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SUBJECTIVE BAYESIAN METHODS FOR RULE-BASED
INFERENCE SYSTEMS

'R. 0. Duda, P. E. Hart, and N. J. Nilsson

ABSTRACT

The genérai problem of drawing inferences from uncertain or iﬁcom?
plete evidence has invited a variety of technical approaches, some math-
ematically rigorous and some largely informal and intuitive. Most cur-
rent inference systems in artificial intelligence have emphasized
intuitive methods, because the absence of adequate statistical samples
forces a reliance on the subjective judgment of human experts. We de-
scribe in this paper a subjective Bayesian inference method that realizes
. some of the advantages of both formal and informal approaches. Of par-
Iticular interest are the modifications needed to deal with the inconsis-

" tencies usually found in collections of subjective statements.

Index Terms

Inference, Bayes rule, artificial intelligence, production systems, rule-

based systems, subjective probability




-1 INTRODUCTION

_'One 6f'the characteristics of human reasoning'is the aﬁility.tb
_form useful judgments from uncertain and incomplete evidence. This
~ability is not only needed for everyday activities, which people would
normally never formalize, but also for tasks such as medical diagnosis

" or securities analysis, which have been subjected to formal treatment.

Because the general need to form judgments from incbmplete data is
so widespread, many techniques have been develdped to aid or supplant
people in this task. Probability theory and statistics provide a power-
ful framework for dealing with many inference problems [1,2]. 1In stan-
dard approaches, the link between alternative hypotheses and relevant
évidence is represented by conditional or joint probabilities that are
estimated from statistical samples. If the number of alternative hypoth-
eses and the amount of relevant evidence are not too great, and if the
available sample is sufficiently large, then probability and statistics
furnish the preferred analytical tools. However, when many kinds of evi-
dence simultaneously bear on an hypothesis, traditional statistical ap-

' proaches become inappropriate because estimation problems become unman-

- ageable.

Recent work in artificial intelligence has suggested other approaches

to the problem of resolving hypotheses on the basis of a mass of uncer-

tain evidence. Among the most attractive are rule-based systems, which

 ﬁse a large body of inference rules, supplied'by'experts, to provide the

' knowledge needed to distinguish among competing hypotheses {3¥6].-an¢H .

inference rule defines the role of a particular set of evidence in .




feselving a éarficular'hypotheSis; Typiceily; an ad hoc scbfing func-
‘tion is used:to combine the effects of collections of uncertain evidence
‘acting through several inference rules on the same hypothesis. Thus,
rule-based systems attempt to substitute judgments distilled from.long.
-.experience for joint probabilities estimated from prohibitively large

samples.

Our purpdse'in this paper is to describe a subjective Bayesian tech-.
nique that can be used in place of ad hoc scoring functions in rule-
based inference systems. Our intent is to retain insofar as possible
the well-understood methods ef probability theory, introducing only
those modifications needed because we are dealing with networks of sub-
-jective inference rules. The scope of the paper is limited:; we shall
not discuss here the more general issues of representation and control

that must be faced when designing a complete rule-based inference system.

It FUNDAMENTALS

In a rule-based inference system, the rules are typically of the

form

IfFE. and E and ... and E
S5 BE R, SIS e AR R,

then H

th piece of evidence and H is an hypoth-

where Ei(i = 1...n) is the i
‘esis suggested by the evidence. Each inference rule has a certain

. strength measured by parameters that will be defined later. - For now it

' ”;Isufflces to say that the greater the strength the ‘greater is the power . -

f;:of the ev1dence to conflrm the hypothes1s. ~In’ most appllcatlons, the '

rules’ and their strengths are prov1ded by carefully interviewing experts.




The individual pieces of evidence (the E;) and the hypothesie (1)
" of a rule are propositional statements. Instead of being eithér 4bsd~

lutely true or false, the truth values of these propositional statements

- may be uncertain., In this paper we shall represent these uncertainties by
'-probabilities,.so that associdted with each propositional statement is a

~corresponding probability value.

