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ABSTRACT

" Rule-based inference systems allow judgmental :khowlédgé. sbout 2
specific problem domain to be repreéented as a collection of discrete
rules. Each rule statez that if certain premises are known, then
certain conclusions can be inferred. An important design issue concerns
the representational form for the premises and conclusions of the rules.
We describe a rule-based system that uses a partitioned semantic network

representation for the premises and conclusions.

_ Several advantages can be eited for the semantic network
“representation. The most important of these concern the ability to
. represent subset and element taxonomic information, the ability to
.include the same relation in several different premises 2nd conclusions,
énd the potential for smooth interface with natural language subsystems.
This representation 1s being used in a systenm currently under
development at SRI to aid =z geologist in the evaluation of the minerel
E ﬁotential-Of exploration sites.  The principles behind this system and

its current implementation are described in the paper.
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“I1 ‘Introduction .

" The use of production rules for'knoﬁiédge'répresentation'has led to

.systems that have achieved impressive leféls _df'ﬁébfofiance in their

particular domains {1, 12}. The advantages of this approach stem from
the fact that the representation is modular and declarative. This

provides conceptual clarity, encourages incremental development, and

- makes the knowledge base direectly accessible, so thet, for example, the

 program c2n explain its own reasoning processes.

' Davis and King have observed that the production system formalism

is more appropriate for some domains than others, being particularly

natural when the knowledge can be expressed as a more or less
- independent set of 'recognize-act' pairs [3]. In particular, it might

‘be natural to represent judgmentél  knbw1édge by a-set of production

rules, but unnatural to use the szme mechanism to represent other

relevant knowledge, such as'taxbnomic:(subéet/elépent)-.rélations”émbng-- fo

objects in the ddmaiﬁ. W .

In this paper we = describe 2 fﬁa§5:t6' ﬁ§e';:séméhtic .nétWOEk .

' representations ‘in rule-based infererce systems. . This ~combination

' 2llows 2 designer to .retain the desirable modularity of = rule-based . |

' approsch, while permitting an explicit, structured description - of the




saméntiGS'léf'tﬁe .pfobiém doméin., Sincé semanﬁic .hets afe .among the
[iéédiﬁg-”inéerﬁal._féprSEntétidns uééd ~in ‘computational linguistics,
: {£hé£rf§§é 'éhﬁﬁldﬂaiéo: Sihﬁiiff'the d§ve1dpméht ‘of 3 natural language
interfoce between the system and its sera. |

-Tﬁroﬁéhdﬁt fhis péﬁef we ‘shall usé.exémples'dréwh from a.geoiégicéi
conéuitant system currently being developed at SRI. This system is
intended to help geologists in evaluating the mineral potential of
exploration sites. Qur approach to designing the system has been
influenced by various developments in artifieisl intelligence.
Shortliffe's MYCIN program for diagnosing and treating bacterial
infections has been the dominant influence, primarily through its use of
production rules to represent judgmentazl knowledge, and its inclusion of
formal mechanisms for handling uncertainty [10, 11, 12]. We share with
Pople's INTERNIST (nee DIALOG) program an exploitation of taxonomic
structures, @ concern for the use of volunteered information (event-
driven, bottom-up, forward-chaining, or antecedent reasoning), and a
need for more flexible control strategies [9). There are also parallels
between our work and that of Trigoboff, who has developed different but
'rélated methods for propagating measures of wuncertainty through a
semantic network [13]. Finally, we have _5eén"iﬁfiuehded'_by' the .
EEhéralit?'and.power'éf Héﬁdbix;s.bartitibhéd'sémaﬁtié'héfwébks-.[6,-7j,f

"énd'have'emﬁiOyed:this'épproaCHiin'odr éyS£ém;;

. The following sections in' this3papér present the -basic’ principles

‘behind our system. - Seetion. II briefly reviews the rudiments of



'ﬁarfifidnéd' seﬁan£ic nétwérks; ‘and . shows How.'ih&ividual bﬁles are
_represéﬁted.. Séé£ioﬁ'-iiI'ﬁeséribes oufz-uéé.of Bayésian procédures to
'f.ﬁ;oﬁéééfe iﬁfoF$éti6ﬁwtﬁf6uéh a:néﬁwork of rules. Section IV deseribes
 Q6Qr1éuf%éﬁ£_iﬁﬁléméﬁtatibﬁ,”ahd Qiﬁéé'ahféXaﬁbie of the Qperétion of the
|  éiiétiné'SYétéﬁ;': §iﬁéiin;$é6fi6h'V' diécﬁééeé'a'nuﬁﬁér of unresolved
dééign issues, whESE"preSEnCE'should forewarn the reader that the 1dezs

presented are not yet fully mature.




