June 1976

IS "SOMETIME" SOMETIMES BETTER THAN "ALWAYS" ?
INTERMITTENT ASSERTIONS IN PROVING
FPROGRAM CORRECTNESS

by
Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University Stanford Research Institute
Staford, California Menlo Park, California

Artificial Intelligence Center
Technical Note 132
SRI Project 2245

This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense
under Contract DAHC15-73-C-0435, by the National Science
Foundation under Grant GJ~36146 and by a grant from the
United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel.

1 International

333 Ravenswood Ave. * Menlo Park, CA 24025
{4151 326-6200 « TWX: 910-373-2046 » Telex: 334-486

Internationat
"N T 7 7/

Manna & Waldinger
June 1976
‘Revised March 1977
Is "sometime” sometxmes better than 'always"?

Intermxttent assertions in proving
 program correctness

ZOHAR MANNA RICHARD WALDINGER
Artificial Intelligence Lab. Artificial Intelligence Center
Stanford University Stanford Research Institute
Stanford, Ca. : Menic Park, Ca.

Keywords and Phrases: intermittent assertions, correctness of programs, lermination of
programs, program verification, program transformation, continuously operating programs.

CR Category: 5.24

T his research was suppofted in part by the Advanced‘Researci: Projects Agency of the Department
of Defense under Contract MDA903-76-C-0206, by the National Science Foundation under
Grant DCR-03737 A0l by the Office of Naval Research under Contracts N00OOI4-76-C-0687
“and ' NOO0O14-75-C~0816, and by a grant from the United States-israel Bmatzonal Science

- Foundauan (BSF), jerusalem, I:mel

_Tﬁe views and conclu.:wm contamed in this dacument are ‘those of the autlwr: and should not be
'znterprered as necessarily representing the official policws, either expressed or implied, of Stenford
University, Stanford Research Institute, or the U.S. Government.

Manna & Waldinger
Abstract

This paper explores a technique for proving the correctness and termination of programs
_simultaneously. This approach, which we call the intermittent-assertion method, involves
documenting the program with assertions that must be true at some time when control passes
through the corresponding -point, but that need not be true every time. The methed,
introduced by Burstall, promises to provide a valuable complement to the more conventional
methods.

We first introduce the intermittent-assertion method with a number of examples of correctness
and termination proofs. Some of these proofs are markedly simpler than their conventional
counterparts. On the other hand, we show that a proof of correctness or termination by any of
the conventional techniques can be rephrased directly as a proof using intermittent assertions.
Finally, we show how the intermittent-assertion methed can be applied to prove the validity of
program transformations and the correctness of continuously operating programs.

Manna & Waidinger

Table of Contents

L Introduction

II. The Intermittent-Assertion Method: Examples
- L Countiixg the tips of a tree
2. The Ackermann function
3. The greatest common divisor of two rumbers

III. Relation to Conventional Proof Techniques

L. Invariant-assertion method

2. Subgoal-assertion method -

3. Well-founded ordering method
IV. Application: Validity of Transformations that Eliminate Recursion
V. Appiication: Correctness of Continuously Operating Programs

VI1.. Conclusions

VIi. References

Manna & Waldinger
I. Introduction

The most prevalent approach to prove that a program satisfies a given property has been the
invariant-assertion method, made known largely through the work of Floyd [1967]) and Hoare
[19691 In this method, the program being studied is supplied with formai documentation in
the form of comments, called invarient assertions, which express relationships between the
different variables manipulated by the program. Such an invariant assertion is attached to a
- given point in the program with the understanding that the assertion is to hold every time
controt passes through the point.

Assuming that an appropriate invariant assertion, called the input specification, holds at the
start of the program, the method allows us tc prove that the other invariant assertions hold at
the corresponding points in the program. In particular, we can prove that the ourpur
specification, the assertion associated with the program’s exit, will hold whenever control reaches
the exit. If this output specification reflects what the program is intended to achieve, we have
succeeded in proving the correctness of the program.

It is in fact possible to prove that an invariant assertion holds at some point even though
“control never reaches that point, since then the assertion holds vacuously every time control
passes through the peint in question. In particular, using the invariant-assertion method, one
might prove that an output specification holds at the exit even though control never reaches
that exit. If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates, we are said to have proved the program’s partial correctness.

A separate proof, by a different method, is required to prove that the program does terminate.
Typicaily, a termination proof is conducted by choosing a well-founded set, one whose elements
are ordered in such a way that no infinite decreasing sequences of elements exist. (The
nonnegative integers under the regular greater-than ordering, for example, constitute a
weli-founded set.) For some designated label within each loop of the program an expression
involving the variables of the program is then selected whose value always belongs to the
well-founded set. These expressions must be chosen so that each time control passes from one
designated loop label to the next, the value of the expression corresponding to the second label
. is smaller than the value of the expression corresponding to the first label. Here, “smaller”
- means with respect to the well-founded ordering, the ordering of the chosen well-founded set.
- This establishes termination of the program, because if there were an infinite computation of

“the program, control would traverse -an infinite sequence of designated loop labels; the
‘successive values of the corresponding expressions would constitute an infinite decreasing
sequence of elements of the well-founded set, thereby contradicting the defining property of the
“set. This well-founded ordering method constitutes the conventional way of proving the
termination of a program (Floyd [1967])

Manna & Waldinger

If a program both terminates and satisfies its output specification, that program is said to be
totally correct.

Burstall [1974] introduced a method whereby the total correctness of a program can be shown
in a single proof. The approach had been applied to specific programs earlier, by Knuth
- ([1968] Section 2.3.1) and others. This technique again involves affixing comments to points in
the program but with the intention that sometime control will pass through the point and
'satisfy the attached assertion. Consequently, control may pass through a point many times
without satisfying the assertion, but control must pass through the point at least once with the
assertion satisfied; therefore we call these comments intermittent assertions. If we prove the -
output specification as an intermittent assertion at the program’s exit, we have simultaneously
shown that the program must halt and satisfy the specification. This establishes the program'’s
total correctness. Since the conventional approach requires two separate proofs to establish total
correctness, the intermittent-assertion method invites further attention.

We will use the phrase
sometime @ at L

to denote that Q is an intermittent assertion at label L (that sometime control will pass through
L with assertion O satisfied). If the entrance of a program is labelled start and its exit is
labelled finish, we can express its total correctness with respect to an input specification P and
an output specification R by :

Theorem: if sometime P at start
then sometime R at finisA.

This theorem entails the termination as well as the partial correctness of the program, because it
implies that control must eventuaily reach the program's exit, and satisfy the desired output
specification.

If we are only interested in whether the program terminates, but don’t care if it satisfies any
particuiar output specification, we can try to prove

Theorem: if sometime P at start
then sometime at finisa.

“The conclusion "sometime at finish" expresses that control must eventually reach the program’s
exit, but does not require that any relation be satisfied.

Generally, to prove the totai correctness or termination theorem for a program, we must affix

Manna & Waldinger

intermittent assertions to some of the program’s internal points, and supply lemmas to relate
-these assertions. The proofs of the lemmas often involve complete induction over a well-founded
ordering (see Manna [1974]). In proving such a lemma we assume that the lemma holds for ali
- elements of the well-founded set smaller (in the ordering) than a given element, and show that
the lemma then holds for the given element as welil.