To simplify matters, we shall assume (without loss of.generalitY)"
.that each rule has only a single propositional statement as evidence on
its left~hand side. To reduce a conjunction to a single statement, we
need a method for computing the joint probability, P(El,...,En) from the
individual probabilities P(Ei). Two simple alternatives are to assume
independence of the E; or to use the fuzzy set computation P(Ey,...,E;) =
min P(E;). More generally, the left-hand side of a rule could contain
an'erbitrary logical expression, E. The results of this paper do not de-

pend on how the probability of E is computed.

We represent a rule of the form "if E then H" graphically by the
LI & then y by

'following structure:
—_—

Here a.ﬁropositional statement is being represented as a node, and an in-
ference rule is being represented as an arc. A collection of rules about
some specific subject area invariably uses the same pieces of evidence

to imply several different hypotheses. It also frequently happens that
several alternative pieces of evidence imply the same hypothesis.  Fur-

- thermore,.there are often chains of evidences and hypotheses. For ‘these

. reasons it is “natural to represent a collectlon of rules as a graph

-SLI‘UCCUTE or 1nference net.-




An‘ekample of an inference net ié shown in Figure 1. The Hi at-
._,the top of the net are alternative hypotheses to be resolved. Each arc
-entering a node represents an inference rule and has associated with it
a strength. Notice that a typical intermediate node like E5 can play
two toles: it provides supporting evidence for the nodes above it'(E2
. and E3), and it acts as an hypothesis to be resolved by evidence below

it (E8 and Eg).

The main problem to be considered in this paper concerns the propa-
gation of probabilities through the net. Suppose for example, that a
user of the net provides evidence by deciding that the probability of a
node, say Eg, should be changed from its prior value to some new value.
Obviously this should require updating of the probabilities of E, and,
‘in turn, El’ E2, and Hk’ and so on. Any mechanism used for propagating

probabilities must be able to cope with a number of problems. The rules
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FIGURE 1 A SIMPLE INFERENCE NET




' have uncertainty associated with them, and thé evidence provided by a
-ﬁSer may be uncertain. These two different kinds of uncertainty must
somehow be combined. Multiple evidence typically bears on a single hy-
."ﬁothesis,_so that some form of independence must usually be dssumed.

. Finally, the rules are provided subjectively by experts, so certain
kinds of inconsistencies arise that can seriously jeopardize success.

In the following sections we suggest a Bayesian updating scheme that ad-

dresses these concerns.

ITT SUBJECTIVE BAYESIAN UPDATING

Suppose we are given a rule if E, then H. Let us begin with the
simplified problem of updating the probability of H given its prior

value and given that E is observed to be true. By Bayes rule, we have

P(E |H)P(H)

P(E) ’ (1

P(H‘E) =

For our purposes, a more convenient form of Bayes rule is arrived at by

writing the complementary form for the negation of H

— P(E[MPH
P(H|E) R Yo R (2)
-and dividiﬁg Eq. (1) by Eq. (2) to obtain
P(H|E) P(E|H)Y PH) e

P(F|E)  P(ED PG
. ‘Each of the three terms in.thié'équation-has a traditional interpreﬁé-
tion. 'We‘defiﬁe'thé7gri0r“6&&s éh H to be |

0 =y ST e

W




~and the posterior odds to be

PGHIE) . .?(H!E)
P(H|E) 1 - P(H|E) :

O(H|E) = | (5)

~ Now the likelihood ratio is defined by

P(EH : '
Veram ®)

.80 Eq. 3 becomes the odds-likelihood formulation of Bayes rule:

O(H|E) = 20(H) . (7)

' This equation tells us how to update the odds on H given the observation

of E. For rule-based inference systems, we assume that a human expert
"has given the rule and has provided the likelihood ratio A to indicate
the "strength' of the rule. A high value of A (A = 1) represents,
roughly speaking, the fact that E is sufficient for H, since the obser-
vation that E is true will transform indifferent prior odds on H into
heavy posterior odds in favor of H. Notice, incidentally, that the un-
derlying probabilities can be recovered from their odds by the simple

formula

P = ; (8)

;so that the odds and the probabilities give exactly the same information.

