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ABSTRACT

"MSYS is a system for reasoning with uncertain information and inexact
:rﬁleé'of inference. Its major application, to date, has been to the
~interpretation of visual features {such as regions) in scene analysis. In
this application, features are assigned sets of possible interpretations
with associated likelihoods based on local attributes (e.g., color, size,

and shape). Interpretations are related by rules of inference that adjust
the likelihoods up or down in accordance with the interpretation likeli-
hoods of related features. An asynchronous relaxation process repeatedly
applies the rules until a consistent set of likelihood values is éttained.
At this point, several alternativg interpretations still exist for each
feature. One feature is chosen and the most likely of its alternatives

is assumed. The rules are then used in this more precise context to
determine likelihoods for the interpretations of remaining features by a
further round of relaxation. The selection and relaxation steps are re-
péated until all features have been interpreted.

Scene interpretation typifies constraint optimization problems involv-
ing the assignment of values to a set of mutually constrained variables.
For an interesting class of constraints, MSYS is guaranteed to find the
optimal solution with less branching than conventional heuristic search

_methods.

MSYS is implemented as a network of asynchronous parallel processes.

_The'imﬁlementatibn'prdﬁides an”effécti#e way of using data driven systems

with distributed control for optimal stochastic search.
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I INTRODUCTION

_ _Iﬁ'éceﬁé'aﬁalysis;.it:is-frequéntly impossible to . interpret parts of
an iﬁége taken out'9f context. Different objects may have similar appear-
ﬁncés;fﬁhiié:queCts-belbﬁging to the same functional class can have
Stfikiﬁgiy d;fféfent appearances (e.g., chairs). Ambiguous local inter-
pretations must be ruled out by using contextual constraints to achieve a

meaningful, globally consistent interpretation of the whole scene.

We use an elementary example involving arbitrary constraints to illus-
trate the reasoning entailed in scene interpretation. A room scene is
manually partitioned into regions, as shown in Figure 1. The labels in
the figure indicate the locally possible, interpretations of each regiom.
These interpretations are obtained by matching region attributes, such
as height and orientation, against local constraints given in Figure 2.*
Region DR, for example, must be either DOOR or WALL, since these are the
only vertically oriented objects that can extend both below and above the
allowed height ranges of other objects, such as PICTURES, CHAIRBACKS, and
WASTEBASKETS. In this example, horiiontally oriented regions all received
unique interpretations determined by their height, but all vertical regions
received at least two possible interpretations [DOOR, WALL, and when con-
sistent with height extremes., WASTEBASKET, CHAIRBACK, or PICTURE]. It is

assumed that regions do not span more than one object.

When the interprétationA of a region cannct be uniquely determined

from local attributes, it must be deduced from global relationghips such

as those in Figure 2. Deduction might proceed as follows:

fThe scene'an&leis experiments reported- herein were performed using
coordinated arrays of color, intensity, and range data. The range data" .

gimulated the output of a developmental time-of-flight laser range finder, -
whoge current accuracy is about an inch’in ten feet. Region height and '

. orientation were obtained from the range data using transformations de- .
_scribed in Reference 1. The local interpretations shown in Figure 1 were .
obtained automatically using the measured -height and orientation of the

regions.
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FIGURE 1  POSSIBLE REGION INTERPRETATIONS OF A SIMPLE ROOM SCENE




INTERPRETATION . LOCAL CONSTRAINTS © - RELATIONAL CONSTRAINTS

1. FLOOR (HEIGHT FLOOR} < 0.1 feet IHOMOGENEGUS FLOOR)*
(ORIENTATION FLODOR)} ~ HORIZONTAL .

2. DOOR 0 < (HEIGHT DOOR) < 7 feat {HOMOGENEOUS DOOR)
{ORIENTATION DOOR)} ~ VERTICAL {NOT (ADJACENT DOOR PICTURE)]

{ROOMPARTITION DOOR}**

3. WALL 0 < (HEIGHT WALL) < 8 feat {HOMOGENEQUS WALL)
(ORIENTATION WALL) ~ VERTICAL (ROOMPARTITION WALL)

4. PICTURE 3 < {HEIGHT PICTURE} < 55 feet {NOT {ADJACENT PICTURE DOOR)}
{ORIENTATION PICTURE) ~ VERTICAL

5. CHAIRBACK 1.5 < (HEIGHT CHAIRBACK) < 3 fest
(ORIENTATION CHAIRBACK) ~ VERTICAL

6. CHAIRSEAT 1 & (HEIGHT ‘CHAIRSEAT) < 2 foet
{ORIENTATION CHAIRSEAT} ~ HORIZONTAL

N . . 4
‘7. TABLETOP 2 < {HEIGHT TABLETOP) < 3 fest

{ORIENTATION TABLETOP) ~ HORIZONTAL

8. WASTEBASKET 0 < {HEIGHT WASTEBASKET) < 1.5 fest

*The homogeneity constraint raquiras that all regions labeied with the constrained interpretation, in this case Floor,

" have approximately the sams brightness and color. No particular birightnaess or color Is, however, required.

**The roompartition constraint requires that ali regions labeled with tha constrained intarpretation {Door or Wall)
hava approximately the same brightness found along the top edge of the image vertically above that region’s center
of meass. This constraint is basad on the assumptions that Door and Wall are homoganeous {as defined above}, and that
in a standard aye lavel view of a normal sized room, Door and Wall wlll extend baeyend the upper border of the
image. This constraint is a special case of homogeneity and wouid not be required for analyzing exhaustively partitioned
seanes.
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FIGURE 2 SEMANTIC CONSTRAINTS FOR ROOM SCENE DEPICTED IN FIGURE 1
: (PARTIAL LIST)



+ Regions PIC, WBSKT, and CBACK cannot be WALL or DOOR, because
their brightnesses are much less than that along the top edge
of the image vertically above them, which violates the constraint
ROOMPARTITION. . Consequently, region PIC must be the PICTURE,
‘WBSKT must be WASTEBASKET, and CBACK must be CHAIRBACK.

. Reglon LWALL and RWALL musgt then be WALL ‘gince they are adjacent
' ‘to -region PIC, and DOOR cannot bhe adjacent to PICTURE.

" fRegion DR cannot be WALL because all reglons 1abe1ed ‘WALL are

- required to have the same brightness. . Therefore, region DR must

be DOOR.

Scene interpretation, as illustrated by the.above example, is an
attempt to explain observed sensory data in terms of prior knowledge about
the depicted domain. The explanation can entail many types and levels of
knowledge, some of which may be probablistic or inconsistent. It must
also allow for the likelihood that the data is noisy. ' For these reasons,
scene interpretation is not a purely deductive problem with a unique cor-
rect solution; it is a problem that requires a search for the best or
.optimum explanetion. However, the quantities of data and knowledge that

_are involved appear to rule out the use of conventional search techniques.

This paper describes a working scene interpretation program, called
MSYS,-in which knowledge sources compete and cooperate until a consistent
explanation of the scene emerges by consensus. The consensus is achieved
by a network of processes {representing independent knowledge sources)
that communicate via shared global variables. Each process attempts to
explain a fragment of the data (a region or a few regions in a segmented
scene) in terms of its own limited knowledge. The confidence of an ex-
planation is communicated to other processes attempting to explain over-
lapping fragments, and may cause them to reevaluate their own hypothesis.

‘The confidence adjustment cycle continues until equilibrium is achieved.

' The equilibrium'confidence values-establish a preference ordering for the

alternatlve 1nterpretatlons of each fragment Whlch 1s used to guide a-

'heurlstlc search toward the best solutlon : We congecture that wlth

:,enough knowledge (1 e., oonstraints),_the equlllbrlum state will correspond 1-:

fdlrectly to a solutlon {where one interpretation for each fragment is- hy
far- the best) A competent knowledge-based vision system would thus never

actually need to ‘résort to search.




In Sectién-iI of this report we déﬁeIOp 4 heuristic search élgorifhm,

M*, that employs the equilibrium process described above as an evaluation
function. In Section III, we describe MSYS, which is an efficient serial
}1mplementat10n of the M algorlthm u51ng (51mu1ated) asynchronous parallel
' processes.~ In Section IV we contrast MSYS w1th preV1ous work on scene
:interpretatlon and constraint opt1m1zat10n and suggest appllcat1ons ‘of ‘our
work in both areas

. The work déscribed in this reﬁort waé'mofivéted by'the:work-of Duda
at SRI, Barrow and Turner at Edinburgh, and Yakimovsky and Feldman at
Stanford. Duda®® was concerned with assigning interpretations to regions
in a previously segmented scene. The interpretation process involved a
tree search to determine the set of region interpretations having the
highest joint likelihood. The inefficiencies of tree search limited this
approach to simple scenes with few regions and few interpretations.
Barrow and Turner® developed an elegant generalization of Waltz's
"filtering algorithm, that dramatically reduced the amount of seérch
'required'ta-solve constraint satisfaction problems. Yakimovsky and
Feldman® showed how segmentation and interpretation could be integrated
by using the likelihoods of region interpretations to guide region merging.
In this paper, we describe the combination of these ideas into a system
that can efficiently determine optimal region interpretations'in a
segmented image. This work was begun in 1973; pfeliminary results were

‘previously reported in Reference 4.



IT THE M ALGORITHM

;M# is a heurlstlc search algorlthm 1ntended for multlvarlate opt1m1~
--zatlon problems 1nvolv1ng 1nteract1ng non11near constraints . Problems

are posed by prov1d1ng (1) 4 get of possible assignments for each varlable,
:_w1th associated a pr10r1 llkellhoods and (2) a set of constraints that
determine the a posteriori likelihood of any varlable 8551gnment for a

given instantiation of the remaining variables.

A solution of the prehlem-—also called a terminal state~-~is any
complete instantiation of the variables.' A partial solution is a nonter-
minal state in which at least one variable still has a set of possible
assignments. The objective iz to find the solution in which the combined
a posteriori likelihoods of the instantiated assignments is greatest. M*
_ﬁses a relaxation method to solve simultaneously the set of constraint
equations that determine the overall merit of a solution and also to bound
the potential merits of'partial'selutions. “These latter estimates are
used to guide a conventional A* search algorithm toward the optimal solu~

tion.

*
The M algorithm was initially formulated specifically for scene
interpretation and is described here in those terms. However, it appears
to have broad applicability as a general search algorithm, as is suggested

later in this report.