The intermittent-assertion method has begun to attract a good deal of attention. Different
approaches to its formalization have been attempted, using predicate calculus (Schwarz [1976]),
Hoare-style axiomatization (Wang [1976]), modai logic (Pratt [1976]), and the LUCID
formalism (Ashcroft [1976]). Topor [1977] applied the method to proving the correctness of the
Schorr-Waite algorithm, a complicated garbage-collecting scheme.

In this paper, we first present and illustrate the intermittent-assertion method with a variety of
examples for proving correctness and termination. Some of these proofs are markedly simpler
than their conventional counterparts. On the other hand, we prove that the
intermittent-assertion method is at least as powerful as the conventional invariant-assertion
method and the well-founded ordering method, in addition to the more recent
. subgoal-assertion method (Manna [1971), Morris and Wegbreit [1976]} for proving partial
. correctness. Finally, we show that the intermittent-assertion method can also be appiied to
_ establish the validity of program transformations, and to prove the correctness of continuously
operating programs, programs that are intended never to terminate.

Manna & Waidinger
II. The Intermittent-Assertion Method: Examples

Rather than present a formal definition of the intermittent-assertion method, we prefer to
illuminate it by means of a sequence of examples. Each example has been selected to illustrate
a different aspect of the method.

1. Counting the tips of a tree

Let us consider a simple program as a vehicle for demonstrating the basic technique. This is
an algorithm to count the fips of a binary tree, those nodes that have no descendents. A
recursive definition of a function tips(iree} that counts the tips of & binary tree tree is

tips(tree) <= if tree is a tip
then 1
else tips{left(tree)) + tips(right(tree)),

where left(rreé) and right(tree) are the left and right subtrees of {ree respectively.

An iterative program to count the tips of a binary tree free is

input(tree)
start: stack « (tree)
count « 0
more: if stack = ()
then finish: output(count)
else if Aead(stack) is a tip
then count « count + |
stack « tatlstack)
goto more
eise first « head(stack)
stack « left{first) « {right{first) « tail(stack)]
goto more.

(This program is similar to one used by Burstail in his [1974] paper) We have used the
notation () to denote the empty list, (x) to denote the list whose sole element is x, and x.! to
denote the list formed by adding the element ¥ at the beginning of the list L [Note that {x} is
the same as x.{).] If the list { is not empty, then Aead(l) is its first element and tail(l) is the list
of its remaining elements.

This program initially inserts the given free as the single element of the stack. At each
iteration, the first element is removed from the stack. If it is a tip, the element is counted;

Manna & Waldinger

otherwise, its left and right subtrees are inserted as the first and second elements of the stack.
The process terminates when the stack is empty; count is then the number of tips in the given
tree.

Using intermittent assertions, we can express the total correctness of this program by the
following theorem

Theorem: if sometime tree = ¢ at start
then sometime count = tips(t) at finish.

This theorem states the termination of the program in addition to its partial correctness,
because it implies that controi miist eventually reach the program’s exit, and satisfy the
appropriate cutput specification.

In order to apply the intermittent-assertion method, we supply a lemma to describe the
behavior of the program’s loop. In this case correctness of the program depends on the
following property: if we enter the loop with some element ¢ at the head of the stack, then
eventually the tips of ¢ will be counted and ¢ will be removed from the stack. (Note that we may
need to return to more many times before the fips of ¢ are counted.) This property is expressed
more precisely by the following lemma:

Lemma: if sometime count = ¢ and stack = ¢-5 at more
then sometime count = ¢ + tips(t) and stack = s at more.

The hypothesis count = ¢ in the antecedent allows us to refer to the original value of count in
the consequent, even though the value may have changed subseguently.

It is not difficult to see that this lemma implies the theorem. Suppose
sometime fre¢ = f at start.

Then, following the computation specified by the program, we set stack to {f), count to 0, and
- reach more, so that

sometime count = 0 and stack = {f) = £. () at more.
The lemma then tells us, taking ¢ to be 0 and s to be (), that

sometime count = 0 + tips(t) and stack = () at more.

* Because we are at more with stack=(), the computation proceeds to finish, so that

Manna & Waldinger
sometime count = tips(f) at finis,
and the theorem is thereby established.

The proof of the lemma is by complete induction on the structure of f. In other words, we
suppose the antecedent of the lemma, that

sometime count = ¢ and siack = {3 at more,

and we assume inductively that the lemma hoids whenever count = ¢’ and stack = £+ 5', where ¢
is any subtree of t. We will then show the consequent of the lemma, that

sometime count = ¢ + tips(t) and stack = 5 at more.
The proof distinguishes between two cases, depending on whether or not ¢ is a tip.

Case t is a tip: Then tips(t) = | by the recursive definition of #ps. Since stack = t.3, it is
clearly not empty, but its head, ¢, is a tip. The program therefore increases count by 1 and
removes ¢ from the stack. Thus,

sometime count = ¢ + | = ¢ + tips(t) and stack = 5 at more,
establishing the conclusion of the lemma in this case.

Case ¢ is not a tip. Then tips(t) = tipslefi(t)) + tips(right(s)), by the recursive definition of tips.
‘Since ¢ is not a tip, we pass around the else branch of the ioop this time: we remove ¢ from the
stack, break it down into its left and right subtrees, replace these on the stack as its first and
second elements, and return ta more. Thus,

sometime count = ¢ and stack = lefi(t) [right(t). 5] at more

We can then apply the induction hypothesis [taking ¢ to be ¢, ¢ to be left(t) and s to be
right(t)- 5], since left(t} is a subtree of t. The induction hypothesis teils us that

sometime count = ¢ + tips(left(t)) and stack = right{t). s at more.

Since right(t) is also a subtree of ¢, we can apply the induction hypothesis again [taking ¢ to be
_ estipsileft()), ¢’ to be right(t) and 5 to be s}, yielding

sometime count = ¢ + tips(lefrle)) + tips(right(r)) and stack = s at more.

Iri other words, since tips(t) = tips(lefi(t)) + tipsiright(e)),

Manna & Waldinger
sometime count = ¢ + tips(t)'and stack = 3 at more.
This is the desired conclusion of the femma.

Note that once the lemma was formulated and the basis for the induction decided, the proofs
proceeded in a fairly mechanical manner. On the other hand, choosing the lemma and the
basis for induction required some ingenuity.

The proof of the lemma called upon the full power of the intermittent-assertion method.
Although the recursive program that defines the fips function can count the tips of a subtree
with a single recursive cali, the iterative program may require many traversals of the loop
before the tips of a subtree are counted. The intermittent-assertion method allows us to relate
the point at which we are about to count the tips of a subtree ¢ with the point at which we
have completed the counting, and to consider the many executions of the bedy of the loop
between these points as a single unit, which corresponds naturally to a single recursive call of

tips(e).

The conventional invariant-assertion method, on the other hand, requires that we identify a
condition that allows us to reiate the situation before and after each single execution of the
_ body of the loop. There may be no natural connection between these two points; consequently
our invariant-assertion must be exceptionaily complete. In this case, such an assertion is

tipsitree) = count + z tihs(s at more,
psteree) 5 e stack P s(s)

where ‘Z“mh tips(s) is the sum of the tips of all the elements of the stack {cf. London

[1975]). Once we know this assertion, the invariant-assertion proof is also straightforward.
However, to formulate the above assertion we are required to relate all the elements of the
stack, while to understand the program or to produce the intermittent-assertion proof we only
needed to consider the first element of the stack.