11 Partitioned Semantic Networks

a. Background

We =are using a semantic~-network Fforma2lism (proposed by Hendrix)
that wuses 'partitions' as a way of grouping parts of the net into
meaningful units [6, 7]. Partitioned semantic networks possess all of
the expressive power of predicate calculus, Quantifiecation,
implication, negation, disjunction, and conjunction are easily
represented in partitioned semantic networks. As compared with most
computer implementations of predicate calculus representations, however,
semantic networks have the additional advantages of two-way indexing,
direct set-subset-element representations, classification of variables
recording to type, and the ability to represent modal statements. In
this section we give a brief overview of partitioned semantie nets and

how we use them.

B. . Elements of Semantic Networks

L semantic network consists of nodesllihked togethér by ércs. We
diétinguiSh two main types of nodes:  object nodes znd relation nodes.
"TheSe two types play roughly the same'fole as do terms and predicates,
réspectiveiy, in the bredicate calcﬁlus. For example, the statement

"Entity-1 is composed of rhyolite,® could be represented by the net




;structure shown in Figure A Here the 'composed-of' relation node has
B }two :arguments,_ ntity and value. In thls-net ' these arguments are
':filled by fhe object nodes, ENTITY-1 and RHIDLITE respectlvely Arcs

e in the network are used to connect relatlnn ncdes to other nodes, they

":are laheled wlth the name of the argument they represent

COMPOSED-OF

: ENTITY=-1 RHYOLITE

FIGURE i __REPRESENTATION OF THE STATEMENT
“ENTITY-1 1S COMPOSED OF RHYOLITE"

Some kelations,. such'es set -memtership;-are s0 common that as 2

fshorthand we represent them by special arcs instead of by their own

ITe:relation nodes and erguments.: The net structure shown in Figure 2 with

fﬁits 's' end 'e' arcs, includes b representation of: the statement "Galena“f"
Q:is an element of the 1ead sulfides which is a subset of the sulfide"
"'_minerals which is ‘a subset of the minerals "o Net struetures of this.

'-}sort’ere'obviously useful in repreSenting'taxondmiexhienerchies;"
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Each particular instance of 2 relation is an element of the set of
-all relations of that type. Thus} the net shown in Figure 1 depicts
_juét one instence of all 'composed-of' .relations. If we labeled this

particular instance by C1, we 'would have the structure shown  in Figure

{ RELATIONS ’

s

(COMPOSED~OF RELATI ONa

. 3'.

ENTITY-1 RHYOLITE

FIGURE 3 C1 AS AN INSTANCE OF A ‘COMPOSED-OF
RELATION

| _fThe éet Qf all"'composed—or' relations fbhms-a relation fémily.

._buf.presént 3ystem usesféeveral different types of relation .families to
' é2press concepts suéh"as.ébﬁpoéitidh,:form,:physicai'lodation; distance,

" end special properties. Each relation femily ?s-’féprééentéd' 1h-£he-'
" network by & structure colled a faéiinéatibn' ih which the types of the
. afgtméhté.afé:.éxﬁiiéitly shdwh;.:Fér' ékaﬁpie; thé délineétioh' fob'the

'eomposed-of' relation is shown in part in Figure 4.




"GOMPOSED-OF RELATION9

delineation

@
e 8
PHYSICAL
OBiECTS @)

' B - *es e g 5 B
\ MINERALS ROCKS
/ *oe® \ / oes \

FIGURE 4 DELINEATION FOR THE ‘COMPOSED-OF’ RELATION

- This structure shows our first wuse of partitionms. The structure
: within the partition {box) delineates the composed-of relation, saying
that it has two arguments. One argument is an 'entity' E drawn from the
:set PHYSICAL OBJECTS (of which ENTITY-1 is an example); the other
argument is a 'value' V drawn from the set MATERIALS.  The ﬁartition
serves to isolzte the delineation, which is rezlly like .é definition,

from other =actual instaﬁdés of relations in the network. Structures




‘within a partition are treated specially 'and do not have the same
 'existentisl' character as unpartitioned nodes. In’pértidhlar,' we use
nodes within partitions as varisbles which can be bound in various ways

- to constants outside the partition.