. The scene interpretation problem can be defined ﬁore formaily as
fdilows' Given a set of regions and corresponding region attributes, a
:generic set of posszble reglon interpretatlons and a get of constraints
. on the " generlc 1nterpretat10ns determine ‘the asszgnment of interpretatlons
e.to reglons that best satlsfies the ‘constraints’ (1 e., that 3551gnment for
..whlch the comblned a. poster1ori llkellhoods of the 1nterpretat10ns 1s:e;
greatest) The search for this optlmal solutlon starts from an 1n1tia1
' state in which all reglons ‘have sets of p0551b1e 1nterpretat10ns 1t  '
 .then proceeds through a serles of part1a11y 1nstantlated states to termlnaIE

states in ‘which- every region has-been-instantlated to a unique interpre--




tation. Regioh intétpretations are instantiated by pinning the likeli-
-hoods of alternative interpretations of the region to zero.

A; State Evaluatlon

Each 1nterpretat1on 1n a termlnal state has a llkellhood that 15'a

'heurlstlc functlon of the 1oca1 reglon attrlbutes and the 11ke11hoods of

'.hthe 1nterpretat1ons asszgned to other reglons : Thls llkellhood tells:

how well ‘the semantic constraints on the 1nterpretat10n ‘are satisfied in’
the current state. " The - preelse form of -a 11ke11hood funct1on need ‘not
concern us at this time, except to note that the likelihood associated
with any particular region interpretation is, in general, a nonlinear
combination of the likelihoods associated with all the other region inter-
pretations. Hence, the determination of likelihoods in a terminal state
may involve the simultaneous solution of a set of nonlinear equations. A
relaxation method, described more fully in Section III.C, is used to ob-

tain a consistent set of likelihood values.

A terminal state will be scored by summing the interpretation likeli-
hoods'over all regions. . The optimization objective, then, is to find the

highest-scorihg terminal state, hopefully without exhaustive enumeration.

To avoid ehumeration,'a heuristic search is desired. A heuristic
searoh estimates the best terminal scores that could be ultimately achieved
. by further instantiating a given partially instantiated state. Search
| then proceeds‘by developing the state with the best potential terminal
score. The best terminal score attainable from a given partially instan-
‘tiated state is estimated by calculating, for each region interpretation
'.remaining in that state, an upper limit on the a posteriori likelihood of
-:that'interpretation-ih ahy-terminal-state' The likelihoods of the most
_llkely 1nterpretation of a11 regions are then summed to provide an upper-

..bound on the best term1na1 score that could be obtalned.w

An upper 11m1t on the 11ke11hood of an 1nterpretat10n is computed by -
"1gnor1ng 1nteract10ns among the constralnts governlng that 11ke11hood and.fﬁ

;  assum1ng that each constraint can be Optlmlzed 1ndepeudent1y “In evalua-f"”.
t1ng the contrlbutlons of each eonstralnt zlt is assumed that other reglons

are instantiated to the.lnterpretatlon possibility that would maximize the

Y I



| likelihood under oonSideration; if'only that one constraint applied. An
f upperbound on the likelihood of the current interpretation is then computed
on the basis of these individually optimized constraints. (FOr-example,

1the 11ke11hood estimate: could be based - on the strength of the least satis~

'.V_fled constralnt )

The llkellhood 11m1ts of all 1nterpretat10ns are, of course intef;:
dependent and should thus be computed 51mu1taneously to obtaln a tlghter
':bound on the overall state score In- other words, ‘the 11kelihood limlt
of each’ 1nterpretat10n should be computed assumlng all other 1nterpretat10n
likelihoods are at their upper limits. A consistent set of likelihood limits
can be obtained with the same relaxation method used earlier to obtain
consistent likelihoods in terminal states by suitably modifying the like-

lihood functions.

Not much can be said regarding either convergence of the relaxation
‘process or the quality of the resulting likelihood estimates without
. knowing more about the functions that compute likelihood. Two important
classes of likelihood functions are those that increase the likelihood of
a congtrained interpretation when-theslikeiihood'of competible*interpre~
tations elsewhere in the image increase, and-thbse.that decrease ‘likelihoods
‘when the likelihood of incompatible interpretations inecrease. If we restrict
ourselves to the former, then the partial derivatlves of any 1nterpretat10n
"likelihood, taken with respect to the likelihood of any other interpretation
likelihood, will be positive. The positive partial derivatives guarantee

‘that the relaxation process will be nonoscillatory: all likelihoods will

 monotonically increase (or decrease) until either a stable state is achieved, .

or the 1imit O (or 1) is reached. Consequently, the process is guaranteed

) to'converge providing a consistent solution existe'in‘that range. When .-

a region is 1nstantiated to- some interpretation, ~the llkellhoods of'alter-_'
' nat;ve 1nterpretat10ns of that reglon are reduced’ to zero. Thls oaﬁ cause
.monotonic reductlons 4in the 11ke11hood estlmates of other reglon 1htefﬁfo4

' 'tatlon,_but noc 1ncreases : Thus, the estlmated score of a partlally 1nstan—t
. tlated state is a strlct upperbound on the score of any termlnal state thatiﬁ'f

can’ be reached along that branch of the search tree.




‘B, Heurlstlc Search

The above results suggest a heuristic search strategy patterned after
:the'A algorithm of Hart, Nilsson and Raphael.S The search proceeds, . at _
-each stage, by restoring the highest scoring partlally instantiated state and
then 1nstant1at1ng the highest likelihood 1nterpretat10n of an uninstantiated

'reglon in a’ new copy of ‘that state

_ Follow1ng the 1nstant1at10n the relaxatlon process 15 repeated tw1ce
"_flrst to update the estlmated llkelihoods ‘and potent1a1 score of the new’ )
'flnstantiated state, and second to update estlmates 1n the orlglnal state Wlth'f.
- the 1nstantiated 1nterpretation removed as a p0551bllity (Effectlvely, the
search is split 1nto 2 -dlsJo1nt branches.) _Both-states are added to a
prioritized list of open states. Search then continues in the highest scoring
state, terminating when the best state, is also a terminal state. 1In Appendix
A it is proved that this algorithm, with the stated restrictions on the formal
likelihood functions will terminate with the optimal set of interpretations

for those constraints.

_ The complete M* algorithm, as actually implemented, is summarized in
.Figure 3. The heart of the algorithm is the use of relaxation methods in
- Steps 0 and 4 to estimate consistent likelihood limits of alternative
interpretationS'of regions.. These estimates are:then'used'to-improve the
._'Order of state selection and instantiation at Steps 1 and 2, respectively.
Step 5 introduces an additional constraint on the solution, namely, that
~all regions have at least one reasonably likelyeinterpretation;:any state
~in which all possibie interpretations of a region receive unacceptably low
likelihoods is abandoned. Step 6 allows the algorithm to terminate early,
whenever all regions in the highest scoring state have one clearly dominant
interpretation (i.e., an inteérpretation at least ten times'as likely ‘as
-any alternative), whether or not the dominant interpretations have been

'formally instantiated.

_ While the ba51c search algorlthm used by M 1s 1nherent1y ser1a1 the
.;relaxatlon process that guldes the search 15 conceptually parallel 'Alli
hp0551b1e 1nterpretat10ns could 1n princ1p1e, be represented by 1ndependent.:;-5
:Processes that 1nteract to achieve equlllbrlum llkellhoods Con51der1ng fﬂ
the hlghly constrazned nature of most scene 1nterpretat10n problems, one
.mlght hope that the equllibrium llkellhoods of correct reglon 1nterpre-ﬁ
‘tations would domlnate those of "incorrect” alternatlve 1nterpretat10ns, _
..prlor to any 1nstant1at10n, and that thzs domlnance would be further en—-li

hanced in the equilibrzum states resultlng from each subsequent correct




o]

(1

—

(2)

(3

{4

s

—

Estéblish consistent iikalihcod limits for all interpretations based on the 'a 'priori likelihcods and constraints.
Record all non-uniquely instantiated regions {on IQUEUE} and save the resultant state {on SQUEUE}*.

Reinstate the currant globally best state {from SQUEUE).
Sslect a reglon interpratation for instantiation {from IQUEUE).

Generate branches corresponding to acceptance and rejection of that instantiation hypothesis, setting up a naw
state for each.

In sach of the new states reevaluate all interpretation likelihcods affected by acceptance {or rajection} of the
hypothesized interpretation; pursue tha consaquences of all resvalustions as far as possible short of further
hypothesizing.

Ewvaluate the global score of each state by summing the likalihoods of the bast interpratation for eeéh region. FAny

- state’in which all possible intarpretations of some region are deleted {or recsive a very low likelihood) is assigned

(e

{7}

{8

a zero global likelihood.

I alf regions in either state are assigned unique interpratations,'tarminate and return that state as the best scana
interpretation. if all regions in both states are uniguely interprated, return the state with the highest scora.

Update the IQUEUE associated with each state and save both states {on SQUEUE) with priority determined by their
raspective scores,

Go 1o {11

"sThe roles of SQUEUE and IQUEUE ars explained In section 1I-O.

FIGURE 3 BEST FIRST SEARCH ALGORITHM -
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: rinetentietien. This expectatioe has“been subStantialiy cenfirméd in "
experimentation with a variety of likelihood functions, including many
'that did not satlsfy the restrictions requlred for formal optlmallty _
'fConsequently, search proceeds toward the correct solutlon Wlth llttle or
no backup and " 1nstant1at10n becomes v1rtua11y a ser1a1 readout of a paral—

ﬂ1e1 search

c. An Example : : .
' _ The M algorlthm is 111ustrated with the same reglons, 1nterpretat10ns,-
and constraints.used in the 1ntroduetory.examp1e (Figures 1 and 2}, but
with likelihoods attached to the interpretations. The a priori interpre-
~tation likelihoods for the example are shown in Figure 4, These values
~are based on the relative areas occupied by each of the alternative inter-
pretations of a region in several training scenes. (The a priori likelihood
of a region interpretation was computed by dividing the amount of area with
that interpretation in the training images, by the sum of the corresponding
areas over all the possible interpretations of that region. WALL was thus

always 2 more 1ikely a priori interpretation than DOOR for vertical:regions.)

" The first step of analysis entails the estimation of a consistent
likelihood limit for each locally possible region interpretation, based
both on the a priori (local) likelihood of that interpretation and on- the
likelihood limits estimated for other semantically constrained interpre-
tations in the scene. The likelihood limit of each interpretation, or just
iikelihood for short, is computed by a function, hereafter known as a like- N
iihood function. Likelihcod functions typically eonsist of a combination
{e.g., a product) of termg--cne for each constraint applicable to that
interpretation. Each term raises or lowers the likelihood of the inter~
-.pretetion,'depending'on the type of cdﬁstreiﬁt'enﬂ'the'likelihodds'df the
.reg1on 1nterpretatione that satisfy the ‘constraint in ‘the' current scene..