_Suppose now that we wish to update the odds on H given.that'E is

‘observed to be false. 1In a strictly analogous fashion, we write




where we define \ by

- PEM _ L= PEH)
P(EIH) I-P(_E]"H“)

ao -

Notice'thaf % must also be proﬁided by the human expert; if éaﬁndt-be
derived from A. A low value of X, (0 € << 1) represents, roughly

" speaking, the fact that E is necessary for H, since the observation thaﬁ
E is false will by Eq. 9 transform indifferent prior odds on H into odds
heavily against H. Curiously, although A and A must be separately pro-
vided by the expert, they are not completely independent of each other.

In particular, Eqs. (6) and (9) yield

T 1 - P(EIH) ?

50 fhat, if we exclude the extreme cases of P(Elﬁ) being either 0 or 1,
we see that A ~ 1 implies A <1, and A <1 implies % > 1. Further, we
have A = 1 if and only if % = 1. This means that if the expert gives

a rule such that the presence of E enhances the odds on H (i.e., A > 1),
he should also tell us that the absence of E depresses the odds on H
(i.e., A < 1). To some extent, this mathematical requirement does vio-
lence to intuition. People who work with rule-based inference systems
are commonly told by experts that "The presence of E enhances the odds
on H, but the absence of E has no significance." In other words, the
‘expert says that ) > 1, but % = 1. Subsequently, we shall suggest some

'modifications that address this and other problems of inconsistency.
. We note in péSSing that knowledge of both A and % is equivalent tb
: knowledge of both P(E]H) and P(E|H) Iﬁdeéd, it follows at once from
EQS..(6) and (10) that o i e o

_P(Elﬁ)::\l"'_ : . — (12)



and

RE|D) - % o ay

> 1>l

Thus, whether the expert should be asked to proﬁide'l and i ?(EIH) and
P(Elﬁ),-or, indeed, some other equivalent information is-a.psycholbgical

rather than a mathematical question [7].

IV ~ UNCERTAIN EVIDENCE AND THE PROBLEM OF PRIOR PROBABILITIES

Having seen how to update the probability of an hypothesis when the
evidence is known to be either certainly true or certainly false, let us
consider now how updating should proceed when the user of the system is
uncertain. We begin by assuming that when a user says "I am 707 certain
that E is true,'” he means that P(E| relevant observations) = .7. We des-
ignate by E’ the relevant observations that he makes, and simply write

P(EIE’) for the user's response.

We now need to obtain an expression for P(H,E’). Formally,

P(H|E') = P(W,E|E") + P(H,E|E")

It

P(H|E,E)P(E|E’) + P(H|E,ENR(EIE") . (14)
{le make the reasonable assumption that if we know E to be txue (or false),
.then the observations E’ relevant to E provide no further information
“‘about H. With this assumption, Eq. (14) becomes

_P(H|E’) = P(H[E)P(E|E’) + PCH|D)R(EIE) -+~ (15) " .

Here'P(HIE)-aﬁd-P(HTE) aré'obtained.ditectly frdﬁ”Béyes rﬁié, i;é}; From”

Eq. (7) and Eq. (9), reSpéctivéiy.



If the user'is-certain'that E is true, then P(H!E’) 2.P(I-II'E). If
the uéér is éertain that £ is false, then P(HlE’) = P(Hff).' In general,
Eq. (15) gives P(HIE’) as a linear interpolation between these two ex-
 treme cases. In particular, note that if P(E!E’) = P(E) then -
H'P(H|E’) = P(H). This has the simple interpretation. that if the evidénéé
- E’ is no better than a priori knowledge, then application of the rule

leaves the probability of H unchanged.

In a pure Bayesian formulation, Eq. (15) is the solution to therup—
dating question. In practice, however, there are significant difficul-
ties in using this formulation im an inference net. These difficulties
stem from a combination of the classical Bayesian dilemma over prior

probabilities and the use of subjective probabilities.