The intermittent-assertion proof established termination at the same time as correctness; to
prove termination by the conventional weil-founded ordering approach, we can show that the
value of the pair

(tips(tree) ~ count tips(head(stack)))

_always decreases in the lexicographic ordering each time we return to more. - In other words,
either the first component tipsitree) - count is reduced, or the first component remains fixed
and the second component tips(kead(stack)) is reduced. Both components remain nonnegative
at all times. Although finding the above pair requires a bit of ingenuity, this termination proof

Manna & Waldinger

is relatively straightforward. In the next section we will see a program for which the simplest
known conventional termination proof is significantly more complicated than the
intermittent-assertion proof of totai correctness.

.2. The Ackermann Function

. The Ackermann function, denoted by A(x), is defined recursively for nonnegative integers x
and y as

Alxy)<s ifxm0
then 9+1
eise ify=0
then A{x-~1 1)
else A(x-1 A(x y-1)).

For example, A(1 1) = A(0 A(1 0)) = A(0 A(0 1)) = A(0 2) = 3.
This function is of theoretical interest, in part because its value grow extremely quickly; for

instance,

2
2
o2

A4 4 =22 -3

An iterative program to compute the same function is

Manna & Waldinger

input(xg o)
start:. stack[1] « xg
stack[2] « 59
index « 2
more: if index = | .
' then finish: output{stack{1])
else if stacklindex-1]=0
then stacklindex-1] « stacklindex]+1
index « index-1
goto more
else if stacklindex] = 0
then stacklindex-1) « stackiindex-1]-1
stacklindex] « |
goto more
else stacklindex+1] « stacklindex]-1
stacklindex] « stacklindex-1]
stacklindex~1] « stacklindex-1]-1
index « index+]
goto more,

This. iterative program represents a direct translation of the recursive definition. If at some
stage the recursive program is computing
Alsg Alsy . Als_y D),
then at the corresponding stage of the iterative computation
stack = (59 51 . 3;_1 3j) and index = L.
Using intermittent assertions, we can express the program's total correctness by the

Theorem: if sometime x5 2 0 at start
then sometime stack{1] = A(xg 5o) at finish.

In proving this theorem we will employ the following lemma,

Lemma: if sometime index = i, i 2 2, stack[1:4-2] = 5, _
stackli~-1] = @ and stack[i] = b at more,
then sometime index = i-|, stack[1:i-2] e s
and stackli-1] = A(a b) at more.

10

Manna & Waldinger

Here, 5 represents a tuple of stack elements. The abbreviation stack{l : i-2] = s will be used to
~ denote that 5 equals the tuple of elements (stack{1] stacki2] .. stack[i-2]); this expression is
inciuded in the hypothesis and the conclusion of the lemma to convey that the initial segment
 of the array, the first i-2 elements, are unchanged when we return to more.

It is straightforward to see that the lemma implies the theorem. For index is 2, stack{1] is =g,
and stack[2] is yg the first time we reach more. Then the lemma implies that eventually we witl
reach more again, with index=1 and stack[1] » A(xg yo). Since index = | we then pass to finisk
with the desired output. '

To prove the lemma let us suppose

sometime index = i,i 2 2, stack[1:i~2] = s,
stack{i-1) = a and stack(i] = b at more.

Our proof will be by induction on the pair (stacklindex-1] stacklindex]) under the
- lexicographic ordering over the nonnegative integers; in other words, we will assume the lemma
holds whenever stacklindex-1] = o' and stacklindex] = ¥, where @' and &' are any nannegative
integers such that @' < @, or ¢’ = ¢ and ¥ < b, and show that it then holds when stacklindex-1l=q
and sta;k[index]-b, i.e

sometime index=i-1, stack{] : {-21=s, and
stackli-11=Ala b) at more.

The proof distinguishes between three cases, corresponding to the conditional tests in the
recursive definition of the Ackermann function.

Case ¢ = 0: Then A{a b} = b+1 by the recursive definition of the Ackermann function. But
since index » |, and stacklindex-1]=a =0, we return to more with index =i-1 and
stackli-1] = b+1, satisfying the conclusion of the lemma.

Case ¢ >0, b=0: Here, A(a b) = A(a-1 1) by the definition of the Ackermann function.
Because index = |, stacklindex-11=a = 0 and stacklindex] = b = 0, we return to more with
© index = i, stackli-1} = a-1, and stackli] = 1. Since stack{i-1] = a-1 < ¢, we have

(stackli-1] stackli]) = (a-1 1) { (a _0).

~ and, therefore, the inductive hypothesis can be applied [taking @' to be a-1 and ¥ to be 1], to
- yield that

sometime index = i-1, stack[1:i-2) = 5 and
stackli-1) = A(a-1 1) at more.

11

Manna & Waldinger
Because Afa b) = A(a~1 1), the lemma is established in this case.

Case a > 0, b > 0: Then Az b) = A{a-1 A(a b-1)), by the recursive definition. Since index = 1,
stack{index-1] = @ = 0, and stacklindex] = b » 0, we return to more with :

index = i+},

stackli-1) = a-1,
stack[i] = a, and
stacki+1] = b-1.

Because index = i+ and (stack{i] stack[i+1]) = (@ &-1) < (s b), our induction hypothesis applies
[taking a' to be ¢ and &' to be b-1), yielding

sometime index = I, stach[1:-2] = s,
stackli-1] = a-1, and stackli] = A{a b-1) at more.

Note that we could conclude that stack{i-1]=a-1 because the induction hypothesis, for
index = {+], states that the first {-1 array elements are unchanged. '

Because index = i and (stack{i-1] stack{i]) = (a-1 A(a b-1)) < (a b), we can apply the induction
‘hypothesis once more [taking @' to be a-1 and ¥ to be A(z 5-1)), to obtain that

sometime index = i-i, stack{l:i-2] = s,
and stack(i-1] = A(a-1 A{a b-1)) at more,

which is the desired conclusion in this case.

This completes the intermittent-assertion proof of the total correctness of the Ackermann
- program; we believe it reflects our understanding of the way the program works.” The
invariant-assertion proof of the partial correctness is quite natural; at each iteration it can be
shown that

Alstack(1] A(stack(2] .. A(stacklindex-1] stacklindex))..)) = Alxg yo)
at more and, when the program terminates, that
stack[1] = A(xg 50).

. On the other hand, the known proofs of the termination of this iterative prdgram‘ using the
‘conventional wetl-founded ordering method are extremely complicated, and we challenge the
intrepid reader to construct such a proof.

12

Manna & Waldinger
3. The greatest common divisor of twoe numbers

In the previous two examples, we have applied the intermittent~assertion method to programs
involving only one loop. The following program, which computes the greatest common divisor
(ged) of two positive integers, is introduced to show how the intermittent-assertion method is
applied to a program with a more complex loop structure.

We define ged(x y), where x and y are positive integers, as the greatest integer that divides both
¥ and ¥, that is,

ged(x 3} = max{u : ulx and u|y}
For instance, ged(9 12) = 3 and ged(12 25) = 1.

