331on '
(SYMBOL.INFO <SYMBOL>). o

LIFER remembers which meta symbols have been define&.ih.fefms'of
sets, predicates, and patterns (or combinations of: these) by
maintaining lists, which are the values of global-: variables
LIFER.SETS, LIFER.PREDICATES, . and .LIFER.GRAMMARS.. . Thus, the
symbol <SYMBOL> may be. defined by using the predicate.

The LIFER Manual i~ - Page 53

(LAMBDA- (W) . (AND (OR (FMEMB W LIFER.SETS).
(FMEMB W LIFER.PREDICATES)
. (FMEMB W LIFER.GRAMMARS))

D. User-Supplied Functions

Provision has been made in LIFER for two functiens. to .be
defined by the interface builder. (Standard functions. are
provided, which act as no-ops.) These are USER.NEW.WORD . and-
USER.PREPROCESSOR... . .-

When new symbols and grammap patterns are.'beiﬁg &efinea,
the function USER. NEW.WORD is called whenever the syStem‘ﬁhinks'“
it might be seelng a word for the flrst time that is to become a
part of the 1anguage These calls make it possxble for the user
to collect a word list or do other processxng as de31red
USER.NEW. WORD has two arguments, the new word and a flag. 'If:_'
the flag 1s NIL the word 13 belng deflned as the p0331b1e value
of a meta symbol through MAKE SET. 1If T the word is bemng
defined as a direct member of some pattern USER NEW WORD may :
be called more than once with the same word o

The second user function, USER. PREPROCESSOR, is a function
of one argument that is called by the parser before par31ng
actuall&lbegiﬁs Its argument 1s the llst of words that have"”
been 'glven to the parser as an 1nput USER PREPROCESSDR may_:

convert this list into another list that will actually undergo

The LIFER Manual Lt i page 5Y

the parsing process: This feature of LIFER gives the user the
opportunity to implement lexical’- strippers (for example, to
convert plurals to roots plus suffix as in BOYS => BOY -3). For
processing highly inflected languages, such -as German, this

feature is much more crucial than for English.

E. SAVE.GRAMMAR

The function SAVE.GRAMMAR . has: been: provided: ' to. . save
language definitions on files. Like MAKEFILE, of INTERLISP,
SAVE.GRAMMAR takes a file name as 1its argument. ' An -atom:
flleCOMS is created (or fOund) follow1ng the usual INTERLISP
conventlons If fileCOMS is a new atom, a value 1s a331gned to
it that Wlll cause the language deflnltlon to be saved._ If
flleCOMS 1s a oommands llSt that the user has set up, prov1sions
are added to the list that W111 cause the language deflnltlon to
be saved. Ir flleCOMS was produced by either of the above_
methods, ' subsequent calls to SAVE. GRAMMAR need make' no
alterations 1n f11eC0MS if the user has deflned user functlons
and has them on source flle USER LSP, it may be convenlent to
save the 1anguage deflnltlon on a new ver31on of thlS same flle
by calling SAVE.GRAMMAR with USER LSP as the argument

To load allanguage definition written by SAVE.GRAMMAR, the
LIFER system should be loaded first and then the file on whlch_
the 1anguage deflnltlon was saved should be loaded (u31ng the'
ordlnary INTERLISP LOAD functlon) '

The LIFER Manual Coent i Page 55

The file made: by SAVE.GRAMMAR may be compiled {(use TCOMPL)
t¢ improve execution time .for response expressions. (However,
to avoid multiple function definitions, if the same response
expression is used w1th multlple patterns all such patterns

should be spec;fled before eomplllng)

F. EDIT.GR

The functlon EDIT. GR takes a SYMBOL ‘as itai”argument and
converts the internal transltlon network deflnlng the subgrammar
named by SYMBOL (use NIL for the sentence level grammar) into a
list. of pairs of the form (pattern response).. This list is
then given to the INTERLISP. editor. . The interface. builder may
change pairs, add new pairs or delete pairs, using the full
power of the editor. When the interface builder types 0K, the
edited 1list 1is reconverted into internal networks. This
function 1is extremely. useful . in. constructing -more complex

language specifications and its use is strongly encouraged.
G. Other Functions:~
Other LIFER functions include:

EDIT.RESPONSE.EXPRESSION(PATTERN) SYMBOL).
Nickhame is EDiT'RE ‘For the grammar called SYMBOL ,
' the response expression assoclated w1th PATTERN is

retrieved. The user may then edit this expression.