To appreciate the difficulty, consider again a typical pair of
nodes E and H embedded in an inference net. It is apparent from Egs.
(7) and (9) that the updating procedure depends on the availability of
the prior odds O(H). Thus, although we have not émphasized the point
_ﬁntil now, we see that the expert must be depended upon to provide the
prior odds as well as ) and A when the inference rule is given. On the
other hand, recall our earlier observation that E also acts as an hypoth-
esis to be resolved by the nodes below it in the net. Thus, the expert
- must also provide prior odds on E. If all of these quantities were épec»
~ified consistently, then the situation would be as represented in Figure
2. The straight line plotted is simply Eq. (15), and shows the interpo-
‘lation noted above. 1In particular, note that if the user asserts that
' ;f(E{E’) ="P(E), thén the updated probability is P(HlE’) = P(H).

other words, Af the user provldes no new evidence, then the probablllty

:._'1of H remalns unchanged

'Iﬁ:the.practicél case; unfortunately, the subjectively obtained

prior probabilities are virtually certain to be inconsistent, -and the
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‘i -
P(HIE) -——--—-—--_.-___..ww_..__-'_'_'_..i,
P{HIE} _ : |
(UPDATED  PH) FP————=—=———> . |
PROBABILITY , I
OF H) i :
i |
P(HIE) e : I
l |
| !
0 I l
0 P{E} 1
P(EIE")
(CURRENT PROBABILITY OF E)
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FIGURE 2 IDEALIZED UPDATING OF P{HIE")

situation becomés as shown in Figure 3. Note that P(E), the prior prob-
ability provided by the expert, is different from P.(E), the probability
consistent with P(H). Here, if the user provides no new evidence--i.e.,
if P(E|E’) = P(E)--then the formal Bayesian updating scheme will substan-
tially change the probability of H from its prior value P(H). Further-
more, for the case shown in Figure 3, if the user asserts that E is true
“with a probability P(EIE’) lying in the interval between P(E) and ?C(E),
then the updated probability P(HlE’) will be less than P(H). Thus, we
have here an example of a rule intended to increase the ?robability of
H if E is found to be’ true, but which turns out to have the opp031te ef-
fect. This type ‘of error can be compounded as: probabllltles are- propa- 3
 fgated through the net. .
Several méasures cén be taken to correct the unfortunate éffeéts of..
priors ‘that are inconsistent with inference rules. Since the problem

10
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FIGURE 3  INCONSISTENT PRIORS

can be thought of as one of overspecification, one approach would be to
 re1ak the specification of whatever quantities are subjectively least
certain. For example, if the subjective specification of P(E) were
.least certain (in the expert's opinion), then we might set P(E) = P.(E).
This approach leads to difficulties because the pair of nodes E and H
-under consideration are embedded in a large net. For example, in Figure

1, we might be considering node E, as the hypothesis H, and node E5 as

2
the evidence E. If we were to establish a prior probability P(ES) to be
.eonsistent with P(E9), we would simultaneously make P(ES) inconsistent
with the prlors on EB and Eg, -which prov1de supporting- ev1dence for E5.
- Pr10r probabllltles can therefore not be forced into- conslstency on the

. b331s of the local structure of the 1nference net, apparently, a more’

 global proceSS*hperhaps a relaxation process--would be required.

11




A second alternative for achieving consistency would be to adjust
-_the.linear interpolation function shown in Figure 3. There are several
iﬁossibilities, one of which is illustrated in Figure 4a. The linear
function has been broken inté a piecewise linear function at the coordi-
nates of the prior probabilities, forcing consistent updating of the
probability of H given E’. Two other possibilities are shown in Figures
4b and 4c. 1In Figure 4b we bave introduced a dead zone over the inter-
val between the specified prior probability P(E) and the consistent
prior PC(E). Intuitively, the argument in support of this consistent in-
terpolation function is that if the user cannot give a response outside
this interval, then he is not sufficiently certain of his response to
warrant any change in the probability of H. Figure 4c shows another pos-

sibility, motivated by the earlier observation that experts often give

. mu»-%%
?(H‘E)'.'