.:3e(In Section III B, we discuss in detail the computation of 11ke1ihoods )

Two basmc relatlonal constralnts are used 1n our present example
'adJacency and homogenelty. Both constra1nts reduce the llkellhood of
f'_'constrained 1nterpretat10ns due to the presence of 1ncompat1b1e 1nterpre--

tations elsewhere in the- 1mage

11
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| The relatiomal constraint (NOT*(ADJACENT PICTURE DOOR)) on Pictures
 (see Flgure 2) introduces ‘a term in the likelihood function of reglon- ’

. anterpretatlon (PICTURE PIC), reduczng the 11ke11hood that reg:on PIC is .
_PICTURE by an amount prcportlonal to the 11ke11hood that adgacent reg1ons 'f
.'LWALL and RWALL are thought ‘to’ be doors._ Conversely, terms are’ 1ncluded b

]fln the 11ke11hood functlons of the 1nterpretat10ns (DOOR LWALL) and (DOOR_;-

;sRWALL), reducing thelr 11ke11hoods prOportlcnal to the llkelihood that _
'ireglon PIC is PICTURE.- A loose definitlon of adgacency has been adopted 8

so thls constralnt could be used in a partlally segmented scene .(Two-

: regions are'adjacent if the line connecting their centers does not pass
through a third region.)

_ Homogeneity constraints reQuire.thaf all regions with a specified
interpretation have approximately the same brightness. The likelihood of
a constrained interpretation is therefore reduced in proportion to the
maximum likelihood that any nonhomogeneous region also has that interpre~
~tation. . In Figure- 4 for example, the 11ke11hood that a light colored .

_reglon such as LWALL or ‘RWALL 1is WALL must ‘he reduced in proportlon to

: the likelihood " that any dark colored reglon, such as DR, . PIC, or CBACK,

is WALL “and vice versa. It ‘does not matter whether WALL is 11ght or

.; dark-~on1y that dark- and 11ght—colored-regions-cannot with high likeli-

hood sinultaneously be.interpreted as WALL. .

_ _RbOMbARTITION, as described above,’ ‘S'a.special'case'of'fhe'hbmogeneity
constraint. The brightnesses of regions admitting the interpretatlons

- WALL or DOOR (i.e., surfaces that "partition rooms’ ) are required to be
" similar to the brightness at the top of the image vertlcally above the '
:reglons center of mass.’ Region 1nterpretat10ns that fail ‘this test are -

-reJected by reducing thelr a’ przori likellhoods to zero. The llkellhoods

_'cf 1nterpretatzons that pass are unaffected This constraint ‘had the effect

'of elzmlnating DOOR and WALL as posslble 1nterpretatlons of vert1cally f”
 nor1ented reglons w1th 1nadequate vert1ca1 extent spec1flcally from the

' eireglons CBACK, PIC, and WBSKT

The interpretatlon 1ikelihoods resultlng from an 1n1t1a1 relaxat1on

_'of the 1ike11hood functlons sketched above are shown in Flgure 5 In”'

_that process, DOOR and WALL were elimlnated by the constralnt ROOMPARTITION,'“';
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as p0551b1e 1nterpretat10ns of regions CBACK, PIC and WBSKT, Iearing

'freglon PIC with the unique 1nterpretat10n of PICTURE. The latter result -

"depressed ‘the likelihood that adgacent reglons LWALL or RWALL were DOOR

.jwhlch in turn’ enhanced the likelihood that the dark reglon DR was a door

'r'581gn1f1cant1y, the correct 1nterpretat10n of every reglon has acqulred a

f.f11ke11hood hlgher than that of any alternatlve 1nterpretat10n for the - 
:jﬁreglcn S : . . S _ . :
S The final stage of ana1y31s 1nvolves search1ng fcr a set of unique )
.'_1nterpretatzons with the hlghest 301nt llkelihood. ' The only remalnlng
':amblgulty involves the 1nterpretat10n of reg1ons DR, LWALL and RWALL, all
of which still admit both DOOR and WALL as possibilities. Homogenelty
_conatraints force LWALL and RWALL, both light—colcred regioﬁs, to take

the same interpretation (either WALL or DOOR) and DR, a dark-colored
region, to take the opposite interpretation. This bagic ambiguity is
resolved by the adjacency constraint omn pictures, which leads to a contra~

' dzctlon when : elther LWALL or RWALL is’ lnstantlated to DOOR.

The search prcceeded w1thout need for backup, the relatlve 11kelihoods
rof correct 1nterpretat10ns increasing mcnotcnically ‘with each successive -
correct 1nstant1at10n The flnal interpretatlon 11k811h00ds for the re= -
zglons in- Figure 4 are presented in Figure 6. A detalled'trace-cf the
:-reasonlng showing -all instantiations and resultiﬁg reevalﬁaticns appears

in Appendix'B;
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- A _ T I R -
11T MSYS--AN IMPRLEMENTATION OF M FOR SCENE INTERPRETATION

MSYS 1s an operatlonal system coded 1n INTERLISP that performs scene
1nterpretation u51ng the M algorlthm The system conszsts of four magor
components ' AR R

A facillty for def:ning reg;ons in a scene and for measuring
their plctorial attributes. R :

+ An- inltiallzation procedure that compiles, for each p0551ble
region interpretation, a function that estimates the maximum
likelihood of that interpretation, based on the maximum estimated

. 1ikelihoods of the other region interpretations.

+ A relaxation mechanism for determining consistent likelihood
estimates simultaneously for all the possible region interpre-
tations.

« A mechanism for performing a backtrack search.

A.  Region Definition and Description

Region definition and attribute measurement are dome in MSYS-by'a
._previously devélopéd interactive55céne°intérpretation'syétéh'knbwn'as
_-ISIS.’HH8 Reglons can be defined in ISIS manually, by outlinlng them on
a display with a cursor; semiautomatically, by providing ‘a2 crude outline
which the system then refines; or fully automatieally, by calllng a region

growing program similar to that employed by Yakimovsky.®

A variety of INTERLISP functions are available for asséséing the
_attributes of defined regiong. These attributes include statistics on
brightness, hué; and saturation, as well as height and orientation when

" .range data is available. . Functions also exist for accessing the polygonal

" ‘boundaries of regions in both (2-D) image and (3—D) world coordindtes.

The interactive features ‘of ISIS proved useful in developing classaflcatlon-
ffcrlterla ‘tor asslgnlng local 1nterpretat1ons, and in dev151ng procedures

for test1ng spatlal relatlons between reglons

o B Compilat1on of leellhood Functlons ::f'5'f”r

Before describlng the comp1lat10n of likelihood functlons, we dlgress‘f;: B

'“fbrlefly to- descrIbe the structure of these functlons and their numerlcal

evaluatlon
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1}' Strueture of Likelihood“Funetions

The -1ikelihood of a region'interpretation has been described as
.333 heurlstlc finction ‘of local reglon attr1butes, reglon relatlons,;and
_:the 11ke11hoods of other reglon 1nterpretat10ns ' A prototyplcal 11ke11--
'fhood functlon 1s 111ustrated ‘in Flgure 7 Here (CHAIRSEAT RS), _
't.llkelihood that aeglon R3 is CHAIRSEAT is represented as a conguactlon of
_7;three 1ndependent terms The fzrst term is the ‘a pr10r1 11ke11hood (0 8)5
- ‘that Reglon R3 is CHAIRSEAT ‘based .on the attrlbutes of ‘that reglon, such7?
'as helght and surface orlentatlon . The other two terms express, respectlvely,
the"degree to which each of the generic ebnstraints'on the interpretatlon
_CHAIRSEAT--namely (ABOVE CHAIRSEAT CHAIRLEG) and (ABOVE CHAIRBACK CHAIR-
SEAT--are satisfied by the interpretation possibilities of the other regiohs.

The likelihood expression in Figure 7 can be interpreted in the

same way as a LISP function; each subeXpression enclosed in parentheses

is a function returning a real value, which is then used in evaluating the
Superexpression in"which'the'subexpression-appearS' iTerms.representing
reglon 1nterpretations,_such as (CHAIRLEG R2}, evaluate to the ‘the current _
.11ke11hood of that 1nterpretation, wh11e terms representzng reg:on relatlons,
e.g., (ABOVE R4 'R3) express the degree to which two " regions satisfy the
‘specified relation, based on the relative coordinates of the1r respectlve
dboundary extremes. Both likelihoods and relations are defined the range
- {0,1). The functions ANb* and OR* take real valued arguments on the range

' (0,1) and return values in the same interval. They should thus be consid-
fered as general functions for combining evidence rather than as conventional
‘logical conjunctions and disjunctions. The nature of these evidence com-
‘bining functions will be discussed in Section III B.2./ Functional definitions

:1for some ‘common region relatione are glven ‘in Appendlx C

Terms expresszng the satlsfactlon of a relatlonal constralnt such
:as (ABOVE CHAIRBACK CHAIRSEAT) follow a standard format Each constralnt

'.1s SUpported (1 e. vy satlsfled) by a dlsjunctlon, OR* of all the potent1a1

':]Jways it can be satlsfled 1n the 1mage A constralnt is potentlally Satls-.dn.

qifled by a reglon admittlng the required 1nterpretat10n (e g., CHAIRBACK)

"jand havxng the spec1f1ed spatlal relatlonshlp with the constralned regzon

 (e g. ,_ABOVE) The region interpretatlons (R4 CHAIRBACK) and (R5 CHAIRBACK),-'
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SA-1530-59

POSSIBLE REGION INTERPRETATIONS

POSSIBLE INTERPRETATIONS MSYS
' REGION  AND A PRIORI LIKELIHOOD REPRESENTATION
‘A1 CHAIRLEG = 08 {CHAIRLEG R1)
- TABLELEG 02 - _{TABLELEG R1}-
R2  CHAIRLEG - 07 {CHAIRLEG R2)
" TABLELEG 03 . . {TABLELEG R2)
R3 CHAIRSEAT 08 . (CHAIRSEAT R3}
TABLETOP 0.2 - (TABLETOP R3)
R4 CHAIRBACK 0.25 " {CHAIRBACK R4}
. WALL 0.75 WALL R4)
RS CHAIRBACK 025 {CHAIRBACK RS}
WALL 0.75 {WALL RS5)

" CONSTRAINTS ON CHAIRSEAT
{ABOVE CHAIRBACK CHAIRSEAT)
{ABOVE CHAIRSEAT CHAIRLEG)

' LIKELIHOOD PROCEDURE FOR {CHAIRSEAT hs)' o
{AND' o8 i |
(on- (AND‘ {ABOVE R, R,) (CHAIRLEG.'ﬁéJl. :
(AND‘ {ABOVE n n 3y (CHA!RLEG R, m
4on- (AND' {ABOVE H R 3 (CHA!RBACK R n

o _'(AND' (ABOVE Rg Ry lCHAIRBACK R )))}

FIGURE 7 FORMATION OF A PHOCEDURE FOR COMPUTING THE LIKELIHOOD OF A S

HEG]ON iNTERPRETATlON
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'_for instenoe,-brovide poteetial.setisfaction'of the constraint (ABOVE

* CHAIRBACK CHAIRSEAT) in Figure 7. The degree of satigfaction provided-by'
“each potentlal supportlng region 1nterpretat1on 15 represented by the
:'oongunctlon (AND*) of the 1nterpretat10n llkellhood and the degree to: whlch:
fﬁthe reglon satlsfles the stlpulated relation w1th ‘the constra1ned reglon _

' For 1nstance, (AND* (AHOVE R4 RS) (CHAIRBACK R4)) expresses the degree to s
"whi¢h ‘the’ reglon 1nterpretat10n (CHAIRBACK R4) satisfies ‘the- oonstralnt o
::(ABOVE CHAIRBACK CHAIRSEAT) 1mposed on region 1nterpretat10n (CHAIRSEAT Rsi.'