: A cbmpieﬁe:.nefwbrk'chéfecfebizaﬁienuof a large'body: of knoﬁledge '
would interconnect many structures of the type we have mentioned. The
separate occurrence of several relation nodes in a partition represents
their 1logical conjunction. Partitions are also used to isolate the
components of disjunetions, implications, and negations. For details on

these and related topics, such as quantification, see [6, 71].

C. Rules

Much judgmental knowledge about mineral exploration ean be

represented in the form of 'rules' such as:

"Limonite casts suggest the probable presence of pyrite™
or
"Barite overlying sulfides suggests the possible presence of

‘3 messive sulfide deposit.”

These rules are . in the form of simple 1mplicationa1 statements ‘such

.:as E1 & E2 & - L & EN = H where the Ei are indlvidual pieces of B

‘iev1dence and H is 3 hypotheﬂis suggested by the evidence Seldom can

’e.:any of the impllcations be made with absolute certalnty, usually the'

-.English versions of the rules contain phrases such as "strongiy suggest"

or "is mildly importent for.,n -



: To-represeﬁt rules of this 'sort in our semantic net formalism, we
_mﬁst "be able to represent the individual pieces of evidence, the
‘ﬁypothesis, and the implication and its strength. To represent the
implication, we use separate partitions for the antecedent and the
consequent. Each rule is represented by a structure having the form
éhown in Figure 5. The individual partitions for. antecedent and
consequent contzin the appropriate network structures. A property list
attached to the rule node includes a measure of the strength of the

implication. (This actuslly requires the specification of two numbers,

2g will be discussed in the next section.)

RULES

FIGURE 5 - GENERAL FORM OF THE REPRESENTATION OF A RULE .-
:Uéing this formalism, the rule "Barite overlying sulfides suggests
_the possible presence of s massive sulfide deposit" ‘is represented as

shown in Figure 6. A literal English statement of the antecedent might

10
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be something like "There is some entity, which we eall E-3A& internally,
that partieipates in an overlying relation (PHYS-REL-3A) with some other
entity, E-3B. Furthermore, E-34 is composed of barite, and E-3B is
composed of some material, V-34, that is a member of the sulfides."
- Note that the nodes for BARITE and SULFIDES 1lie outside of the

partitions; these concepts 'have existence' in their own right,

independent of the example rule.

12



'-:III " Information Probégation inJInférence:Netwdrks‘

"A. Inference Networks

The production rules hsed to represent judgmental knowledge
typically are not independent, but link together in various ways to form
what we call an Inference network. Explicit links occur when the
hypothesis (consequent) of one rule is the evidence (antecedent) for
.another. Several exampleas of this appear in Figure T, which is a
simplified representation of seven of the thirty-four rules currently
.used to draw conclusions about a possible Kuroko-type massive sulfide
deposit. For example, the observation of bleached rocks would suggest
| the possibility of a reduction process (Rule 27}, which in turn suggests
the existence of clay minerals (Rule 28), which are often associated

"wlth a Kuroko-type massive sulfide deposit (Rule 24).

. It is not necessary that 211 parts of a consequent and a related
-antecedent match. For example, rhyolite appears as part of the
' jéﬁtécedent _for Rule -1k: :"Géieha, sbhé1erité;.'cr 'chalcdbyrite'filled
Efaéks in ;rhjbiite or dacite  is vé;y'suggéStiﬁe:'of a”:massive sulfide:
: 6€§651£;“  3ﬁiéé'éanfé1sb'ﬂBé linked iﬁﬁiicitiylfhréﬁgﬁ  §0;5311éa:fé;ée'
-:feiéﬁéthéﬁbéét)'ehaiﬁé.'bef'-ekaﬁsié; suf§dée iﬁét_éhi éﬁtit§“é6ﬁposéd'
of'géiéﬁé.is 6béer§éd;' Sihce ééléﬁa'is'an.éiéﬁeﬁt.of ﬁhe:fieéd Sﬁifideé-

' which in turn is a subset of the sulfidé minerals, this observation is

13
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relevant to Rule 3: "Barite overlying sulfides is mildly suggestive of a
massive sulfide deposit.® Thus, information can propagate through the
network in two ways, either directly through chained rules, or

'_iﬁdirectIY'through é-s chains.