‘l -
/- 09~':$-“"“ﬂ4
P(HIE) GA.Jﬂ::_~v~f?6H~*4i
. QLQ’
_ P{H) sl
PIHEY) -
t
SYNICINE A9 I
; F(HIE)
U
0 P(E) i
- TP(EIEY) |
o fa) _
S "SA-4763-4

FIGURE 4 CONSISTENT INTERPOLATION FUNCTIONS
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0 | | |
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FIGURE 4  CONSISTENT INTERPOLATION EUNCTIONS (Continued)

rules of the form "The presence of E enhances the odds on H, but the ab-
sence of E has no significance." By keeping P(H|E;) equal to P(H) when
?(EIE’) is less than P(E) we are effectively allowing the forbidden situ-
ation where A > 1 and X = 1. 1In effect, this is equivalent to the

method illustrated in Figure 4a under the assumption that P(Hif) = P(H).

It is interesting to compare these modifications with the procedure
used by Shortliffe to handle uncertain evidence in the MYCIN system _
[4,5]. While the nonlinear equétions that result from use of Shortliffe's
version of confirmation theory prevént a general comparison, it'iS'pdséi-
“ble to express his ﬁroéoﬂuro-in'du?”tefﬁsIfbfthﬁnspbdial case of ﬁ'nfh—"'
glewrﬁle.' The result for the case in which the pfeseﬁée 6f'E'suﬁpbes'H:
is shown in Figure 5. Clearly, the solution is identical to that of

13 -



PIHIE) b m e e e

|
|
. I
., P(H) ® bd - I
e " |
i
T |
. Prad |
PIHIE) ! |
|
i i
i |
0 I | —_—
0 P{E} 1
P(EIEY)
{c)

SA-4763-6

FIGURE 4 CONSISTENT INTERPOLATION FUNCTIONS ({Concluded)

Figure 4c except for the interval from P(E) to P.(E) within which Short-

liffe's solution maintains P(H'E’) at the a priori value P(H).

The graphical representations in Figures 2 through 4 provide a nice
.vehicle for visualizing the discrepancies between formal and subjective
Bayesian updating, and make it easy to invent other alternatives for rec-
onciling inconsistencies. For completeness, the Appendix contains the
'easily computable algebraic representations of these functions,.and also
treats the complementary case in which the straight line given by Eq. (15)
has a negative slope (the case in which A €3). In a small experimental
' system, the function shown in Figure 4a has given satisfactory prelimi- -

' narj results [8].
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FIGURE 5 THE INTERPOLATION FUNCTION USED IN THE MYCIN SYSTEM
PI(E) = P(E) + t[1 - P{E}]. Typically, t = 0.2,

v THE USE OF MULTIPLE EVIDENCE

" We turn now to the more general updating problem in which several
rules of the form By - H,...,E, —» H all concern the same hypothesis B>
Since most nodes in actual inference nets have several incoming arcs,
.this is the case of greatest practical interest. In order to gain some
insight about how multiple evidence should be used to update H when the
evidence is uncertain and the priors are inconsistent, let us first con-~

- sider briefly how updating would formally proceed in simpler cases,

‘Suppose the ith inference rule has associated with it the usual two

'_fquéntitiés a; and 3.  For a first simple case, how should H be updated

% ' e . . -
- This should not be confused with the c¢onjunctive premise mentioned
earlier.