The program is

input(x ¥)
start:
‘more: ifx=3
then finish: output(y)
else reducex: if x> 9%
then X « x-y

goto reducex
reducey: if y>x
-) then 5« y-x
goto reducey

goto more.

This program is motivated by the properties of the ged that

ged(xy) =9y if x=y,
ged(x y) = ged(x-y y) if x>y, and
ged(x 3) = ged(x y-x) if y > x.

We wouid like to use the intermittent-assertion method to prove the total correctness of the ged
program. The total correctness can be expressed as foilows:

Theorem: if sometime x = ¢,y = b and b > 0 at start
then sometime y = ged(a b) at finish.

To prove this theorem, we need a lemma that describes the internal behavior of the program.

13

Manna & Waldinger

Lemma: if sometime x = g,y = b, and @ > b > 0 at reducex
or sometime X = @,y = b, and b > @ > 0 at reducey
then sometime y = ged(a b) at finish.

To show that the lemma implies the theorem, we assume that
sometime x = ¢, ¥ = b, and ¢ > 0 at start.
We must distinguish between three cases.
Case ¢ = &z Control passes directly to finish. Thus
| sometime y = & at finish.

But because in this case b = ged{a b), by a given property of the ged, we have § = ged(a b) at
finish

Case a > b: Control passes directly to reducex, so
sometime x = @, % = b, and a > & > 0 at reducex.

The lemma then asserts that
sometime y = ged(e b) at finish.

Case b > a: Here, control passes directly to reducey, so that
sometime X = a,y = b and b > a > 0 at reducey.

Again, the lemma yields the desired result.

The proof of the lemma proceeds by induction on a+b. We suppose

sometime x = g,y = b, and a > & > 0 at reducex
or sometime x = @, ¥ = b, and b > @ > 0 at reducey.

We assume inductively that the lemma holds whenever ¥ = ¢’ and 9 = &', where g’ + ¥ < g + §,
and show that

sometime y = ged(a b) at finish.
‘The hypoihésis of the lemma is a disjunction of two possibilities. We consider each possibility

separately.

I4

Manna & Waldinger
First, suppose
sometime x = ¢,y = b, and a > b > 0 at reducex,
Here control passes around the top inner loop, so that
sometime x = g-5 and y = b at reducex.

For simplicity, let us denote a-b and b by a' and ¥, respectively. Note that

a, b >0
g +d<as+bh and
ged(a' b') = ged{a-b b) = gedla b).

This last condition follows by a given property of the gcd. We now distinguisﬁ between three
cases.

Case ¢’ = b"; Control passes directly to finisa, so
sometime 9 = ged(a' b') = ged{(a b) at finish.
Case @' > b Here
sometime % = ¢,y = ¥, and a' > ¥ > 0 at reducex.
Because a' + V' < g + b, we can apply the induction hypothesis to deduce that
sometime § = ged(a' b) = ged(a b) at finish,

Case ¥ > ¢ Control passes to reducey and we can apply the induction hypothesis in the same
way.

The second possibility from the hypothesis of the lemma, that
sometime x = 2,9 = b, and b > a > 0 at reducey,

is disposed of in a symmetric manner. This completes the proof of the total correctness of the
- ged.

It is not difficult to prove the partial correctness of the above program using the conventional
invariant-assertion method. For instance, to prove that the program is partially correct with
- respect to the input specification

15

Manna & Waldinger

Xg>0and 95> 0
and output specification

¥ = gedl¥o 3o

{where % and yq are the initial values of x and y) we can use the same invariant assertion
xy > 0 and ged(x y) = ged(xg yo)

at each of the labels more, reducex and reducey.

In contrast, the termination of this program is awkward to prove by the conventional
well-founded ordering method, because it is possible to pass from more to reducex, reducex to
reducey, or from reducey to more without changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the
well-founded set to be the paits of nonnegative integers ordered by the regular lexicographic
ordering. When the expressions corresponding to the loop labels are taken to be

(xvy 2) at 'more.
if % = y then (x+y 1) else (x+9 4) at reducex, and
if x <y then (x+y 0) else (x+3 3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the
next (Katz and Manna [1975]). Aithough this method is effective, it is not the maost natural in
establishing the termination of the ged program.

18

Manna & Waldinger
III. Relation to Conventional Proof Techniques ‘

One question that naturally arises in presenting a new proof technique is its relationship to the
more conventional methods. In the previous section we have seen examples of
intermittent-assertion proofs of correctness and termination that are simpler than any known
conventional counterparts. In this section we will show that the reverse is never the case; in
fact, we can directly rephrase any partiai-correctness proof using the invariant-assertion
method as an intermittent-assertion proof. The same resuit applies to another standard
partial-correctness proof technique, the “subgoal assertion method®. Furthermore, we will show
that any termination proof using the weil-founded ordering method can also be expressed
using intermittent assertions instead. Therefore, we can always use the intermittent-assertion
method in place of the established techniques.

In order to characterize the conventional techniques precisely, we find it convenient to introduce
_ sorme new notations, which are described mare fuily in Manna [1974). Let x be a complete list
of the variables of a given program, and let x, denote their initial values. Suppose that we

have designated a special set of fabels Lg, Ly, — L;, where Ly and L, are the program’s

entrance (start) and exit (finisk) respectively. It is assumed that each of the program’s loops
. passes through at least one of the designated labels. A path between two designated labeis is
said to be basic if it does not pass through any designated label (except at its endpoints). For
each basic path « from label L; to I..j, we let £,(x) denote the condition that must hold for

control to pass from L; along path « to Lj, and we let g (x) be the transformation of the values
of x effected in traversing the path «. Thus, if ¥ = ¢ at L;, and condition f,{(a) hoids, then

control will pass along path «, reaching Ly with x = g.(a).

Let us consider a single computation of the program for some particular input xg.- The
ordering >x0 induced by the computation is defined as foliows:

(@ i) >x0 ()]

if control passes through L; with ¥ = a and then eventually reaches Lj with x = b It is

important to note that different computations of the same program, corresponding to different
input values, induce different orderings.

If a particular computation of the program terminates, the ordering induced by the computation
will be weil-founded; for then the computation will be finite, and the ordering it induces will
have no infinite decreasing sequences.

17

Manna & Waldinger

The above ordering enables us to apply the intermittent-assertion method to prove partial
correctness, even though the method is basically a total-correctness technique. In proving
partial correctness, we only consider computations of the program that are assumed to terminate.
The orderings induced by these computations are thereforz well-founded, and can serve as the
‘basis for the induction in an intermittent-assertion proof.

Now let us see how the concepts we have introduced allow us to rephrase an
invariant-assertion preoof of the partial correctness of a program as an intermittent-assertion
proof.

1. Invariant-assertion method

"Suppose that we have used the invariant-assertion technique to prove that a program is
partially correct with respect to some input specification P(xy) and output specification R(xg x).

"T'hen we have a set of invariant assertions Ug(xg %), Qy(xg %), .., Q4(x %) corresponding to the
designated labels Ly, L}, ., L, for which we have proved that for every xg and x:

(1) P(xg) => Qolxp %p}

(the input specification implies the initial invariant assertion), sind
(2) Qplxo x) => Rixo x)

(the final invariant assertion implies the output specification),

and, for each basic path « from L; to Lj' we have proved the verification condition
(3.0 Quxp x) and ¢, (x) => Qj(xo - e5))

(the invariant assertion before the path implies the invariant assertion after).