B. Variables

In the genersl c¢ase, the links shown between rules in Figure 7
should be thought of as potentizl rather than actual links. The object
and relation nodes within any partition are variables, and can be bound
in various ways. Thus, for example, the particular entity composed of
galena used in Rule 14 might be different from the physical entity
composed of galena used to reach sulfides in Rule 3; one might satisfy

one set of relations, the other another.

As a result, the rules cannot be linked statically, but must be
connected by pattern matching at run time. ¥hile this situation is
simplified by the fact that the potential matches are relatively few in
number and can be precomputed, it still gives rise to a number of
complications. As a temporary expedient, our current implementation

.facitly assumes that any variable c¢an be bound in only one w2y, =o that,
'fbr example, pnly one -éntity composed of galena would be allowed.
‘However, the representation used is general, pebmitting the unrestricted

use of variables that ultimately will be needed.

15



C. Uncertainty

To account for uncertainty in both thé evidence and the rules, we
assﬁciate a subjective probability with every relation and 1 pair of.
strength values with every rule. Thus, rather than saying definitely
that "Entity-1 is composed of rhyolite," we would =ay that "Entity-1 i=
‘compozed of rhyolite with probability P1," and would associate P1 with
~ the composed-of relation, rather than with the entity or the value. The
interpretation is subjective, meaning that we interpret P1 as a measure
of degree of belief rather than as the long-run relative frequency of

oceurrence [51.

In generzl, the antecedent of a rule is a logical function of the
relations involved. Rule 3 illustrates the typical case of logiczl
conjunction; for the antecedent to be true, we must have an entity, E-
34, composed of barite, and an entity, E-3B, composed of one of the
.sulfide minerals, and an overlying relation between E-3A and E-3B (see
' Figure 6). To compute the probability of the antecedent we make

recursive use of Zadeh's fuzzy-set formulas [14]:

Pr(s & B) = min {Pr(4), Pr(B)}
Pr(A v B} = max {Pr(a), Pr{(B)}
= 1 - Pr(4a).

Pr(~4)

Given the probability associated with an antecedent, we use _a form
. of Bayes' rule, modified to accommodate possible inconsistencies between

subjectively determined probabilities, to determine the probability of

16



_the cbﬁsequent.: Unlike the mechanism used inZMYCIN, tﬁis procedure does
_ﬁdt require sepafate treatment of belief aﬁd'_disbelief, nor does it
::reduiféfﬁhé'aftéihﬁéﬁtfsf a given level of certzinty before a rule can
::Béfﬁsédlfﬂaﬁy'timeﬁthe -ﬁrobébility 6f the.aﬁtécedEnt changes, the rule
.-_céh"bé"'aﬂbiiéé' again'tdf_updété the fprdbébility of the consequent.
This feature 1is barticularly valuable if the user modifies previocusly

given information, thereby foreing a reevaluation of the situation.

A derivation and justification for our procedure is given in [4];
for completeness, we summarize the final results briefly. Let E denote
the antecedent and H the consequent of a rule. Let O(E) be the prior
odds on E, and let O(H) be the prior odds on H, where odds 0 are

uniquely related to probabilities P by

Let E' denote all of the evidence we have for believing E to be
true (or false). Through the rule, this evidence affects the posterior
odds on H, O(HIE'). Of all of the possible situvations regarding our
._knohledge of the truth of E, three are particularly interesting: E known
lﬁrue;jE krown false, and E believed true _with the _p?idb’prbbébility
P(E). .'Tﬁe lest . case ' 1is trivial, in that it leaves #hé._odds on H

" unchanged at O(H). For the otheér two cases, Bayes' rule ylelds

A% O(H)

1

 OHIE)

and

COI"E) = Av¥om) .

17



Here ) is the likelihood ratio for E true, and % is the likelihood
_ ratio for E false. We sometimes say that ) measures the degree of
sﬁfficiency, since a very large value for } means that E is sufficient
for H. Similerly, -x measures thé degree of necessity, since a very
'smalll value f‘or'—}L means that E is necessary for H. The values of ) and

‘Xtaken together define the strength of the rule.