15



wheﬁ all the E, have been observed to be certainly true? This case is
‘analogous to the case summarized by Eq. (7). Under the assumption that
the pieces of ev1dence are conditionally independent (1 .e., that

P(Eq,en B [K) = ﬂlP(EIIH) and that P(Ey,...,E[H) = HIP(E i), it is
not difficult to ﬁZach an analogous answer. Specifically, the odds on

B are updated by the expression

n B
O(H|Eq],...,E) ={ Ai] o(w) , (16)
£
wheré
P(Ei’H), |
}‘i = m . (17)

Similarly, if all the evidence is observed to be certainly false, we can
under conditional independence assumptions again factor the joint likeli-

" hood ratio to obtain

n

O [Ey,-..,E) = [ﬂ 'ii] o) . (18)

Now let us consider the general case of uncertain evidence and in-
consiétent prior probabilities. We already know that the posterior odds
O(HiEi) given a single observation E{ can be computed using updating
functions like the ones shown in Figure 4. We can therefore define, for
a single inference rule, an effective likelihood ratio A{ by

O(HIEi)

NS Tom -

" By making7the'éséumption now that thé'E’ ére'iﬁdepéndént we can obtain

 .ffor the . general case an expre551on similar to the simple updatlng fore

. 'mulas glven by Eqs.. (16) and’ (18)

16



n . _ - B
O(H|E],..-,E) = ﬂl | o) . S (18)
i= '

" To use this expression in an inference net system, we simply store with
each node its prior odds (or probability), and store with each incoming

arc an effective likelihood ratio k{. Whenever a piece of evidence pro-

‘vided by the user causes P(EilEi) to be updated, a new effective Ilikeli-
" hood ratio is computed and the posterior odds in favor of H is computed
using Eq. (20). This procedure has the following consequences:

(1) 1If no evidence -is obtained for a rule, then it will

retain an initial effective likelihood ratio of unity,
since prior and "posterior" odds are the same.

(2) The order in which evidence 1? obtained ?nd rules are o e :
applied does not affect the final posterior probabili- o _&:;M
o ‘

ties. .
(3) The same rule can be used repeatedly, with the same or
' different values for the probability of the evidence.
In particular, if a user changes his mind and modifies
an earlier assertion, the new assertion will coxrectly
"undo" any effects of earlier statements.

Vi CONCLUSIONS

The probability updating procedure presented here has several points
to recommend it. It accepts subjective information that can readily be
obtained from experts. The two conditional probabilities, P(EIH) and
P(E|ﬁ), that determine the strength of an inference rule typically are
intuitively meaningful measures, and the procedure is tolerant of the

inevitable inconsistencies in subjective expert information. The basis

. in probability theory of our procedure provides a useful theoretical

foundation for'calculating the effects of uncertain evidence. One value :
of theéory is that it makes us explicitly aware of certain underlying as-

- sumptions about such matters as conditional independence, prior

17



pfbbabilities, and inconsistent information. Finally,-ouf procedure is
straightforward computationally and can be readily implemented in infer-

ence net systems.

There are, however, some questions that remain to be dealt with,
1f the network contains multiple paths linking a given piece of evidence
to the same hypothesis, the independence assumption is obviously violated.
"It is important to settle on a reasonable (if ad hoc) modification of
éuf basic procedure that behaves appropriately in such situations. (A
more extreme complication would involve being able to avoid the circular

reasoning implied by inference nets with loops.)

There are sometimes cases where some of the nodes in an inference
net are related by a constraint not expressed in any given rule; For
example, a subset of hypotheses may be mutually exclusive and exhaustive,
in which casé their probabilities must always sum to one, regardless of
.their individual values. Such a constraint may be inconsistent with the
associated rule strengths given us by the experts. Perhaps a simple ex-
pedient, such as renormalization of probability values, can be justified

in this case.

We have not addressed here at all issues of inference net control
strategy: for example, which hypotheses should be pursued and which
evidence should be sought at any step. The answers to these sorts of
questions may be heavily dependent on the particular application.
Another global question concerns rules containing logical statements
that may include quantifiers and variables. But in whatever way these
éuestions are answered, the basic updating procedure presented here

would appear to be a useful component of rule-based inference systems.