_ Negated relatlons such as (NOT (ADJACENT PICTURE DOOR)) are;-'-
: represented by first forming the disjunction of conjuncts that expresses

~ support for the basic constituent relation, im this case (ADJACENT PICTURE
DOOR). The resulting disjunction is then embedded in a negated clause of
the form (NOT* (OR* - -=)}). 1In a likelihood function, this term has the
desired effect of penalizing an interpretation to the extent that the for-

.bidden relation is satisfied.

Constraints that do not fit the format of binary relations are
-:represeﬁted within-a.likelihood'funotion-by support terms that are arbi-

trary functions of region attributes, relatiohs,'and-interpretetion'likeé-'
1lihoods. For example, the support term representing the room scene constraint
(HOMOGENEO&S DOOR) ensured that two regions of different brightness could

not be simulteﬁeously interpreted as DOOR with high likelihood.

The procedures in PFigure 8 are the likelihood functions that
Were used in the room scene example. The listing omits funections of
unconstrained interpretations, such as FLOOR, whose likelihoods always
remain at their a priori values.
_ .The'likeiithdffﬁnction for region iﬁterpretetionftbobR‘LWALL);r
1iné 57 in Flgure 8, illustrates. both a'negated-relationfandfa-nonreiationaz'*
'ﬁconstralnt ThlS 11k911h00d functlon contalns three terms, the f1rst be1ng
_Z:the 4 pr10r1 11ke11hood 0 227 The second term, (NOT* (OR* (DOOR DR)
e:?(DOOR PIC) (DOOR CBACK) (DOOR WBSKT))), expresses support for the nonstandard' _
tfconstralnt (HOMOGENEOUS DOOR) This term 15 the negatﬂon of a dlsaunctlon:f;_'

':-:contalning all region 1nterpretat10ns 1n whlch the 1nterpretatlon DOOR :

is palred with a- region whose brightness dlffers ‘from that of the c0nstrained'
“'reglon (LWALL).by more-than 10%.- Its effect is to reduce the’ 11ke11hood
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Ty <TEQENBAUM>BAYES;RPT;2 gWEb-4-FEBJ76 11538 . page 2

*oboo:[__VARiABLE--(wnsraBASKET wasxr) .

07700002 . VALUES - 012 00

: 300003_'.paoczounzzf : '

00004 o (wnstzansxzr WBSKT)

_ 09008 - :RELATIVEs- _ : T A SR o I
00006 _ _ ((oprron tWASTEBASKET-wBSKT} (DONR WBSKT) (WALL WBSKT)))
00007 o
aoooe - : : _

00009 VARIABLE:'(DOOR wasxr;
40010 VALUE: 0.0
00011 PROCEDURE ;
00012 {DOOR WBSKT)
00013  RELATIVES: .. _ _ :
00014 ((OPTION (WASTEBASKET WHBSKT) (DOUR WBSKT) (WALL WBSKT)))
00015 ({OR+ {DODR DR) (DOOR PIC) (DOOR CBACK) (DOOR WBSKT)}}
00016
00017
00018  VARIABLE: (WALL WBSKT)
00019  VALUE: 0,0
.00020. PROCEDURE: .
00023 . {WALL NBSKT) _
00022 HRELATIVES: . _ ' :
00023 o ({OPTION (dASTEBASKET'HBSKT)](DUDR WBBKT)} (WALL WBSKT)))
00024 . . . ((ORe# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT)))
00025 T _
00028 - e :
‘00027 - VARIABLE: (DOCR RWALL)
100028  VALUE: «123 _
00029  PROCEDURE: _ L -
00030 {AND® ,227 (AND® (NQT#» {OR* (DOOR DR)
00031 (DODR PIC)
00032 (DOOR CBACK)
00033 o : . {DOOR WBSKT)))
00034 S {NOTe (AND# (ADJ RWALL PIQ)
00035 _ : {PICTURE pIc]
00036 . RELATIVES:
00037 {{OPTION (DOOR RWALL) {HALL RWALLYY)
00038 R ((AND# {ADJ RWALL PIC) (DOOR RWALL)))
00039 . : " {{OR#* (DDOR LWALL) (DOOR RWALL)))
100040 o _ o S
o004t - '
00042 ~ VARIABLE: (WALL nnALL)
00043 - VALUE: .. - 628 = . _
00044 - PROCEDURE: .. - _
S 00048 o {AND* .773 (NDT! {oai (wALL DR} o
cLoopo0de . T _ (WALLPICY.
S 111+ ¥ gi- _-' .-jj --~ﬂ;;. C U CWALL CBACK)
©00048 f ,_“-aﬂ" - i_-jja (WALL wssxrl
_700049'-jRELATIVEs:.::
00080 e ((OPTION tvnon RwALL) (wALL RNALL)))
. 100051 .:f:. ((URG (wALL LWALL) (dALL RNALL)))

FIGURE 8 DATABASE AT EQUILIBRIUM PFIIOR TO SEARCH
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; <TENENBAUMSBAYES.RPT;2 WED 4-FEB-76 1:53PM = Page 211 -

00052 i

00053 oo
00054 ~ VARIABLE: (DOOR LWALL)
00055  VALUE: . ,.123

" 00056 - PROCEDURE: "

Q0057 : _ [AND! .227 (ANDn (NuTi (OR: (DDDR nn)
00058 - o {DDOR PIC) _
Q0059 ’ (DOOR CBACK)
00060 (DODR WRSXT)))
00061 _ {NOT» (AND# (ADJ LWALL PIC)
00062 . : _ (PICTURE PIC)
00063 RELATIVES!:

00064 ((OPTION (DOOR LWALL) (WALL LWALL)))

N0065 ( (AND# (ADJ LWALL P1C) (DOOR LWALL)))}
o0neé {(OR# (DOOR LWALL) (DDOR RWALL))}

00067

00068

00069 VARIABLE: (WALL L4ALL)

00070 VALUE: 628

00071 PROCEDURE; .

non72 : [AND®* ,773 {NOT# (DR« (WALL DR) :

00073 ' {WALL PICHY

00074 S ) . (WALL CBACK)

00075 LT . _ S (WALL WBSKTI

. '00076  RELATIVES: - R o _

- 00077 ((OPTIDN (DOOR LWALL) ‘{(WALL LWALL))Y)

00078 : ((OR# (WALL LWALL) (WALL RwALL)))

- 00079

00080 - _
00083  VARIABLE: (DOUR CBACK)

- Q0082 VALUE: 0.0

00083 PROCEDURE:

00084 (DOOR CBACK)

00095  RELATIVES: ' o S :

00086 ((OPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CRACK)))
00087 . ((ORs (DOUR DR) (DOOR PIC) (DOOR CBACK) (DOOR WASKT)))
‘000AA - _

- 00089 ;
00090 . VAPTABLE: (CHAIRBACK CBACK)
00091  VALUE: . ail

00092  PRUCEDURE: -

00093 - (CHAIRBACK cnacx) S

00094 .PELATIVES: - '

00095 - S {(OPTIUN {DOOR cancx) (CHAIRBACK CBACK) (WALL CBACK)))-'

. 00096

Cp0ngT

00099 VALUE:- 0,0 -

i ooooa’.fvnﬁxnsbs: (WALL cancx)
© 00100 - PROCEDURE: = R RTERT
00101 . (WALL CBACK) .
00102 .:nsnnmxvzs- o et L

FIGURE 8 DATABASE AT EQU[L!BR!UM PR!OH TO SEARCH (Co.ntinu.e.d') -

22



'y CTENENBAUMSBAYES ,RPT;2  WED 4-FEB=76 1753PM . " Page 2:2

06103 . . ((OPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))

00104 L ¢ (OR® (WALL DR} (WALL PIC) (WALL CBACK) {WALL WBSKT)))
- 00105 - ; B o . ) )
00107 . VARIABLE: (PICTURE PIC)
00108 VALUE: .  ,251. _ _
‘00109  “PRNDCEDURE: .- ’ T T I
00110 {AND# .3 (NOT* {OR#« (AND» {ADJ RWALL PIC)
00111 (DOOR RWALL))
00112 (AND» {(ADJ LWALL PIC)
00113 (DOOR LWALL]
00114 RELATIVES:
00115 ((OPTION (PICTURE PIC) (DOQR PIC) (WALL PIC)))
001le ((AND#* (ADJ RWALL PICY (PICTURE PiIC}))
00117 ( (AND# (ADJ LWALL PIC) (PICTURE PIC)))
Qo118
00119
00120 VARIABLE: (DOOR PIC)
00121 VALUE: 0.0
© 00122 PROCEDURE:
00123 (DOOR PIC)
00124 PELATIVES:
001258 ((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC}))
00126 ((ORs (DOOR DR) (DOOR PIC)Y (DOOR CRACK) (DOOR WRSKT)))
00127 _
00128 o o
00129 VARIABLE: (WALL PIC)
00130 VALUE!® 0.0
00131 PROCEDURE ¢
00132 {WALL PIC)
00133 PELATIVES: . _ o
00134 {(OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC))) . :
00135 ({OR+ (WALL DR) (WALL PIC) ({WALL CBACK) (WALL WBSKT)))
00136
00137
00138 VARIABLE: (DOCR DR)
00139 VALUE: 178
00140 PROCEDURE:
00141 (AND* ,227 (ANDG {NOT# (OR* (DOOR LWALL)
00142 {DOOR RWALL)Y))
00143 S (NDT! 0.0}3)
;00144 RELATIVES:
00145 ) ((DPTION tDUDR DHJ (NALL DRYYY
00146 L ((OR# (DOOR DR) (DOOR PIC) (DOQP CEACK) (DDOR uasxr)))
C 00147 _
00148 Sl .
00149 ‘VARIABLE?® (HALL DR)
/00150 : - VALUE:: - <142 . _ N _
:DDISI."PRDCEDURE:- ' o
-100152',._ : R {ANDi .773 cMGT* (onu (wALL LwALLJ -
. 00153 . _ By (NALL RﬂnLLJ _
;00154 ELATIVFs-"i' : o _
SR 113 £-1- B R ((nprxou (ooon DR) (wALL DR)))-- e ' :
00156 {fUR# (HALL DR) (WALL PIC) twALL CBACK) (ﬂALL hBSKT}))