P(HIE"}

PHIE)

P(H}

P(HI~E)

PLEIE")

FIGURE 8 THE FUNCTION USED TO DETERMINE THE PQOSTERIOR
PROBABILITY OF THE CONSEQUENT FOR A SINGLE
RULE
For the general case, let P(EIE') denote our present - degree of
 belief in E based on E'. Ne.compute P(HIE") as'-thé'pieceﬁiée-linear.
‘funection of P{E!E') shown in Figure .8, which amounts to interpolating

linearly betwéen the three special cases just described. This in turn

18



_ defines the desired posterior odds O(HIE'), and an effective likelihood
“ratio A' defined by

O(HIE') -

An effective likelihood ratio 1s associated with ‘every rule.
Unlike E andi , 1t varies in wvalue as information iz gained, starting
initially at unity (indifference) and approaching either } if E is
determined to be true, or K—if E is determined to be false. If several
rules 211 bear on the same hypothesis, the effective 1likelihood ratio
provides the mechanism for combining their effects. Assuming that the
seperate rules bear on H independently, we compute the posterior odds
O(HIE') by multiplying the prior odds O(H) by the product of all of the
_incoming effective 1likelihood ratios. Repeated application of this
computationally simple procedure allows the effects of the alteration of

any probability to propagate through the network.

19



IV Current Implementation

The current implementation of our system is called PROSPECTOR., It
is coded in INTERLISP, and makes direct use of Hendrix and Slocum's
semantic net package. In addition to providing the data structures
.deseribed in Section II, PROSPECTOR contains an executive program and

facilities {or hooks for facilities) for the following tasks:

(1) Accepting volunteered information
{2) Propagating consequences

{(3) Determining needed informaticn
(4) Asking Questions

{5) Answering questions

{6) Augmenting the knowledge base.

While some of these fzeilities are fairly =sophisticated, the
current implementation is still rather new, and little attention has
.been devoted to the important topic of handling English 1input and
: output. This means that the interactions invoived in Topics 1, 4, and 5
are currently rather clumsy. In particular, to volunteer informetion to
the current system, one must know the internal net representations and
- evaluate the appropriate LISP functions. A more convenient but still

rudimentary question-answering facility based on Hendrix's LIFER package

20



allows ‘the user to use conatrained'English to ask certain -hinds'of
“oueations about either'the texonomy or the rules. :AnSwering questions
poaed by the . ayatem'is straightforwand,' although eten'here no attempt
- has been mede to have PROSPECTOR pose’ the questions in graeeful English.
i Thus,- the ‘human engineering-features 80 important for computer-naive

users are currently minimal.

The main parts of PROSPECTOR are domain independent. Domain-
specifiec information 1is kept in separate taxonomy and rule files.
Special facilities are available for reading 2nd writing taxonomy files,
zequiring taxonomie information interactively, and constructing semantic
net structure corresponding to a taxonomy. A formal description
ianguage has been designed for representing the rules in the rule files.
Facilities are alsc =2vailable for reading and writing the rule files,
and automatically constructing the corresponding semantic-net
representations. The present rule base contains 38 rules for Kuroko-
type massive sulfide deposits and 16 rules for Mississippi-Valley-type
~ lead/zinc deposits. These rules have been entered manually, although we
have experimented with and recognize the ultimate usefulness of

- automatic rule acquisition [2].

'..WhEneeen néﬁ"iﬁfofmatioh 1s'eﬁtéfaa | the pnocedures described in
1n;Section III are used to propagate the conaequences.- In particular, this
:i'will uaually affect the probabilities associated with certain 'top—-
zlevel' nodes that correspond to important hypotheses After - the user

‘has finished »volunteering 1nformation and propegation has-terminated,

21



the system must determine what additional information will be most
effective in establishing the top-level hypotheses with greater
éertainty. This is the so-called control problem, and it raises many

“unsolved problems.

Our current strategy resembles the depth-first strategy used by
MYCIN, with two  important exceptions: we allow for volunteered
information at any time, and we use a simple evaluation function for
dynamic rule ordering. The hypothesis selected initially is the top-
level hypothesis having the highest current probability. Every untried
rule having that hypothesis as 3 consequent is scored according to the

function

log *§* P(E!E') + | log -%r I {1 - P(EIE"}]

ana the highest scoring rule is selected. If its antecedent 4is askable
{and has not been asked about before), the user is asked about it. If
the user can provide even a partial answer, thosze results are propagated
and the rules are rescored. However, if the antecedent is not askable,
or if the user has no information to offer, that antecedent becomes the

'__new hypothesis, and the same procedure is applied recursively.