18
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APPENDIX

Complete analytical expressions giving P(HIE’) as a piecewise
linear function of P(ElE’) are given in this Appendix. These expres-
_sions correspond to the three graphical representations illustrated in
Figure 4. The simplest expression corresponds to Figure 4a:

P(E]E
P(H|E)+ B(E)

P(H[E')_«_? : (A1)

2 ey - BCH|D)] 0 < B(E|E’) s P(E)

P(H) - P(HIE)P(E)

‘ P(H|E) - P(H)
1 - P(E)

1 - P(E)

+ P(E|E’) P(E) = P(EIE’) <1
Here it is important to note that the four quantities P(H), P(E), P(HIE),
and P(HfE) are assumed to be estimates obtained from experts. Were the
true probabilities to be used in this formula, it would reduce at once
to the linear expression given by Eq. (15). The estimates qf P(H|E) and
P(H'E) might be obtained directly from an expert, but would more often
‘be obtained through Bayes rule [Eqs. (7) and (9), respectively]. To be

“explicit,

S REmRG) o ap@m
s SP_(B_IE) L [PEH) - PE|DMIPMH) + PEJH) ~ (A - DPM) +1 - ;._(Az)_
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and..

[1 - PEEIDTPE) C %P

PH—z puey — e = . :
. (H|E) [P(E[H) - PCE|H)IP(H) + 1 - PEIED  (h- DPH) +1 (83)
To obtain the equations for Figure &4b, we define PC(E) by -
P(H) - P(H|E) '
E = T wem,
B® P(H[E) - P(H[E) (a4)
In general, ;his'quantity will differ from the P(E) value supplied by
- the expert. For Figure 4b we must distinguish between the two cases
P(E) =< Pc(E) and P(E) > P.(E£). The equations are as follows:
Case 1: P(E) = P.(E)
- gE[Ef) —
P(H|E) + PP(E) (P(H) - P(H|E)] 0 < P(E|E’) < P(E)
i
P(H]E’) = YP(H) P(E) = P(E|E’) = PC(E)
P(H|§) + P(E|E/) [P(H|E) - P(H|ED] PC(E) s P(E|E’) <1

Case 2: P(E) > P_(E)

P(H|B)+ P(E|E’) [P(H|E) - P(H|D)] 0 S P(E|E’) < P_(E)

P(H|E’) = {P(H) P_(E) < B(E[E’) < B(E)(ap)

P(H) - P(H!E)P(El
1 - P(E)

P(H|E) - P(H)
1 - P(E)

+ P(E|E’) P(E) <P(E|E’) =1
_ :Finally, there are also two cases to be distinguished for Figure 4c.
The'first case corresponds to assuming that P(HIE) ~ P(H), so that
'PC(E) = Q. fhe second case corresponds to assuming that P(HIE) ~ P(H),
' $0 that'Pc(El 2 1. In effect, these cases corréspond to the rules
"E AH and E‘ﬁ H taken separately.f_Thé corresponding equations are

" special cases of Eqs. (A5) and (A6):
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Case 1: E ﬁ H

P(H) | | 0 SP(E.|E‘:') < P(E)
P(HlE') = o o ) (A?)
. P(H) - P(H|E)P(E) ,y B(H|E) - P(H) p
1 - B(E) FRE[ED Sy PE) SREEY) <1
CaSe-2:-'§ EIH |
| . PEIED — .
P(HIE P(H) - P(H|E 0 < P(E|EY) < P(E
PGafE = @By + BEEL (pa) - p|)] SPE|E) S 2E o

P(H) P(E) = P(ElE’) =1

Ordinafily one would view this as a simplified.approximation that
is useful when one of the two likelihood ratios is dominant. However,
it is interesting to observe that iE both 3 and % are significant and if
the two separate rules E i H and E A H are treated as if E and E were
.statistically independent, then Eqs. (A7) and (A8) yield the same result
as Eq. (Al). This follows from the fact that when P(H]E’) = P(H) we
have O(H|E’) = O(H), so that Eq. (19) yields A’ = 1. Thus, if
.O < P(E|E') < P(E) only the rule E A H contributes to P(HIE’), while if
CP(E) < P(E'E’) = 1 only the rule E 5 H contributes to'P(HIE’), the con-

tributions being exactly those given in Eq. (Al).
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