Conditions (1) and (3,) establish that each Qy(xg) is indeed an invariant assertion at L;; it has
the property that each time we pass through L;, Q;(xo x) will be true for the current value of x.

Condition (2) then implies that if the program terminates, the desired output specification will
be satisfied. Together, these conditions establish the partiai correctness of our program.

From the given proof of the partial correctness of the program, we can extract an
intermittent-assertion proof of the same result. The theorem that expresses the partiai
correctness in the intermittent-assertion notation is as follows:

i8

Manpa & Waldinger

Theorem: if sometime x = x, and P(x,) at start
and the computation terminates
then sometime Rxg %) at finish.

This theorem expresses the partial correctness of the program, because it includes the explicit
assumption that the computation terminates. Given the Qy{xo x} from the invariant-assertion

proof, we can construct the following lemma, which wili enable us to prove the
partial-correctness theorem:

Lemma: for every i, 0sis4,
if sometime x = g and Oixg @) at L;

and the computation terminates
then sometime R(xq %) at finish.

To prove that the lemma impliies the theorem, assume

sometime x =xq and P(xy) at start
and the computation terminates.

Our invariant-assertion proof includes a proof of (1), that P(xg) => Qg(xo o). That proof can
be incorporated here, to yield

sometime x = xg and Qqlxg %g) at Lo
and the computation terminates,

(because Ly is identical to start). Taking { = 0 in the lemma, we may deduce
sometime R(xo ¥) at finish,
which is the desired conclusion of the theorem.

To prove the lemma, we suppose

sometime x = ¢ and Q% @) at L;
and the computation terminates,
for some i between 0 and A The proof is by induction on the ordering >x0 induced by the

computation. This ordering is well-founded because the computation has been assumed to
terminate. Thus, we assume inductively that the lemma holds whenever x = @' at Ly, where

(@ i) >y (0"). '

19

Manna & Waldinger

The proof distinguishes between two cases.

If { = A, we have supposed that
sometime % = ¢ and Q(xg @) at L;.

Inco;'porating the proof of (2) and recailing that L, is finish, we have
sometime R(xg x) at finish,

which is the desired conclusion of the lemma.

‘On the other hand, if 0 s { < A, control must follow some basic path « to a designated label Lj.
For this path, t,(a) must be true, and x = g {(a) when control reaches Lj. Because Qyxg @) and
t.(a) are true, we can reproduce the proof of (3,) to deduce that QJ-(xo g.4a)) is true. Thus

sometime x = g {a) and Oj{xo gla)) at Ly

Because (a i) >x0 (g.{a)) by the definition of the orderiﬁg induced by the computation, and

- because the computation has been assumed to terminiate, we can apply our induction
hypothesis to yield

sometime R(x, %) at finish.
This completes the proof of the lemma.

We have thus constructed an intermittent-assertion proof of the partial correctness of the
program, assuming that we were given an invariant-assertion proof. In the next section we will

- indicate how the same procedure can be applied to subgoal-assertion proofs.

2. Subgoal-assertion method

The invariant-assertion approach always relates the current values of the program variables to
their initial values. Another approach for proving partial correctness, the subgoal-assertion
method, relates these variables to their uvitimate values when the program halts. We will first
present the method, and then show as before that if we have proved the partiai correctness of a
. program using this method, then we can rephrase the same proof with intermittent assertions
. instead.

20

Manna & Waldinger

Suppose now that we have used the subgoal-assertion method to prove that a program is
partially correct with respect to some input specification P(xg) and output specification R{xg x).

Then we have a set of subgoal assertions 0*(x xz), 0% {x x;), .., 0*4(x %;) corresponding to the

designated labels Lo, L, ., L, with the intuitive meaning that 0*i(x xz) must hold for the
current value of ¥ as control passes through L; and the ultimate value x; of ¥ when the

computation haits. For these assertions we have proved that for every xg, x and x;:

(i#) Q*;,(x;‘ xh)
(the final subgoal assertion always holds for the final value of x), and
(2%) Plxq) and Qglxg x3) => Rlxg ;)

(the input specification and the initial subgoal assertion impiy the output
specification),

and, for each basic path « from L; to Lj, we have proved the.verification condition

(3‘#“) u*j(gd(x) xﬁ) and t«_(x) a> D*i(x xﬁ)

(the subgoal assertion after the path implies the subgoai assertion before).

The subgoal-assertion method works backward through the computation; whereas the
invariant-assertion method works forward. Condition (1%) implies that the fina} subgoal

assertion always holds. Conditions (3*,) say that if the appropriate subgoal assertion holds
when control reaches the end of a path, then the corresponding subgoal assertion holds when

control is at the beginning of the path. If the program does terminate, conditions {1¥) and
(3*,.) imply that each Q,(x x;) is indeed a subgoal assertion at L; it has the property that each
time we pass through L;, Q%= x;) will be true for the current value of the program’s variables, .

%, and its ultimate value, ;. Condition (2%) then implies that if the program terminates, the

~desired output specification will be satisfied. Together, these conditions imply the partial
correctness of the given program. '

To contrast the invariant-assertion and the subgoai-assertion method, let us consider 2 simple
program to compute the ged:

2l

Manna & Waidinger

" input{x)
start:
more: if x=0
then finish: output(y)
else (x y) « (rem(y x) x}
goto more.
To show that this prograrh is partially correct with respect to the input specification
Plxg ¥o) : ¥o > 0 and y5 > O,
and the output specification
R(xo Jo 9 : 3 = gedl¥o Joh
we can employ the invariant-assertions
Qgtqre(¥o o % 3) = Pl¥g Jo) : %o > 0 and 55 > 0
Qpporelo Yo x) 220 and y > 0 and ged(x §) = ged(xo yo)
Qpinishl¥o Jo ¥) B Rixo yoi y): 3 = gedlxo Jo) -

On the other hand, to prove the same result by the subgoal-assertion method, we can use the
subgoal assertions

u*ﬂaﬂ(x ¥ yh) :2 2 0and y> 0 => = gcd(x y)
0% porelx ¥ y4) : x 2 0and 3> 0 => ¥ = ged(x y)

ﬁ*ﬁni:h(x IR Y=

The reader may observe that the invariant assertions relate the program variables x and y with
their initial values xy and %o and the subgoal assertions relate the programs variables with the

ultimate final value of 4, 3.
Let us return te the general case. From a given subgoal-assertion proof of the partial

correctness of a program, we can mechanically paraphrase the argument as an
intermittent-assertion proof, just as we did for the invariant-assertion method.

22

Manna & Waldinger

The theorem that expresses the partial correctness of the program is again:

Theorem: if sometime x = x, and P(xg) at szart
and the computation terminates
then sometime R{xg x) at finish.

The lemma that we will use in proving the theorem, however, is different from the lemma in
the invariant-assertion case:

Lemma: foreveryi,0<ish
if sometime x = a at L;

and the computation terminates

then sometime Q*,{a x) at finish .

To construct a proof that the lemma implies the theorem, we take i = 0 and extract the

justification for Condition (2) from the given subgoal assertion proof.