FIGURE 8 DATABASE AT Eomusmumpmoa 'To SEARCH (Co'n'clude'd) o

23



_that the bright region LWALL'is door by an'aﬁocﬁt oroportionai to fhe
1ikelihood that any of the dark regions DR, PIC, or CBACK are thOught to
. be door. Incidentally, an identical negéted'disjuﬁtion'suppOrts the con-
jVstraint (HOMOGENEOUS DOOR) in the likelihood function of the region . -
'finterpretation (DOOR RWALL), since regions RWALL and 'ILWALL “have s1m11ar

”_brightnesses :

_ The third term: (NOT* (AND* (ADJ LWALL PIC)(PICTURE PIC))), Sup4-'
-_ports the coustraint (NOT (ADJACENT PICTURE DOOR)) “This term - reduces the
likelihood that region LWALL has ‘the 1nterpretation DOOR, prOportional'to
the likelihood that region PIC has interpretation PICTURE and the degree

to which regions PIC and LWALL are adjacent. The other likelihood functions
shown in Figure 8 are composed of similar terms supporting applicable

homogeneity or adjacency constraints.

2. Numerical Evaluation of Likelihoods

o The numerical evaluation of likelihood functions requires that
conventions for combining evidence be established. Two simple schemes
were considered. The first scheme is a set theoretic formulation that
ireats interpretation likelihoods and region'relation values ‘as independent
probabiiities. A conjunction of likeliloods evaiuaies to the product of
those likelihoods, the negation of a likelihood to one minus the likelihood,
and a disjunctionof likelihoods to one minus a product of the negations of

‘the likelihoods.

_ The second scheme treats likelihood functions as definitions
‘of fuzzy sets. Following Zadeh's conventionss,ia conjunction of likeli-
hoods evaiuefes to the minimum 1ikelihood,'a disjuhction of likelihoods
evaluates to the maximum'likelihood, and a hégated-likelihodd evaluates
to one minus the 11ke11hood ' ' o

A few qualitative remarks can be made contrasting the evaluation
_iof likelihood functions u51ng the set theoretic and fuzzy set formulations

f:81nce 11ke11hood functions are composed of conjunctions of constraint terms,'

-';the likelihood of an 1nterpretation is 11mited 1n both formulations, by itsic.o'*'

"least satisfied constraint In particular,'an interpretation can effectively
be ruled out (1.e., its likelihood forced to’ zero) by a 81ng1e badly

‘violated constraint.: The set’ theoretlc approach penalizes the likelihood
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of an intefpretéfion that is supporfed by a large hﬁmbér 6f moderafely
satisfied constraints, while the fuzzy set approach does not. Each con-
:-straint term in a likelihood function is typically represented by a
disjunctibntdf terms expressing -alternative ways of satisfying #he constraint.
" The streﬁgth bf'a cbﬁstfaint in the'fuzzy set formulation will thus equal
 the support prov1ded hy the 1nd1v1dua1 1nterpretat10n that best satlsfles
'lthe gonstralnt. The set theoretlc approach on the ‘other hand ylelds ‘a -
strehg£h f6r'constra1nts that-ls-strlctly greater than_the support prov1déd”'
by any indiviﬁuél'interpretation. This characteristic leads to overesti-
mates of terminal likelihoods, which is consistent with requirements for

optimal search stated earlier.

A number of more elaborate ways for summing evidence have appeared
recently in the literatures of scene analysis, speech understanding, and
Qiagnosisq'la. Yakimovsky's” Bayesian formulation of interpretation
probabilities is theoretically pleasing but suffers from the difficulty
of obtaining realistic conditional probabilities in complex scene domains.
 Barrow and Popplestone® describe an ad hoc method of evaluating conjunctions
.of constraints that is based on the number of constraints that are violated
.and the seriousness of the violation. Their evaluation gives preference
to interpretations with many partially satisfied comnstraints over inter-

pretations with fewer constraints that are more completely satisfied.

Shortliffe® described a quantification of inexact reasoning in
medical diagnosis in terms of confirmation theory. His formulation has
‘many desirable features as a basis for evaluating competing hypotheses in
‘scene interpretation. Individual constraints make independent contributions
‘to belief in a hypothesis and therefore can be acquired incrementally. _

- Moreover, since evidence for and against a hypothesis is treated independéntly,-
R hypotheses are not penalized for missing features (which may be opt:onal or
'-occluded) or for a 1arge ‘number of partlally satisfied constralnts in ‘the -
 absence of spec1f1c contradlctory evidence: Duda12 ‘has’ recently dev1sed a _
 new Bayesman approach to the comb1nat1on ‘of ev1dence that appears to ellmlnate

sote potentlal dlscont1nu1t1es in Shortllffe s 11kellh00d computatlons ;A:

" more sophlstlcated approach may ‘be adopted if future experlments prove’ our

simple - set_theoretlc approach 1nadequate. . So far, the choice of’ evaluatlon '

does not appear to be critieal. -
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3. ' Compilation Process

_ Every region interpretation in the image'is répreééntéd by its
.,OWﬁ iikeiihood function. The process of compiling a likelihood function
for a'regiOn inferpretatibn begins by retrieving the applicable ‘generic
::cdnStrainté A support term is. formuluted for each appllcable constralnt
| expr9551ng -how well that constralnt is satlsfled by the other reglon " 
1nterpretat10ns in the 1mage These support terms are then comblned w1th
“the a priori llkellhood in a function that expresses an upper bound on the

overall likelihood of the interpretation,

Formulation of the support term for a constraint involveé séarching
the image to determine all region interpretations that could potentially
satisfy the constraint in a terminal state. Details of the search vary,
however, depending on the type of constraint. For standard relational
constraints, all regions admitting the required interpretations are tested
_to determine whether they also obey the required region relation {(e.g.,

.above and édjacent) with respect to the constrained region. Region inter-
pretations that pass* are represented in the support term for the constraint

by a conjunction of the interpretation likelihood and the strength with

" which the region relations was satisfied.

Support terms for constraints that do not fit the standard
relational format are compiled by special procedures fhat are provided for
each such constraint. These support gathering procedures are called with
the constrained region interpretation as an argument and feturn a support
term that is inserted directly into the top-level conjunction of the like-
lihood function. Such a procedure was invoked; for example, in compiling
._the support term for the constraint (HOMOGENEOUS DOOR) in the likelihood
function of the region interpretation (DOOR LWALL) . ThiS'pfocedure first
retrieves all reglon 1nterpretat1ons in the current 1mage contaznlng the

constrained 1nterpretat10n, in this" example (DOOR LWALL), (DOOR DR)

_ As an’ expedlent a reglon 1nterpretat10n is only con31dered as potent1a1
‘support for a constraint if ‘the strength of ‘the’ correspondlng reglon g '
-relatmon, whzch is statlc exceeds 0.1, = e o
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(DOOR PIC),-ahd (DOOR RWALL). The procedure then forms a negated diéjuhdtion
containing the subset of these whose regions differ in brightness from that

~ of the constrained region (LWALL) by more than 10%.

o L The support term for the constralnt (HOMOGENEOUS WALL) in the -
: gllkellhood functlon of (WALL LWALL), 11ne 72 in Flgure 8 ig’ compiled- u51ng
“the same - procedure,-whlch ‘now operates by retrlev1ng all region 1nterpretat10ns
'econtalnlng the constrained 1nterpretat10n WALL '
Compound'constraints;'Such as-(NOT* (ADJACENT PICTURE WALLi) and
(OR* (AbJACENT PICTURE WALL) (ADJACENT PICTURE FRAME)) are first parsed into
their elementary constituent constraints. Support terms are obtained inde-
pendently for each constituent. These support terms are then inserted back
into the original compound constraint in place of the corresponding constituent.
The resulting compound term expresses the support that exists for the ori-
ginal compound constraint. For example, consider the constraint (NOT*
.(ADJACENT PICTURE DOOR)) applied to the region interpretation (DOOR RWALL)
in Figure 4. The term (AND* (ADJACENT PIC RWALL) (PICTURE PIC)) was first
.formulated to represent support for the constituent (ADJACENT PICTURE DCOR} .
(In this example, region interpretation (PICTURE PIC) was the sole source
of support.) The support term then replaced the constituent in the original
compound constraint, forming the compound expression (NOT* (AND* (ADJACENT
PIC RWALL) (PICTURE PIC))}). This expression appears in the likelihood function
of region interpretation (DOOR RWALL) at line 34 of Figure 8.

If any constraint has no support among the other region inter-
pretations, the likelihood of the constrained interpretation is pinned
at zero. Alternatively, a compilation procedure could search the image for a
.new region with the needed interpretation, using technidues for goal directed

search, such as those developed by Garveylid.

. Relaxat10n~—The XDEMON System o

The llkelihood functlons must be evaluated 51mu1taneously to determlne'

'_con51stent 11ke11hood estlmates for all 1nterpretat10ns Prev1ously, 1t was

I ;_remarked that evaluat1on could proceed in a hlghly parallel manner, with

each 1ike11hood funct1on represented by an independent process. - This parallel'

approach ‘has heen efflclently 51mulated on a serial computer using asynchronous
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.parallel processés that interact'through a global data base. A set of
‘LISP function, known collectively as the system XDEMON, have been developed
to facilitate creation of this data base for particular constraint problems.