‘The particular scoring function used computes the expected chénge
in ' log O(H!E') | under the assumption that E will be found to be true
 with probability P(E!E') or fzlse with probability 1 « P(E!E'). . When E

is unlikely a priori, this=s criterion initially favors rules with small

22



' Qalués of ) (necessary conditions), and :ésiE becomes more 1iké1y it
favors rules with large values of J {sufficient conditions). However,-
“low scores are assigned if the truth or falsity of E becomes well
:éétsbiishEG,jSO'that'there'is little to gain in trying to make knowledge

 .ebotE.the'éntecedent more certain.

The following example, edited for the sake of brevity, illustrates
the operation of the present system. The interaction was designed to
display the various aspects of the program, including favorable and
unfavorable evidence, linked rules, subquesticons, ete, and does not

" correspond to an actual exploration problem.

PROSPECTOR, 2n experimental computer based consulting system, is
designed for use both in searching for ore deposits and in evaluating
the mineral potential of large geographic areas. Being in the early
research stages, PROSPECTCR knows only one exploration model, speci-
fically, Park's model for Kuroko-type mzssive sulfide deposits.

In using PROSPECTOR, you will be asked questions, or you may
volunteer information about a particular mineral prospect. The pro-
;gfam will use your information and the rules it contains to draw con-

clusions about possible ore deposits on the prospect.
Indicate your answers as follows:

-~ VIRTUALLY CERTAINLY PRESENT

PRCBABLY PRESENT -

NO OPINION ONE WAY OR THE OTHER

PROBABELY ABSENT
VIRTUALLY CERTAINLY ABSENT

N b & N

23



Do you want to volunteer any evidence? YES

A. Space name of evidence: SPACE-25L
New likelihood of (Widespread Igneous Rocks) : 2

B. Spate name of evidence: NIL
"Proceeding to establish the likelihood of (Massive Sulfide Deposit):

1. Do you have anything to say about (Voleanic province and major

fault zone) ? 1
2. Do you have anything to say about {(Mineralization) ? 0

2. Do you have anything to say about (Near shore depositional

sequences of andesites, rhyolites or dacites) 7 0
B, Do you have anything to say about (Pillow structures) 7 2
5. Do you have anything to say about (Breccia) ? NO

6. Do you have anything to say about (Rhyolite or dacite plug) ? YES

6a. Have you anything to say about an entity with the composition
of (OR RHYOLITE DACITE) 21

‘This entity will hereafter be referred to as ENTITY-1

6b. Have you anything to say about whether ENTITY-1 has the form

of PLUG 7 2
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7. Do you havélaﬁythihg to say about (Calena, sphalerite, or

_ chalecopyrite filled cracks in rhyolite or dacite) ? YES

7a. Have you anything to say about an entity with the
_composition of (OR GALENA SPHALERITE CHALCOPYRITE) % 2

This entity will hereafter be referred to as ENTITY-2

7b. Have you anything to say about whether ENTITY-1 has the

property of CONTAINING-CRACES ? 2

Te. Have you anything to say about whether ENTITY-2 is

CONTAINED-IN ENTITY-1 ? 1

10."Do you have anything to say about {(Olivine or alkaline

andesite) ? 2

11. Do you have anything to say about (Calc-alkaline

andesite) ? NO

14, Do you have anything to say about (Clay Mineralsa) 7 O

15. Do you have anything to say about (Reduction

";'pﬁocess) 20

';16.5'Dd:YOu ha#e'anythiﬁg’tO'say:ébout'(Bleaching3

.,_~6f rocks) ? YES
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16a. Have you anything to say about an entity
with the composition of ROCKS 7 2
This entity will hereafter be referred to as

ENTITY-4

16b. Have you anything to say about whether

ENTITY-4 has the property of BLEACHED ? 1

22. Do you have anything to s2y about (Prospect within a few

miles of known MSD) 7 KO

All the rules which bear on (Massive Sulfide Deposit) have been

considered. Current likelihood of (Massive Sulfide Deposit) is .01465,

This example represents a typiczl interaction between the current
program and 2 user. After the initial description and instructions have
been given, the system permits the user to input relevant knowledge he
may wish the program to use. Since language understaznding is absent,
-internal names must be used., In this run, the user asserts the

.existence of widespresd igneous -rocks by knowing that SPACE-25L
f_ represents ‘this concept ;  théV-systeh' responds ‘with an apbfopriate

‘translation, snd then accepts the probsbility assigriment.