The proof of the lemma is constructed in a way analogous to the earlier invariant-assertion
case. Induction is again based on the ordering >”o induced by the computation. When { = A

we use the proof of Condition (1%), and if 0 s i < 4 we use the inductive hypothesis and the

proof of (3%).

We have remarked that the invariant-assertion method relates the current values of the
program variables to their initial values, whereas the subgoal-assertion method relates the
current values to their final vaiues. The intermittent-assertion technique can imitate both of
these methods because it can relate the values of the program variables at any two stages in the
computation.

3, Well-founded ordering method

The above constructions enabled us te mirror conventional partial-correctness proofs using
intermittent assertions. In fact, we can aiso use the intermittent-assertion method to express
conventional termination proofs that use the well-founded ordering approach.

Suppose that we have used the well-founded ordering approach te prove the termination of a
given program with respect to some input specification P(xg). Then we have found a

well-founded ordering > over a set W, and for some set of designated labeis Lo, L;,..., Ly, we

have found a set of invariant assertions Qg(xg x), 0;(xg %), .., Q4{xp x) and a set of expressions

23

Manna & Waldinger

Eolxg %), E {xg %), ... Eg{xo x} for which we have proved the foilowing conditions for every %o

and x:
(1) P(xo) = uo(xo xo)
{the input specification implies the initial invariant assertion),

(2 Qixg %) and £,(x) => uj{xo g (%)) for every basic path « from L; to L

(the invariant assertion before the path implies the invariant assertion after),

(3;) Qixg %) => Eflxp x} € W for each label L;

{the value of the expression belongs to W when controi passes through L;), and

{4,) Qy(xo %) and t(x) => Ejxg %) > EJ-(xo e

for every basic path « from L;to Lj

{as control passes from L; to Lj. the value.of the corresponding expression is reduced).

The above conditions establish the termination of the program. Conditions (1) and (2_) ensure
that each Q;(xg x) is indeed an invariant assertion at L; whenever control passes through L,
assertion Uy{xp %) is true for the current value of x. Condition (3) then tells us that each time
control passes through L;, the value of the expression Ey(x, x) belongs to W.

Now, suppose that Conditions (1)-(4) are satisfied but the program does not terminate for some
input x, satisfying the input specification P(xp). Control then passes through an infinite
sequence of designated labels; the vaiues of the corresponding expressions E;{xq x) constitute an
infinite sequence of elements of W. Condition (4} then implies that this is a decreasing
sequence under the weli~founded ordering, thereby contradicting the definition of a
‘well-founded set. Conditions (1)-(4) therefore suffice to establish the termination of the given
program.

It is our task to transform a proof by the above method into an intermittent-assertion proof of
the termination of the program. The following theorem expresses the desired property

Theorem: if sometime x = xg and P(¥) at start
then sometime at finisk .

24

‘Manna & Waldinger

Recail that “"sometime at finisA" expresses the termination of the program in the
intermittent-assertion notation. We can prove this theorem by estabiishing the following
lemma

Lemma: forevery, 0sish -
if sometime x = ¢ and Qgxg a) at L;

then sometime at finish .

To construct a proof that the lemma implies the theorem, we take { to be 0 in the lemma and
incorporate the given proof of Condition (1) into the intermittent-assertion proof of the
theorem. '

To prove the lemma we use induction over the same weil-founded ordering > that we
employed in the given termination proof. Suppose that

sometime x = ¢ and Q;{x, @) at L;

for some designated label L;. We assume inductively that the lemma holds whenever x = ¢’ and
Qpixo @) at Ly, where Efxga)> Efxga). If i = A termination has already occurred.

Otherwise, control must follow some path « from Li to Lj, ie. t(a) is true. Thus
sometime ¥ = g.(a) at L.

Because both Qxe @) and t,(a) hold, the proof of Condition (2) enabies us to deduce
Qj{xo g£+(a)). The proof of Condition {3) can be incorporated to yield

Ei(x9 a) € W and EJ(xo gla) e W,
because both Q% @) and uj(xo g.(a)) are true. By Condition (4) then, we have
Ei(xo G) > Ej(xo g¢(a)) .

We can now use the induction hypothesis, with I’ = § and ¢’ = g{a), yielding the desired
- conclusion

sometime at finisA.

In this section we have shown how proofs by the canventional methods for establishing partial
correctness and termination of programs may be translated into intermittent-assertion proofs of

25

Manra & Waldinger

the same results. The translation process is purely mechanical and does not increase the
complexity of the proof. For this reason we can conciude that in employing the
intermittent-assertion method we have not lost any of the power of the existing methods.

Is it possible that a similar translation could be performed in the other direction? For
example, couldn’t we devise a procedure for translating any partiai-correctness proof by the
intermittent-assertion method into a conventional invariant-assertion proof of comparable
complexity? We believe not. We have seen no invariant-assertion proof for the tips program
that does not require consideration of the sum of the tips of all the elements in the stack. We
have seen no termination proof of the iterative Ackermann program by the conventional
method that employs such a simple weil-founded ordering as the intermittent-assertion proof.
Without formuiating a precise notion of the "complexity” of a preof, we cannot argue rigorously
that the intermittent-assetion method is strictly more powerful than the conventional methods,
but our experience and our intuition lead us to maintain that this is so. '

Manna & Waldinger

IV. Application: Validity of Transformations That
Eliminate Recursion

In discussing the tips program (Section II~1) we remarked that part of the difficuity in proving
the correctness of the program arose because the program was developed by introducing a stack
to remove the recursion from the original definition. It has been argued (eg. Knuth [1974],
. Burstall and Darlington [1975], Gerhart [1975]) that, in such cases, we should first prove the
correctness of the original recursive program, and then develop the more efficient iterative
version by applying one or more transformations to the recursive one. These transformations
are intended to increase the efficiency of the program (at the possible expense of clarity) while
still maintaining its correctness.

If we were appiying this methodology in producing our tips program, therefore, we would first
prove the correctness of the recursive version (a trivial task, since that version is completely
transparent); we would then develop the iterative tips program by systematicaily transforming
the recursive program — removing its recursion and introducing a stack instead. Consequently,
the proof we presented in Section II would be completely unnecessary, since the program would
have been produced by applying to a correct recursive program a sequence of transformations
that are guaranteed not to change that program’s specifications.

To realize such a plan, however, we must be certain that the transformations we use are valid;
i.e. that they actually do produce a program e¢quivalent to the original one. Given the same
input, the two programs must be guaranteed to return the same output. In other words, we
must be certain that bugs cannot be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish the
validity of such transformations. We will present the intermittent-assertion proof of the
validity of a transformation that removes a recursion by introducing a stack. This
transformation could have been used to produce our iterative tips program from its recursive
definition.

Suppose we have a recursive program of form

Fx) <= if p(x)
then f(x)
else A(F(g,(x)) F(ga(x)).