The :LIFER Manual

EXPUNGEELEMENTS {SYMBOL LIST). - Nickname is-EE.
‘The items . on LIST . are expunged -from the set
- associated with SYMBOL.. Inverse of MAKE.SET. = :

EXPUNGE. PATTERN(PATTERN SYMBOL). Nickname is

EP. PATTERN is no longer to be an expan31on of
SYMBOL.
GET .RESPONSE. EXPBESSION(PATTERN SYMBOL)

Nickname is GRE " For subgrammar SYMBOL flnds the

'response expre331on associated w1th PATTERN

© MPQ(LIST). An: NLAMBDA :function, MPQ applies
MAKE .PREDICATE to each:of the items on LIST.

MSQ(LIST). An NLAMBDA function, MSQ applies

MAKE.SET to each of the items on LIST.

PDQ(LIST).: Each item on LIST i3 of: the form
. (SYMBOL plist), where. plist is a list of pairs of
the form (PATTERN RESPONSE). For each pair, a call
to PATTERN.DEFINE is made of the form.
PD(PATTERN RESPONSE SYMBOL).

PDQ is an NLAMBDA.

PATTERN.REFERENCES(SYMBOL)f Prints production
' ruies_ indiéating the patterns in which SYMBOL is

used.

" 'Page 56

The LIFER Manual .. - . Page 5T

REDEFINE.PATTERN(PATTERN .- RESPONSE. :SYMBOL).
Like : PATTERN.DEFINE, but :does -not - print error
messages when a. pattern . is -given a new response

expression. o

SYNTAX(BINDINGS.FLG). Prints the syntax tree
of the last sentence parsed. If BINDINGS.FLG is T,

- the value of each nonterminal is displayed..

X. IMPLEMENTING PRONQUNS
Pronouns (and, more _géneraily,':detefmihéd " noun phréséé)_
furnish many difficult _ problems 'foh "iahguage definition
designers. LIFER supplies no simple solution to these problems.

However, a few observations may be of help';

First, there are many trivial.uses of pronouns in which. it -
is not necessary to invoke heavy machinery to.resoclve the -
reference. Examples include

cioeot. WHAT TIME IS IT
IS IT RAINING OUTSIDE - _
and instances in which the pronoun refers to an . earlier word -in:

a pattern

The: LIFER Manual ~:0 U Page: 58

(DOES THE <THING> HAVE ALL ITS <PARTS>)-
as in DOES THE CHAIR HAVE ALL.ITS LEGS
DOES THE RADIO HAVE ALL ITS TUBES
(DID <PERSON-POSSESSIVE> <RELATION> <TRANS-VERB>-HIM)
as in DID JOHN'S BOSS FIRE HIM
| DID SAM'S DOG BITE HIM

Very often pronouns are used in natural language: ‘to refer
to things mentioned in the '"last sentence." Thus, in the
sequence

WHAT IS THE LENGTH OF THE SEAWOLF

WHAT IS ITS SPEED
the pronoun ITS refers to THE SEAWOLF Suppose the first
sentence above is interpreted by means of the pattern o

(WHAT IS THE <ATTRIBUTE> OF <SHIP>)
and the second sentence by _
(WHAT IS <SHIP-POSSESSIVE> <ATTRIBUTE>)
The primary method - for matching <SHIP-POSSESSIVE>. might: be
through a pattern such as
(THE <SHIP> ~'S). :

where -'S is the possessive forming suffix which is' stripped off
by a preprocessor as described above. .. (Alternatively, a set of
possessive nouns naming ships could be defined and the stripper
not used.) In addition to this pattern, <SHIP-~POSSESSIVE> may
also be defined to mateh ITS if a <SHIP> was used in the 1last
input. This will allow WHAT IS ITS SPEED to be interpreted as