These functions ‘are documented in Appendix D.

The global data base con51sts 'of variables,’ each of whlch has a value
'énd-an associated'process that computes the value in terms of the current
'Qéluésfdf other variables. Each variable alsoc has a list of relatéd vari-
‘ables that.use'the-pfeSent'#ériabie as input. When the cumulative change
~in the value of a variable exceeds a threshold, its related variables are
reevaluated by adding their processes to a set of jobs tc be run. Running
a process can change the value of a related variable, causing additional

processes to be activated. Execution teiminates when the job set is empty.

For scene interpretation, each possible region interpretation is
répresented in the data base (1) by a variable of the form (CHAIRBACK R4)
whose.value is the current likelihood of that interpretation, and (2) by
én'associated procesgs for computing that likelihood value based on the cur-
rent likelihood values.of other region interpretations. Likelihood evaluation
is initiated by loading the job set with the processes of interpretations
for which updated likelihoods are required. fTo obtain an initial set of
consistent likelihoods the job set is loaded with the processes of every
' region interpretation. To pursue the consequences of a particular instan-
tiation on likelihoods previocusly in equilibrium, the job set is loaded .
with the processes of the variables on the related variable list of the

. instantiated variable.

For efficiency, the processes that compute likelihoods are decomposed

: hierarchically into elementary s-expregsions, each canonically represented

1by an XDEMON variable. Figure 9 illustrates this decomposition for the
likelihood function described in Figure 7. . Superexpression variﬁbles'aré'
placed on the related variable 1ists of variables representing subéxpreSSiOns}
At the lbweSt level, 5sﬁﬁéxpression Variabies'repreSenting-fégion.relafidns
:(efg', (ABOVE Rl R2)) and reglon interpretatlons (e.g., (CHAiRSEAT Rl))"
'become relatives of atomlc variables representlng regions (e g . R3) and _
1nterpretat10ns (e. g., CHAIRSEAT) The value of ‘an atomic reglon varlable.

'is the list of bdundary coordinates of that region. If this value were
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aitered (e.g., by merging or splitting the region), then all region rela-
tions and region interpretation variables in which the altered region

_Variable appeared would be reevaluated.

The above decomposition increases efficiency by terminating reevaluation
'af;fhe.loweef level"shbexpreséion'whdse'value is unchanged by a-triggering
1,event Suppose for example, that the current strength of the reglon

.relatlon (ABOVE R3 R2) in Flgure ‘9 was 0.4 aiid that the llkellhood of reglon'
'_1nterpretat1on (CHAIRLEG R2) was 0.5. Assuming fuzzy logic, the superex-
pression (ANDx (ABOVE R3 R2) (CHAIRLEG R2)) in the lower left corner of
Figure 9 would then evaluate to 0.4 (i.e., the minimum of 0.4 and 0.5).
A jump in the likelihood of (CHAIRLEG R2) from 0.5 to 0.6 would trigger
reevaluation of the above superexpression. However, its value would be unchenged
and the reevaluation process would immediately terminate. The canonical representa-
tion of subexpressions in the decomposition further minimizes redundant
computation in cases where a subexzpression is common to several superexpres-—
-sions. In Figure 8, for example, the same support term for the constraint
.(HOMOGENEOUS WALL) appears at lines 45 and 72 in the likelihood functions
of the interpretations (WALL LWALL) and (WALL RWALL), respectively. The
same XDEMON variable rebrésents this term in the decomposed likelihood
functions of both interpretations. This variable is reevaluated only once
when the likelihood of a supporting region interpretation e.g., (WALL DR)

changes.

The alternative interpretations of a given region are associated by
canonic variables of the form (GPTION (CHAIRBACK R4) (WALL R4)), whiech
evaluates to the current number of interpretations of the region whose
likelihood exceeds 0.l. Option variables are useful in situations where
fhe competing interpretations must be manipulated as a set, such as.con~
-_’sfraints-requiring that two regions take the same (unspecified) interpretation
eor'ndfﬁalizationsereQuiring-that the'likeiihoeds'of.alternative-interpretétioﬁs' f
'sumstb'l'O' Since optibh variables are reevaluated when any interpretatibn' _
'_fllkellhood of thelr assoc1ated reglon is- altered, many 1mportant admlnlstratlve
-fdetails of a search ‘can be’ handled eff1c1ent1y as.51de effects’ of the proceSS'

'(see Section TII. D) “The AND/OR/OPTION Structure of the resultlng global
data base (Figure 8) is remarkably 51mllar to that adopted independently
' for the HEARSAY-I11 ‘Speech Understandlng System
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D. Search _
Occasionally, the relaxation process will terminate with one highly

likely interpretation for each region. More oiten, the interpretation of
- one Or mofe'reéiOns-remains'embiguous. A search is then needed to deter-
mine which of the possible inteérpretations maximize the combined likelihood
of the whole scene. |

"Tﬁereafch'aIgefithﬁ-oﬁtiiﬁed in'Figﬁre.3 is implemeﬁted using a
-. géheré1'state¥saﬁing mechanism that allows a current computational’ context
to be reinstated at a future time. The search context for M* consists of
.the complete network of variables described in Section III-C plus additional
"state" variables that characterize each search state. These include a
score, a list of previous region instantiations, and a priority queue of
instantiations yet to be tried (IQUEUE). Search states in various stages
of ingtantiation are inserted onto a priority queue of states (SQUEUE),
ordered by score, A search proceeds by reinstating the highest scoring
state on SQUEUE, selecting the best instantiation from the current IQUEUE,
then reevaluating the network of variables in the new context created by
that instantiation.  An acceptable solution terminates the search. Other-
- wise, IQUEUE is updated and the resulting state iz added to SQUEUE. The

search then continues in the current highest scoring state.

IQUEUE contains the OPTION variables for all ambiguously interpreted
regions remaining in a state, ordered by the likelihood of their most
probable interpretation (highest first). An interpretation is hypothesized
{Step 2 in Figure 3) by popping the top OPTION variable from IQUEUE and
instantiating the corresponding region to its most probable interpretation.
This best first instantiation policy was borrowed from conventional A*

.type search algorithms and proved adequate for our simple experiments.
Hewever, the choice of instantiation in a constraint satisfaction algorithm

" such as M should also take into account the likelihood that the instan-
tiation will 1ead ‘to a- qulck contradlctzon, thereby allow1ng abandonment

‘of - that branch of the search tree The - 11ke11hood of ach1ev1ng a’ contra—
_dlctlon depends on- factors,-such as the number of alternative 1nterpretat10ns
.of the reglon, the number of 1nterpretat1ons d1rect1y constralned by the '

1nstantlated 1nterpretat1on the ambigulty of " the reg1ons associated w1th
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those directly constrained interpretations, and the number of interpretations
they in turn constrain. Clearly, finding the optimal instantiation is
another major gearch problem, termed by Montanari "the secondary optimization”

'problem.15

Two search states are established in- Step 3 to explore the consequences
6f"bofh aéserting and denying the interpretation hypothesis selected in
Step 2. ~A-regidn-inter§fetatidn is denied by sétting its local and current
.iikelihodds to 0.0 aﬁd removing it from the relative lists of other variables.*
An interpretation is asserted by denying the alternative interpretations
for that region.+ The reason for hypothesizing a single interpretation,
rather than, for example, splitting the set of possible interpretations
of a region into approximately equal subsets, was to maximize the likelihood

of foreing a contradiction.

The evaluation of each branch in the search (8teps 4 through 6) is
handled as in the uninstantiated top level state, by executing a job list.
The job list initially contains the set of variables directly related to
variables whose likelihoods were altered in instantiating that branch. This
initial set includes the OPTION variable of the instantiated region. Addi-~
tional jobs and option variables are added dynamically és a consequence of

reevailuating these initial variables. Processing terminates with an updated set of
‘equilibrium likelihoods and updated values of the state variables SCORE and IQUEUE.
The termination tests in Step 5 and the updating of variables SCORE and

"IQUEUE are both accomplished as side effects of reevaluating OPTION variables.

Specifically, the score is incremented by subtracting the previous best

*Setting local likelihood to zero permanently pins an interpretation's
. overall likelihood to zero. BRemoving that variable from relative ligts
~thus avoids unnecessary reevaluations. Any variables thereby left with _
~no relatives are themselves removed from relative lists of other variables
so that variable reevaluations will occur only when a new value of the
variable ‘might be utilized. _Note that the relative 1lists of region inter-- .
‘pretation variables always include an OPTION variable and thus, such variables - -
..are not.disconnected except when directly pinned to zero. - : s
; *:n~ear1y*experiments, the current likelihood of the asserted interpreta- ;
~ tion was;ﬁoosted:to 1.0 to excite the equilibrium process. ' This artificial =
stimulus proved unnecessary and was abandoned in later experiments. '
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interpretation likelihood of the region (stored on the property list of the
OPTION variable) and adding the current best likelihood. If more than one

interpretation of the region has a likelihood exceeding 0.1, a pointer

+o the OPTION variable is inserted onto IQUEUE in a position determined

‘by the current likelihood of its best inferpretation; If the likelihoods

' of all possible interpretations of a region drop below 0.1 the search

‘state is assumed to'ﬁe-incoﬁSiStent and is abandoned. A solution (i.e.,

' a consistent set of'ﬁniQue'ihtéfbrefétioﬁs)3is.indicated if after evaluating
#11 OPTION variables, no contradictions have been detected and the IQUEUE

of that state is empty.

Updating state variables is an efficient process, because OPTION
variables are added to the jobh list EEli when the likelihood of an asso-
ciated region interpretation has actually been altered. Moreover; OPTION
reevaluations, unlike other jobs, are added to the end of the job 1list so
that evaluation occurs only once in each search state using the final

equilibrium likelihoods.

The nature of the above search is determined by the functions used
to ﬁpdate SQUEUE and IQUEUE and by the termination condition. Alternative
search strategies are eésily instituted. A depth first search, for example,
is obtained by always adding new search states to the front of SQUEUE,
while a breadth first search is realized by always adding them to the end . ®
Heuristic guidance can be introduced into the search by the function that
updates IQUEUE. The termination condition can be chosen to select the
highest scoring solution (i.e., completely instantiated terminal state),
the first solution obtained (which, with arbritrary constraints, is not

guaranteed optimal) or a complete enumeration of all consistent solutions.