(For simplicity, let us assume that p, f, g,, g2 and A are defined for all arguments). If we know
that

27

Manna & Waldinger

(1) A(u Alv w)) = A(A(u v) w) for every &, v and w
{4 is associative), and

(2) Aleu) = uforevery u
(e is a left identity of 4),

then we can transform our program into an equivalent iterative program, of form

input{x)
start: stack < (x)
Z &£
more: if stack -'()
then finish: output(z)
eise if plhead(stack))
then z « Az flAead(stack)))
stack « tail(stack)
goto more
else first « head(stack)
stack « g{first) « [go{firse) « tailstack))
goto more

The validity of this transformation is expressed by the following two theorems,

Theorem 1: if sometime x = g at start
and Fia) is defined
then sometime z = F(a) at finish.

and

Theorem 2: if sometime x = a at start
and the iterative computation terminates
then F(a) is defined.

Theorem | contains the condition that F(a) is defined (that the recursive computation of F with
input ¢ will terminate). This condition is 'necessary for, otherwise, the iterative program will
‘not terminate, and therefore control will never reach finisk at all. If we succeed in proving
Theorem 1, we wili have established that the iterative program terminates whenever the
original recursive program does, and returns the same output; in other words, the iterative
program computes an extension of the function computed by the recursive program, rather than
the exact same function. Theorem 2 shows that the recursive program halts whenever the

28

Manna & Waidinger

iterative program does. Together, Theorems 1 and 2 imply that the recursive and iterative
programs are equivalent. The proof of Theorem | is analogous to the proof of the total
correctness of the tips program; it can be proved using the following lemma:

Lemma I: if sometime z = ¢ and stack = a+5 at more
and F(a) is defined
then sometime z = Al¢c #{(2)) and stack = 5 at more.

To show that the lemma impiies Theorem 1, assume
sometime x = g at start

;nd that F(g) is defined. Then immediately control passes to more, so that
someLi‘me: z = ¢ and stack = {(a) = a. () at more.

By the lemma [taking ¢ to be ¢ and s to be ()], we have
sometime z = A{e F{a)) and st;ck = () at more.

. But A(e F(a)) = F(a) by Property (2), that e is a left identity of & Because stack is (), control
passes to finisk, and we deduce ‘

sometime z = F(a) at finish,
which is the desired conclusion of the theorem.
To prove the lemma, suppose

sometime z = ¢ and stack = @+ 5 at more,

where F{a) is defined. The proof employs compiete induction on g, over the ordering >,
induced by the recursive computation of F(a). This is the ordering such that

d>, &,

where a call F(d) occurs in the computation of F(g), and F(d) is called recursively during the
computation of F(d). (We include the possibility that d = ¢.) In particular, 4 >, g,{d) and

d 4 g:{d), if a call F(d) occurs in the computation of F(a). This ordering >, is clearly
transitive and can be shown to be well-founded because the computation of F{(z) terminates.

29

Manna & Waldinger

We will assume inductively that the lemma holds whenever z = ¢’ and stack = a’- s, where ¢ >,
@' in the ordering >, induced by the recursive computation of F(a), and show that it holds
when z = ¢ and stack = a.5 as well. We distinguish between two cases, depending on the truth

of pla).

Case p(a) is true: Then F(a) = f(a), by the recursive definition of F. Because g is at the head
of the stack, the stack is not empty and p(head(stack)) is true; therefore we follow the then
branch of the program, so that

sometime z = A(c fla)) and stack = s at more.
But fla) = F(a), so we have

sometime z = Alc F{a)) and stack « 5 at more,
which is the desired conclusion:

Case p(a} is false: Here F(a) = #(F(g (a)) F(go{a))), by the recursive definition of F. Note that
F(a) is defined; therefore F(g,{a)) and F(g,(a)) are also defined. Because stack is not empty and
plhead(stack)} is false, control follows the eise branch of the loop body, so that

sometime z = ¢ and stack = g,{a) [g,{a)s 5] at more.

Recall that a >; g,{a); therefore we can appiy the induction hypothesis [taking ¢’ to be ¢, ¢’ to
be g,(a), and 5" to be g,(a)- 5] to obtain

sometime z = A{c F(g,(a})) and stack = gola)- s at more.

Because a >, go{a), we can apply the induction hypothesis a second time [taking ¢ to be
Alc F(gi(a))), a' to be gola), and 5" = 5]. We derive

sometime z = A(A(c F(g,(a))) Flgo(a))) and stack = 5 at rﬁare.
Bylthe associativity of A (Property (1)), and the recursive definition of ¥, we have
A F(g () Flgala) = Al KF(g,(a) Flga(a))) = hic Fla)).
Therefore we can conclude
sometime 2z = Ale F(@)) and stack = 5 at more,

completing the proof of the lemma.

30

Manna & Waldinger

So far we have only estabiished Theorem I, that the function computed by the iterative
program is an extension of the function computed by the recursive program. We still need to
prove Theorem 2, that if the iterative program terminates, then the recursive program also
terminates. This proof depends on another lemma.

Lemma 2t if sometime z = ¢ and stack = a. 5 at more
and the iterative computation terminates
then ¥(a) is defined.

Lemma 2 implies Theorem 2 directly, because the stack is initialized to (a) = a- ().

The proof of the lemma employs induction over the ordering >"-‘o induced by the iterative
computation with intput xg. In this ordering, (c; 5y) >2 {co s55), where ¢; and ¢; are successive

values of the variable z at more, and 5; and s, are successive values of the stack at more. This
ordering is weli-founded if the computation terminates.

To prove the lemma, suppose that
sometime z = ¢ and stack = @.s at more,

and that the iterative computation terminates. We assume inductively that the lemma holds
whenever z = ¢’ and stack = @’ where {¢ ¢-5) > (¢ @5} in the ordering induced by the

computation, and show that F(a) is then defined.
We distinguish between two cases.
Case p(a) is true: Here F(a) = f(a) by the recursive program, and therefore F(a) is defined,

Case p(a) is false: Here Fla) = A(F(g,(a)) F(gs(a)), by the recursive program. Since stack is not
empty and plkead(stack)} is faise, the iterative computation follows the eise branch, so that

sometime z = ¢ and stack = g,(a)- [ga(a)- 5] at more.

Because {¢ a-3))—xo (¢ g(a)-[ga(a)«s]) in the ordering induced by the iterative computation,

~and because the computation was assumed to terminate, we can deduce from our induction
hypothesis that F(g,{(a)) is defined. By Lemma I, we have that

sometime z = Alc F(g,(a))) and stack = gola}- s at more.

Again, by the induction hypothesis, we have that F(gx(a)) is defined. Because both F(g(a)) and
F(go(a)) are defined, and F(a) = A(F(g,(a)) F(ga(a))), we can conclude that F(a) is defined.

L3

Manna & Waldinger

We have just shown the validity of the transformation that was actually used to preduce the
iterative tips program in Section II-I. As in that section, we could have used the conventional
invariant-assertion technique in the proof of Theorem 1. However, although we could employ
the standard Z notation to denote repeated applications of the + operation in the tips

invariant assertion, we would have had to invent a new notation to denote repeated application
.of the function A in the invariant assertion for the iterative program here.

In the next section we will discuss an entirely different application of the intermittent-assertion
method.

32

Manna & Waldinger

V. Application: Correctness of Continuously Operating
Programs

Conventionally, in proving the correctness of a program, we describe its expected behavior in-
terms of an output specification, which is intended to hold when the program terminates. Some
programs, such as operating systems, airline-reservation systems and management information
systems, however, are never expected to terminate. Such programs will be said to be
continuously operating (see, for example, Francez and Pneuli {1977)). The correctness of
continuously operating programs therefore cannot be expressed by output specifications, but
" rather by their intended behavior while running.