The LIFER Manual Sunontt Page. 59

WHAT IS THE SEAWOLF'S SPEED.: To define <SHIP-POSSESSIVE> - in
this way, use SRS L o

...~ MAKE . PREDICATE{<SHIP-POSSESSIVE>

. : SHIP.ITS)
where SHIP.ITS is a predicate defined by
(LAMBDA (WORD)(AND (EQ WORD.'ITS) . - ;
(LIFER.BINDING '<SHIP>)})})

LIFER.BINDING is a: special LIFER function that determines
whether the meta symbol given as an argument had a binding in
the interpréﬁation'bf the 1aét:input.' If "so, the binding is
returned. (If there were multiple occurences of the symbol in
the last input, the leftmost-topmost instance is returned). =~

"Because - pronouns: - sometimes. are - used . to - refer to. the -
RESPONSE . to the last input, the interféce builder may wish to
assign meta symbols to the responses. For example, consider the
sequence e
WHAT SHIP IS COMMANDED BY CAPTAIN: SMITH
WHAT IS ITS SPEED. -
Here ITS refers to the ship-which Captain -Smith-:.commands. . To. . .
use the ITS recognition predicate above, meta symbol.<{SHIP> must
be bound to the answer returned by the first: input. ' One way. to:. . .
do this is to make..:

(<SHIP>)
a top-level pattern and to make -
(WHAT SHIP.IS COMMANDED BY <PERSON>). -

a pattern defining <{SHIP>.

The LIFER Manual s U Page 60

.To allow . elliptical inputs which ‘might’ be. matched by -

<SHIP>, the pattern (<SHIP>) must not be used at the top-level.:
Hence, to allow ellipsis, a new symbol <SHIP*> may be ‘defined
for use in top-level pattern (<KSHIP*>) and SHIP.ITS may be
redefined as L
(LAMBDA (WORD) (AND (EQ WORD'ITS)- "
* (OR (BINDING. '<SHIP>)
(BINDING: '<SHIP*>) }))

Anothér techhique, which works nicély fpf somé_'elagses of.
anaphorié :Eéferences, involves £he psé_:6f glﬁbai vériab1e$
(sométimes_éalied "registePS"). For ekémble,_éuﬁpose that each
response expﬁessions'assoéiéted with.é pét%érh'defining the meta
symbol <SHIP> is so constructed that .it .will: set - the global
variable LATEST-SHIP. to the value: it returns as the binding: of -
{SHIP>. ' To. be concrete,

PD(<SHIP>
(<SHIP.NAME>)
(SETQ LATEST-SHIP <SHIP.NAME>))}
causes <SHIP> to match the pattern (<SHIP.NAME>). ' The : response

expression: that :computes: the -value of <SHIP> will return the

value of <SHIP.NAME>, but, as a side effect, it . will. also ' set’' -

the global variable LATEST-SHIP to this same wvalue.. Later,’when
phrases such as THE SHIP or THAT SHIP are used to refer to the
last ship mentioned, the global variable LATEST-SHIP may be used
to recall the last ship.. For example, if <DET-DEF>.is the set
of definite determiners (i.e., THAT, THE, etc.), then

The LIFER Manual S v Page- 61

PD (<SHIP>
(<DET-DEF> SHIP)
LATEST-SHIP)
will define structures that allow <SBEP> to match THE SHIP and
to take as its value the value of the LATEST-SHIP Note
carefully that LATEST- SHIP is always ready w1th the value of thEvi
last <SHIP> mentioned, but (LIFER BINDING '<SHIP>) is of no

value if the 1mmed1ate1y precedlng 1nput d1d not ‘use. a <SHIP>

XI. - CURRENT SYSTEMjIMPLEMENTATION Cova

LIFER is 1mp1emented in PDP-10 INTERLISP with the basic
system requiring an additional 14K words above the 150K used. by?iﬁ'
INTERLISP. An extensive language definition for communlcatlng
with -a large data base (100 fields on LY flles w1th hundreds off.oi Ll
records) requires an addltlonal 33K 1nclud1ng some data base
access routines. . Such sentences as

'WHAT IS THE LENGTH OF THE FASTEST AMERICAN SUBMARINE
parse in less than .2 seconds of CPU tlme, u51ng block—compiled
INTERLISP on the DEC KL-10. This is much faster than the

sentences are usually spoken or typed..