E. . Using MSYS
_ All experiments with MSYS have, to date, been performed on manually
-partitionéd'scenes. _An interpretation broblem ig posed in the'following
.1Way. First, the experiménter,~using a trackball, cirCles,-and names a set’
--of test reglons ‘on the dlsplayed 1mage of a. scene (see, for example,_--:" _
Flgure 4) Next he enters the constralnts to be used 1n the current'ekper—"
'1ment : He may also dlrectly assert symbolic relatlonshlps among reglons  _
(e: g., that two regions be con51dered adjacent) Thzs ability’ was useful
for szmulatlng unimplemented relatlonal_procedures._ Interpretation is

initiated by calling the function INTERPRET with a region file or a list

33



of regions as an argument. MSYS responds with a complete protocol of the
interpretation process containing, first, a list of locally possible region
interpretations and their initial a priori likelihoods, second, a trace of
41l jobs executed from the job list, and third, a final list of unique
region interpretations with agsociated likelihoods (or else a message
announcing failure to find a consistent set of interpretations.) Appendix B
-cdntains-theﬁeomplete output protocol for the room scene analysis discussed

in Section II.C.

Constraints are entered in the format: (ADDCONST REL VLIST). REL is
a simple relation such as (ABOVE CHAIRBACK CHAIRSEAT), a Boolean expression
of simple relationg, such as (OR (ADJACENT PICTUﬁE WALL) (ADJACENT PICTURE
FRAME)), or a functional constraint such as (HOMOGENEOUS DOOR). VLIST is
a list of the interpretations to which the constraint applies. Thus, (ADDCONST
{ADJACENT PICTURE WALL) (PICTURE)) requireg all pictures to be adjacent to
WALLS but puts no constraint on WALLS. If VLIST is omitted, MSYS assumes
that the constraint applies mutually to all interpretations mentioned
within it. Constraints on the same interpretation specified in different
_ADDCONST statements are embedded in an implicit conjunction. Figure 10
illustrates the actual format used for specifying the constraints in the

example of Section II.C.

Symbolic region relations are asserted using the XDEMON SETVAL
function (see Appendix D), which creates a corresponding data base variable
and sets its likelihood to a desired value. For example, the fact that
region Rl is adjacent to region R2 could be asserted with certainty by

" executing (SETVAL (ADJACENT R1 R2) 1.0)}.

- F. Summary of Experimental Results in Room Scene Domain

The results shown in Section II.C were obtained with set theoretic
'_16gic. Identical iinal interpretations were obtained using fuzzy logic. with’
- fuzzy logic, the relaxation . process converged much more rapidly in every state
fbecause the values of disjunctions (conJunctlons) ‘could change only when .
‘the value of their strongest (weakest) supportlng 1nterpretat10n ‘was altefed.
-This advantage was offset by ‘a reductlon in quallty of the resultlng
'llkellhood estlmates, and necessitated backtracking durlng search. -Iﬁ

_ particular, (WALL DR), an incorrect interpretation, had the highest overall
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{ADDCONST {QUOTE (NOT* {ADJ DOOR PICTUREN))
{ADDCONST (QUOTE (FUNCTION ROOMPARTH
(QUOTE (DOOR WALL
{ADDCONST {QUOTE (FUNCTION HOMOI)
{QUOTE DOOR})
{ADDCONST {QUOTE (FUNCTION HOMO}
{QUOTE WALL))
. {ADDCONST (QUOTE (FUNCTION HOMO))
{QUOTE CBACK))

FIGURE 10 SPECIFICATION OF RELATHONAL CONSTRAINTS
GIVEN IN FIGURE 2 ‘
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likelihood in the initiai equilibrium state, and was, therefore,.chosen

as the first candidate for instantiation. Fortunately, the search was
side~tracked only briefly because a higher global score was obtained in
the competing context where (WALL DR) was denied. Thereafter, the search
went directly to the solution obtained in Figure 6, and with significantly
- less propagation. A related experiment was performed using set theoretic
logic ‘with tiormalized likelihoods that sutmed to 1.0 over all possible
interpretations of a region.. This normalization affected neither the
order of instantiation nor the final solution. However, it introduced
many additional oscillations into the relaxation process, since the like-
lihoods of all interpretations of a region had to be readjusted whenever
any was reevaluated., Normalization was thus rejected as unnecessary and in-
_efficient. The overall conclusion was that any reasonable rules for

combining evidence would probably suffice.
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i1V DISCUSSION

“In this section, we exémine 6&r work in the general context of

knowledge-based search and then suggest some applications.

. *® . . o .
A. M as a-Heuristic Search Algorithm

_M* is basically a conventional heuriétic search algorithm that émployé
a novel evaluation function to guide search. A relaxation method is
invoked after each instantiation to obtain consistent likelihood estimates
for the remeining interpretation possibilities of each region. The
evaluation function forms an estimate of the highest scoring terminal
state reachable from the current (partially instantiated) state, by summing
the likelihoods of the highest scoring interpretation possibility of each
region. The search then proceeds by returning to the state with the
highest evaluation, and instantiating next, the highest likelihood inter-

pretation of an uningtantiated region.

It is well known that the effectiveness of a generate-and-test search
is improved, sometimes substantially, when problem constraints are used for
guilding generation as well as for testing. With deterministic constraints,
it may be possible to eliminate certain variable assignments from con-
sideration and thereby reduce the branching of the search. For example, if
it can be shown that a variable asgignment is inconsistent with all pos-
" sible asgignments of another variable, then all cases involving that
assignment need not be generated. In highly constrained problems, elim-
inations may propagate to reduce drastically the set of feasible solutions.
Waltz's?” filtering algorithm provides a well known and dramatic illustration

of this phenomenon.

"With.préhablistic constraints, variable assignments cannot be eliminated
absolutely 'HGWeﬁer,-théy-can be ordered preferentially so that a search will
'flnd the best solutlons first, w1thout having to enumerate ‘cases 1nvolv1ng
'"unlikely:assignments The relaxation process in M can be viewed as the
éhaidé'fdf'ﬁrObabiiStic constralnts, of Waltz's filter1ng algorithm for

deterministic constraints, where instead of eliminating inconsistent
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assignments, their likelihoods are depressed. The advantage in both cases,
derives from the fact that inconsistencies are detected once, before
instantiation, rather than having to be discovered repeatedly on multiple

branches of the search tree.

E
1. The Admissibility and Optimality of M

_ _ With one reasonable restriction, it can be formally proved that
M is admissible (i.e., that it will achieve the highest scoring solution
for a given set of constraints.f This restriction requires that the likeli-
hoods of interpretations be based solely on supportive constraints,

e.g., (ADJACENT PICTURE WALL), as opposed to contraindicating constraints,
e.g., (NOT (ADJACENT PICTURE DOOR)). This restriction guarantees that
interpretation likelihoods, computed as per Section III.B, will be over-
estimates of their respective likelihoods in any terminal state. Hence,
the evaluation function, which iz formed by summing the overestimated
likelihoods, will be an upper bound on the score of the best terminal state
reachable from a given partially instantiated state. Moreover, the com-
puted upper bound cannot be increased by additional instantiations. -Under
these conditions, M* willrperform the equivalent of an A* search and can
be formally proved to be sdmissible. Appendix A sketches the proof which
is based on this analogy with the admissible A* algorithm. Continuing the
' A* analogy, M* is also optimal in the sense that no other admissible
algorithm, using an evaluation function that is a weaker upper bound, can
reach the optimal solution through fewer partially ingtantiated states. We
return to'this point in Section IV.A.3, where M* is compared with other
search algorithms.

The restriction to constraints that are supportive rather than
cbntradictory is not a serious one. A contraindicating constraint can, in
principle, always be expressed by a set of supportive constraints, that
.éxplicitly enumerate the allowed possibilities. For example, the constraint
(NOT (ADJACENT PICTURE DOOR)) is equivalent to a set of constraints of the
':form (ADJACENT' PICTURE WALL}, (ADJACENT PICTURE FRAME), and (ADJACENT
“PICTURE PfCTﬁﬁE) énuméréting'every-region interpretation ‘that can be’ legaliy

Whether or not the highest scoring solution corresponds to the correct
interpretation of the scene depends, of course, on the sufficiency of
the constraints.
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adjacent to PICTURE, If this set is too large to enumerate, a practical
alternative, still satisfying the requirements of admissibility, would be

a procedural constraint on the interpretation PICTURE, satisfied by the
highest scoring interpretation, other than DOOR of each adjacent region. We
‘therefore cbnclude that the restriection to supportive constraints is, at
:w0rst, a practical limitation affecting the parsimony of constraint
expression.

The efficiency of a'éeﬂféh.(meaéﬁfed-by numbér of iﬁsfantiéﬂ
tionsg) can sometimes actually be improﬁed by sacrificing formal admis-
.sibility. Experience with strong contraindicative constraints has shown
that erroneous ingtantiations usually produce drastic reductions in score
and consequent early abandonment of false search psths. Thus, even with
nonsupportive constraints, M* is still an effective heuristic search
algorithm. If a truly optimal solution is essentlal, the M* algorithm
can be modified so that solutioné are enumerated exhaustively, in order of

merit, subject to prior pruning by a branch and bound test.

2. Stability and Convergence of the Relaxation Process

The M? algorithm presumes that the relaxation process will con-
verge to a stable set of equilibrium likelihood values following each stage
of instantiation. However, except in a few special cases, almost nothing
can yet be said regarding formal criteria for guaranteeing this convergence.
The constraint restrictions imposed for admissibility obviously preclude
the relaxation process from oscillating (since likelihoods can only
decrease) but they do not preclude monotonic decay toward a set of likeli-
hoods, all of which are zero. Stability proofs have been formulated in
related work for the special case of Boolean supportive constraintslv—la
and for the case where the likelihood of an interpretation ig either a fuzzy
function {(composed of minimums and maximums) or a normalized sum of the
_ interpretation likelihoods of other-regions 1% The substance of these

prOOfS'resfs*oh'eStabiishing that the range of pbssible-likelihood values
:_for-each7intérpretétibn~—initia11y the.ihtérv51 (0,l)~~can never ‘diverge

on any iteration.

- The above convergence proofs concern constraints that were applied
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homogeneously to all problem variables. Convergence behavior for the
arbitrary, procedurally represented constraints allowed in M* can for now
be established only empirically. In practice, we are not concerned with
actual convergence (since relaxation can always be arbitrarily terminated)},
but only with the asymptotic behavior of the likelihoods after a reasonable

19 pointed out, the relaxation process

humber of iterations. As Rosenfeld
 can be thought of as a process for "enhancing” the likelihcods of correct
interpretations. Our experiments involved constraints chosen without
specific regard for convergence and in all cases the relaxation process
had the desired effect of enhancing the likelihoods of the correct inter-
pretations. These specific examples tend to support the intuition that
in highly constrained problems, the correct interpretations will assert

themselves via the relaxation process.