_ After the volunteered evidence phase, the systém's control strategy
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 _selects the most likely top-lé?el'hybothesis, scores all iﬁéémiﬁg rules,
'aﬁd gelects the highest scoring rule in order to obtain evidence about
| ﬁhe hypothesié. Questions 1, 2, 3, 5, 6, 7, 10, 1%, 14 and 22 all
| represent rules which give evidence for the topalevei hypothesis.
Questions 4, 15 and 16 represent rules at a deeper level in the net.
Questions 6a, 6b, Ta, 7Tb, Te, 16a and 16b are subquestions which
establish the likelihoods of the different relations which make up an

sntecedent.

- The user has a variety of possible responses toc any question. A
'YES' answer causes the system to pursue the question further, whereas a
'NO' oanswer terminates interest in that evidence. The answer '0°
indicates "no opinion™ or "don't know", and causes the system to pursue
the question 1if it has deeper rules which can be used to infer the
desired evidence. A non-zero numeriecal answer is used directly to

assign probabilities and to propagate inferences through the net.

The propagations are not shown in the example, but each non-zero
numerical response triggered 2 propagation, many of which had an effect
on the likelihood of the top hypothesis., The sequence of changes to the

.tbp hypothesis' probability value was .001 -> .003885 -> .004212 ->

| ,032241 -> 711 -> 002968 > .01865., In particular, the response to

 Question 7 was highly favorable, while the response to Quéstion 10 was
o 'highiy- unfavorable . for a'Kuroké;type massive -Sulfide'_deposit.' $he

. numerdcal value of the final probability assignment indicates more than -

- the prier likelihoed of 2 deposit, though, of course, a final evaluation
.requires more than this single number.
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v Dizcussion

As the example of the preceeding section showed, we have made some
progress in developing 2 asystem which both represents and uses
Judgmental knowledge about 2 specific problem domain. Most of the
remzining technical problems are shared with other production-system
approaches to consultant systems, and the most important of these

problems deserve at least brief mention.

A major problem concerns the acceptance of volunteered information,
which could ultimately include diagrams and maps as well as text. Our
present procedure, which requires the user to know the internzl naming
conventions, is obviously a temporary expedient, and the use of
unrestricted natural language is not technically feasible. Our decision
to use semantic net representations was at least partly motivated by the
hope for fairly flexible English dinput/ocutput, but the development of

such zn interface is a major unfinished task.

A second major research area concerns control strategies. Any

'attempt to determine strategies that are optimzl in a decision~-thecretic

sense 1is probably computationally infeazible, particularly when the
networks are large and when unrestricted use of varisbles is allowed.
Pople's ideas on focusing are very attractive here [9], and further work

along these lines is needed.
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I. © Another important pér£ of an& conéuiﬁént program is.the expianafioﬁ
',system. . As MYCIN hss demcnsfrated, quite informative explanations of
| édhéiﬁsiéné céﬁ be'ﬁfodﬁcea'ﬁeréIY"byndding'a backtrace of - the applied
.'buléé;'-ﬁéﬁéﬁér,'the fﬂiéé'théhSéiveﬁ”éré 6ften the consequence ' of more
':funaéﬁenﬁéi ééﬁsiderétidhé"(éﬁéﬁ as the effects of certain underlying
.IOre'=génesis processes in our geology example), and are not always
satisfactory as explanations. Kulikowski's work on czusal networks is
evidently relevant in this regard [8], and the intermixed use of
procedural and declarative models is 2 natural and intriguing extension

of this kind of work.

The use of production rules to encode the judgmental knowledge and
. the use of partitioned semantic networks to represent the structured
knowledge about a2 domain provide a general and potentially powerful
framework for bulilding a consultant system. This combination has c¢lear
advantages and has provided us with what we consider to be a strong base

for further development.
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