The LIFER Manual coe T Page B2

FUNggﬁgglfIST

EDIT.GR[SYMBOL]. Gives control to the INTERLISP edltor to edlt the' '
productions expanding SYMBOL. . S

EDIT.RESPONSE.EXPRESSION[PATTERN SYMBOL1. Gives control to the
INTERLISP editor to edit the resgonse expression associated”
with PATTERN in the expansion of SYMB

EXPUNGE.ELEMENTS[SYMBOL LIST]. The items on LIST are removed from
the set of words which may match SYMBOL.

EXPUNGE.PATTERNEPATTERN SYMBOL]. PATTERN: is no- leonger to be an
expansion of SYMBOL.

GRAMMAR .ANALYSIS[FILE WIDTH]. ertes an ana1y31s of the current
lang%age definition on . FILE. WIDTH specifies line . length of
prin 1ng

GET .RESPONSE.EXPRESSION[PATTERN° SYMBOL]}. - Gets: the response
expression associated with the expansion_of SYMBOL as PAT ERNf

LIFER.BINDING[SYMBOL]. Returns the value of the leftmost; topmost
occurrence of SYMBOL in the syntactic analysis of the last
sentence.. . If: SYMBOL -did ' riot ocecur, returns: NIL. -

LIFER.INPUT[]. Equivalent to (SETQ LIFER.INPUT ';)

MAKE.PREDICATE{SYMBOL PREDICATE]... SYMBOL :is: to- mateh .any 8-
expression satisfying PREDICATE.

The LIFER Manual _aooo. - Page 63

MAKE.SET[SYMBOL SET.SPECIFICATION}. SYMBOL: is to match . words. and -
phrases as indicated by SET.SPECIFICATION. See Section III.C... .-

MPQ[LIST]. An NLAMBDA. Each item of LIST is an argument 1list for
a call to MAKE.SET. R I ' Sl

MSQILIST]. An NLAMBDA. Each item of LIST is an argument 1ist for
a call to MAKE.SET.

PARAPHRASE[NEW.VERSION OLD.VERSION SYMBOL]. If OLD.VERSION matched.
SYMBOL (which, if NIL, may be the top-level syntax), then
NEW.VERSION will henceforth match SYMBOL also, with +the same
interpretation. SN : RN oo 0

PARSE[INPUT.LIST_ ELLIPSIS.FLG ELLIPSIS.ONLY.FLG SPELLING.FLG
RESTART.FLG]. INPUT.LIST :is the input to be parsed, Other .’
arguments control the parsing. . If all flags are - NIL, PARSE ..
atfempts to parse INPUT.LIST as a complete sentence, without
spelling correction. SPELLING.FLG turns on the spelling
corrector (for nonelliptical inputs onlg). If ELLIPSIS.FLG is
T, an input that fails to parse at the top level will be given .
to the ellipsis routines. If ELLIPSTS.ONLY.FLG . is also T, the -
INPUT.LIST . goes - directly :.to . ellipsis . routines... If .
RESTART.FLG is T and an error cccurred in the previous call to:
PARSE, parsin is resumed at the previous fail point, using
the current INPUT.LIST as the new tail of the input sentence.

PATTERN.DEFINE[LA1:. A2 A3]. ‘Either A1 is a SYMBOL, A2 is’ a PATTERN; -
and-A3 is a RESPONSE.EXPRESSION, or A1 is a PATTERN, A2 is a'
RESPONSE.EXPRESSION, and A3 is a SYMBOL. PATTERN is to - be an:.
expansion of SYMBGL, whose value 1is to be computed bE
?E Pg§§%6§XPRESSION. For sentence-level expansions, use NI

or .

PATTERN.REFERENCES{SYMBOL]. Prints all productions in which SYMBOL
appears in an expansion pattern.

PDQ[LIST]. An NLAMBDA. LIST is a 1list of items of the form
{SIMBOL PRLIST), where PRLIST is a 1list of PATTERN-
RESPONSE.EXPRESSION pairs. For each item on LIST, for each
Bair on PRLIST, a call is _made to PD of the form PD{SYMBOL

ATTERN RESPONSE.EXPRESSION]..