Furthermore, we conventionally describe the internal workings of a program with an invariant
assertion, which is intended to hold every time control passes through the corresponding point.
The description of the workings of a continuously operating program, however, often invoives
a relationship that some event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as an
invariant assertion.

In other words, the standard tools for proving the correctness of terminating programs,
input-output specifications and invariant assertions, are not appropriate for continuously
operating programs. The intermittent-assertion method provides a natural complement here,
both as a means for specifying the internal and external behavior of these programs, and as a
technique for proving the specifications correct.

We will use one very simple example, an imaginary sequential operating system, to illustrate
this point:

more: read{requests)
setup: if requests = ()
then goto more
else (job requests) « (head(requests) tail(requests))
execute: process{job)
goto setup.

At each iteration this program reads a list, requests, of jobs to be processed. If requests is
empty, the program will read a new list, and will repeat this operation indefinitely until a
nonempty request list is read. The system will then process the jobs one by one; when they are
all processed, the system will again attempt to read a request list.

What we wish to establish about this program is that if a job f is read into the request list, it

33

Manna & Waldinger

will eventually be processed. Aithough this claim is not representable as an input-output
specification, it is directly expressed in the following

Theorem: if sometime j € requests at setup
then sometime job = j at execule.

Here, j € requests means that j belongs to the list of current requests.
To prove the theorem, assume that

sometime j € requests at setup.
Then requests is not empty and is of the form

«j B

where a and @ are the sublists of jobs occuring before and after f, respectively, in the request
list. Our proof wiil be by complete induction on the structure of oz we assume the theorem
holds whenever requests is of form

«jB,
for aﬁy sublist o' of . The proof distinguishes between two cases

Case o =(: Then j= head{requests). Since requests m(), we reach execute with
job = head(requests) = j, satisfying the conclusion of the theorem.

Case o » (): Then o = Aead{a): tail{xr). Because again requests » {), we process job = head(x), and
return to setup with requests reset to tail(a) § §. Since taii(a) is a sublist of «, we can conclude
from our inductive assumption that

sometime job = f at execute,
as we had hoped.

This program is very simple, but it may serve to suggest how the intermittent-assertion method
can be applied to the more realistic exampies.

MNote that when we make a statement of form
if sometime P at L;

then sometime Q at L,

34

Manna & Waldinger

we do not necessarily imply that condition Q is satisfied at L, after condition P is satisfied at L;
in fact, condition Q could hold before condition P. Thus, in the above exampie, we should be
perfectly content if some especiaily fast operating system were able to process the job before it
was submitted. If we wanted to express a specification that excluded such an interpretation, we
would have to adapt our notation appropriately. In fact, the proof techniques that we have
used in this paper will only ailow us to prove an implication of the above form if Q hoids at L,

after P holds at L,.

Throughout this paper, in proving an implication of the above form, we have tacitly assumed
that conditions P and Q are satisfied at different stages of the same computation. It is possible
to relax this assumption and relate different computations by extending our notation
appropriately. We believe one could then apply the intermittent-assertion method tc prove
properties of nondeterministic and concurrent programs as well.

35

Manna & Waldinger

VI. Conclusions

The intermittent-assertion method not only serves as a vaiuable tool, but aiso provides a
general framework encompassing a wide variety of techniques for the logical analysis of
programs. Diverse methods for establishing partial correctness, termination, and equivalence fit
easily within this framework. Furthermore, some proofs, naturally expressed with intermittent
assertions, are not as easily conveyed by the more conventional methods.

It has yet to be determined which phases of the intermittent-assertion proof process will be
accessible to implementation in verification systems. If the lemmas and the well-founded
orderings for the induction are provided by the programmer, to construct the remainder of the
proof appears to be fairly mechanical. On the cther hand, to find the appropriate lemmas and
the corresponding orderings may require some ingenuity. We believe that the
intermittent-assertion method will have practical impact because it allows us to incorporate our
intuitive understanding about the way a program works directly into a proof of its correctness.

Acknowledgements

We would like to thank Rod Burstail and Nachum Dershowitz for many helpful discussions
related to this work. We would also like to thank Ed Ashcroft, Edsger Dijkstra and Jim King
for their careful critical reading of the manuscript, and their many suggested revisions.

VII. References

Ashcroft, EA. [Nov. 1976), Intermittent-assertion preofs in LUCID, Research Report,
University of Waterloo, Waterloo, Canada.

Burstall, R.M. [Aug. 1974), Program proving as hand simulation with a little
induction, Information Processing 1974, North-Holland Publishing
Company, Amsterdam, pp. 308-312,

Burstall, RM. and Darlington,]. [Apr. 1975), Some transformations for developing
recursive programs, Proceedings of International Conference on Reliable
Software, Los Angeles, Ca., pp. 465-472.

Floyd, R.W. [1967], Assigm‘ng meaning to programs, Proceedings of Symposium in

%

Manna & Waldinger

Applied Mathematics, V. 19 (]J.T. Schwartz, ed), American Mathematicai
Saciety, pp. 19-32.

_ Francez, N. and Pnueli, A. [1977), A proof method for cyclic programs, Acta

Informatica (to appear).

Gerhart, S.L. {Jan. 1975), Correctness-preserving program transformations,
Proceedings of the Second Symposium on Principles of Programming
Languages, Palo Alto, Ca,, pp. 54-65.

Hoare, C.AR. [Oct. 1969), An axiomatic basis of computer programming, CACM, Vol.
12, No. 10, pp. 576-580, 583.

Katz, S.M. and Manna, Z. [Dec. 1975], A closer look at termination, Acta Informatica,
Vol. 5, pp. 333-352.

Knuth, D.E. [1968], The Art of Computer Programming, Volume I: Fundamental
Algorithms, Addison~Wesley Publishers, Reading, Mass.

Knuth, D.E. [Dec. 1974), Structured programming with goto statements, Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

London, R.L. [April 1975}, A view of program uverification, Proceedings of the
Internationat Conference on Reliable Software, Los Angeles, Ca, pp.
53¢-545.

Manna, Z. [June 1971], Mathematical theory of partial correctness, Journal of
Computer and System Sciences, Yol. 5, No. 3, pp. 239-253.

Manna, Z. [1974], Mathematical Theory of Computation, McGraw-Hill Book
Company, New York, N.Y.

Morris, J.H. and Wegbreit, B. [Feb. 1976}, Subgoal induction, Memo, Xerox Research
Center, Palo Atlto, Ca.

Pratt, V.R. [Oct. 1976], Semantical considerations on Floyd-Hoare logic, Proceedings
of the 17th Symposium on Foundations of Computer Science, Houston,
Texas, pp. 109-121.

Schwarz, J. [July 1976), Event-based reasoning - A system for proving correct
termination of programs, Proceedings of the Third International Colloquium
on Automata, Languages and Programming, Edinburgh, Scotiand, pp.
131-146.

37

Manna & Waldinger

Topor, RW. [1977), 4 simple proof of the Schorr-Waite garbage collection algorithm,
Acta Informatica (to appear).

Wang, A. [1976], An axiomatic basis for proving total correctness of goto-programs;
BIT, Vol. 16, pp. 88-102.