The. LIFER Manual P Page 6Y4

PRINT.GRAMMAR[SYMBOL RESPONSE.FLG]. Prints '~ the = productions
expanding SYMBOL. If RESPONSE.FLG is: T, the -associated
response expressions are printed also.

REDEFINE.PATTERN[A1 A2 A3]. Like PATTERN.DEFINE, but’ doesn't give =
error messages when a pattern is redefined with a new
response.

SAVE.GRAMMAR[FILE}. Prints out the current language definition on
FILE. The language definition may subsequently be reloaded
using LOAD. - - : S SRS ;

SUBPARSE[SYMBOL INPUT.LIST]. Parses INPUT.LIST using - the |
productions expanding SYMBOL.

SYNTAX[BINDINGS.FLGI1. . Prints'thé"pafée tree of the last 1nput“..
parsed.. If BINDINGS FLG is T, the values of nontermlnals areg
dlSplayed : _ w

USER.NEW. WORD[WGRD FLAG} functlon to be supplled by the user. -
(The standard version is a no~op.).: Called whenever a new WORD
is defined through MAKE,SET - or PATTERN.DEFINE. . FLAG is ..T if .-
word is encountered durlng a call to PATTERN DEFINE : o

USER.PREPROCESSOR[INPUT.LIST]. A function to be supplled by the
user. {(The standard version simply returns INPUT.LIST,)

PARSE . calls USER.PREPROCESSOR = wit its own INBUT.LIST .

argument. Parsing is actually performed . on the output from:. .
USER PREPROCESSOR. . I S T I

The LIFER Manual v Page 65

Appendlx B
FUNCTION ABBREVIATIONS

ABBREVIATION FULL FUNCTION NAME
EDIT.RE " EDIT.RESPONSE.EXPRESSION
EE EXPUNGE . ELEMENTS

P EXPUNGE.PATTERN
GRE | _ GET.RESPONSE .EXPRESSION
LB . . " . .. LIFER.BINDING
MP MAKE . PREDICATE
MS MAKE .SET
PD. .+ . - ... PATTERN.DEFINE
PG PRINT . GRAMMAR
PR PATTERN.REFERENCES

- RP-- o . REDEFINE.PATTERN:

The LIFER Manual T..ow it U Page. 66

Appendix C
GLOBAL PARAMETERS-.

I. Parameters That May Be 3Set

FUN.FLG

If T, responge expressions are converted to functions of no
arguments, whlch may be complled

LIFER.MAXDEPTH S :
Maximum depth of left recur31on Originally set to 6.

LIFER.PROMPICHAR.LENGIH - =~ S
Length of the INTERLISP prompt Originally set to 2. Should
be set to the column number where users begin typing their
inputs to the parser.

I1. Parameters That May Be Accessed:

LIFER .FUNCTIONS

List of functions created by LIFER to replace response
expressions.

LIFER.GRAMMER
List of meta symbols that may be expanded by patterns.

LIFER.PREDICATES

List of meta symbols that may be matched by satisfying
predicates.

The LIFER Manual . St U page BT

LIFER.SETS ‘
List of meta symbols that may match members of explicit sets.

LIFER.TIME '
CPU milliseconds required to parse the last input.

OLD.ANSWER =~ == =~ = SR S P
" Value returned by top-level response ‘expression: for last:
parse. : e o S -

OLD. INPUT
Input to the 1ast parse

The LIFER Manual Page 68

REFERENCES

Hendrix, G. G. (1977), "Human Engineering for Applied Natural

Language Processing," Technical Note 139, Artificial Intelligence

Center, Stanford Research Institute, Menlo Park, California.

Sacerdoti, E. D. {(1977) "Languaﬁe Access to Distributed Data
with Error Recovery,™ technical Rote 140, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park, California. ... =~

Teitelman, W. (1975), Interlisp Reference Manual, Xerox Palo Alto
Research éenter, Palo Alto, Calfornia.

Woods, W.A. (1970) "Transition Network Grammars for HNatural
Language Analysis," £acM 13 (10), 591-606.