3. Relation to Other Search Algorithms

Many previous scene interpretation algorithms can be viewed as
. special cases of M*. Waltz's algorithm, for example, is eguivalent to
performing M* with deterministic supportive constraints, and a priori
l1ikelihoods of unity for all interpretation possibilities. With these
restrictions (which, incidentally, satisfy the requirements for an
admissible A* search), propagation is limited to cases where an inter-
pretation's likelihood can be deduced to be zero. Moreover, since the
likelihoods of possible interpretations remain equal (namely 1.0), they

cannot be used in selecting which interpretations to instantiate.

The tree searching algorithﬁs of Dudaao, Guzmanzl, and Yakimovsky7
can also be viewed as special cases of M*. Each is equivalent to performing
M* with restrictibns on the extent to which the conseguences of likeli-
hood reevaluations are propegated. With supportive constraints, these

‘restrictions on propagation only raise likelihoods that are already over-
estimates. Therefore, invoking the A* analogy developed in Section V.A.1,
these algorithms w111 perform searches that are less directed (as measured

by the number of partlally instantiated states exam1ned) than will M y

.-'given comparable constralnts

" The algorithms of Duda and Yaklmovsky illustrate the’ drawbacks

resulting from restrictions on the use of constraints. Duda's algorithm,
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performed an A* tree search, but, unlike M*, based its evaluation of

search states and its selectibn of instantiations entirely on the uncon-
strained a priori likelihoods of interpretations. Deterministic constraints,
‘which specified legally adjacent interpretations, were used only aiter
instantiations to check whether the assigned interpretation was consistent

with interpretations previously assigned to adjacent regions.

This limited use of constraints frequently necessitated redundant
deductions. For example, a region could get instantiated to an interpre-
tation that was inconsistent with all possible interpretations  of
‘an adjdcent region and that inconsistency would not be discovered until
each of those interpretations had been individually instantiated. Any
intervening instantiations of a third region would simply be wasted work.
M*, by contrast, would have avoided instantiating the inconsistent inter-

pretation in the first place.

Yakimovsky's algorithm performed an exhaustive depth first
enumeration of possible region assigmnments; interpretations were assigned
to regions in order of maximum likelihood and a branch and bound -technique
was used to prune unpromising branches. When an interpretation was instan-
tiated, its likelihood was frozen and that value was used to update the
likelihoods of interpretations that were directly constrained and not yet
instantiated. Unlike’M*, Yakimovsky's algorithm did not use uninstantiated
interpretations to update a priori likelihoods, did not update the likeli~
hoods of interpretations after instantiation, and-did not propagate the
consequences of a likelihood reevaluation beyond the interpretations
directly constrained to an instantiated interpretation. For these reasouns,
Yakimovsky's likelihood estimates are less informed {i.e., greater upper-
bounds) than those that M# would derive from the same knowledge. Moreover,
because the likelihoods of interpretations were arbitrarily frozen at the
fime of instantiation, the terminal likelihoods in each completely instan-
tiated state represent only an approximate solution to the constraints.

‘Conceivably, the algorithm could thus converge on a false optimum.

4, Cost-Effectiveness

‘The number of instantiations is, of course, only one measure of

search'effectiveness. The computﬁtional effort expended in the'rélaxation
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Tk
process must be considered in assessing whether the M algorithm actually

achieves a cost-effective reduction in search.

The cost-effectiveness of M* rests, intuitively, on many problem
dependent factors, including the types of constraints, the representation
chosen to express those constraints in MSYS, and the connectedness of the
'resulting constraint network. The types of constraints bear on the dif-
ficulty of constructing MSYS problem representations and on the cost-
effectiveness of the constraint in reducing search. As an illustration
of the trade-offs, it is easier to create an MSYS representation for a
homogeneity constraint that applies only to adjacent regions admitting

the constrained interpretation than for one that applies to every region
in the scene admitting that interpretation. However, a local homogeneity

constraint would be less effective in detecting global contradictions.

The choice of representation determines size of the search space,
selectivity of constraint propagation, and cost of constraint execution.
These criteria are often contradictory. For example, a representation
hased on sets of possible interpretations for each region naturally allows
very efficient execution of constraints that operate on the entire set
(e.g., constraints that intersect the possible interpretfations of adjacent
regions). On the other hand, a set representation hinders the selective
propagation of constraints on individual interpretations. The connectedness
of the constraint network affects how far the consequences of a likelihood

reevaluation can propagate.

Although the above factors appear important, we have so far been
unable to formulate crisp criteria for predicting whether M* will prove
cost-effective for a particular problem. The computational complexity of
such a determination may be of the same order of difficulty as solving the
.original problem. Our guess is that in scene domains with sparse local
constraints, the limited lookahead employed by Duda and Yakimovsky will
be more cost-effective than the global approach of M*. On the other hand,
shallow lookahead is of little value in situations characterized by a
dense network of highij-interacting constraints. The line-drawing domain
chosen by Waltz is a perfect example of this latter cliss wherein almost
all of the problem reduction was accomplished not by search but by

‘globally propagating the effects of local constraints.
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5. Experimental Comparison

_All of the algorithms described above can be emulated in MSYS
by making minor modifications to the constraint propagation mechanism.
Such emulation provides a fair basis for experimental comparisons of
performance. Actual emulations of the Waltz and Duda algorithms have
been performed and are described in Appendices E and F. These emulations
.showed that, at least for one particular set of constraints, the Walt=z
and M* algorithms were both more effective than Duda's algorithm. A
systematic comparison of all the algorithms on significantly more complex

scenes is planned for the future.

B. MSYS as a System Organization for Knowledge Based Search

MSYS, the implementation of M* in XDEMON, has a number of desirable
attributes as a system organization for knowledge-based problem solving
and perception. All knowledge resides in a global data base that is
accessible to all parts of the system. Declarative and procedural knowl-
edge as well as the alternative interpretation hypotheses are represented
- uniformly by XDEMON variables. Representing competing hypotheses explicitly
in the data base where they are freely available has many advantages over

hiding them in the internal variables of a'backtracking program.

Processes representing individual elements of knowledge can he added
or removed dynamically with incremental changes in system performance.
Maintenance operations, such as likelihood updating and consistency checking,
‘can be handled directly by activating related variables. This modularity
is essential for assimilating new knowledge whether from human experimenters
‘or an automatic learning module. It also allows a system to construct a
working data base by drawing relevant constraints from a much larger store

~of general knowledge as the analysis evolves.

Control propagates throughout the data base in a highly efficient
“data~directed manner, following the currently most promising lines of
deduction. Past decisions are reevaluated only when directly affected by
-iSUbsequent ones. Strategy and demon processes can be included on the
:relative lists.of-interpretation variables to introduce goal direcfion.'
Goal direction can also be imposed by prioritizing the job set based on

" interest and expectation associated with each job.
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XDEMON is a practical realization of many philosophical objectives
expressed in recent artificial intelligence literature, notably uniformity
of representation, modularity, and distributed control .22-2% gimilar
system organizations have been previously reported in connection with work

27

on speech understanding,4 simulation,®® and parallel computation. Our

major contribution was a demonstration of how a data driven system organ-

ization could be used effectively in performing an optimizing search.

‘The asynchronous interaction of knowledge processes in XDEMON suggests
interesting possibilities for parallel implementation. In an extreme
example, every XDEMON variable could be represented by an asynchronous
microprocessor that computes new values whenever the value of subordinate
variables change. The same restrictions that guarantee convergence of

the M* relaxation process, namely, that with supportive constraints, the
range of likelihood values for an interpretation cannot diverge, also

guarantees that this parallel implementation will be free of race hazards.
The primary technical difficulty in such an implementation would be the
.reconfiguration of interconnections among the microprocessors needed to

accommodate different constraint problems.

C. Applications to Scene Analysis

Scene analysis is the combined process of partitioning a scene into
regions corresponding to meaningful entities and correctly interpreting
those regions. Formally stated, the objective is to maximize the joint
likelihood that region i has interpretation j over all partitions of the
scene into regions and all assignments of interpretations to regions.
Although partitioning logically precedes interpretation, these two processes

must be tightly integrated in order to achieve the formal objective.

A recent paper by Tenenbaum and Barrow=8 presents a way of using an
interpretation mechanism such as MSYS to guide segmentation. In this
_approach, knowledge from a variety of sources is used to make inferences
| about the interpretations of regions, and regions are merged in accordance
with their possible interpretations. . A scene is first partitioned into
.elemehtary :eéioné'cbnsisting'of-indi?idual pixels or, perhaps, groups of -
adjaCentﬁpixéls_with'identical'attributes. ‘Beginning with this ﬁartition,
the system first performs the most complete interpretation possible in

the current partition. Based on this interpretation, it next merges a
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pair of adjacent regions that are least likely to represent distinct objects.
The process then iterates by revising the interpretation to fit the current
partition and performing another merge. As the partition develops, region
boundaries apprcach actual object boundaries, allowing interpretation to

be refined.

In the present implementation, the deduction of region interpretations
is performed using a limited but fast version of MSYS, coded in Fortran,
which allows only deterministic constraints between adjacent regions.

' Constraints are expressed in tabular formats that specify, for each possible
region interpretation, the allowed interpretations for an adjacent region
in a given relationship (e.g., ABOVE, BESIDE, and INSIDE). Deduction
proceeds as in Waltz's algorithm by eliminating possible region interpre-
tations that are not consistent with any possible interpretation of an
adjacent region. A second implementation is planned providing the full
generality of MSYS, real-valued, procedurally represented constraints among

arbitrary regions.

Virtually all of the scene interpretation research performed to date
has involved narrow semantic domains with specific expectations (e.g.,
each region was known to be one of a dozen or so possible objects). While
not arguing against the use of expectations when available, it is important
to ask whether the MSYS apbroach can be generalized to work in real
world domains containing millions of objects and millions of relations.
Clearly, 2 more concise initial symholic description at a general level
" is required, perhaps in terms of surface characteristics such as curvature
{planar, convex, and cocncave), orientation (vertical, horizontal), texture
and material (e.g., metal, plastic, and wood) and relations such as occlu-

sion, joining, and support,

The accurate determination of these surface characteristics requires
-the same type of global reasoning used to deduce 6bject interpretations
but is based on general knowledge about shadows, illumination sources,
relative depth, occlusion, surface orientation, texture gradients, and
so forth, common to many domains. - For example, the perceived color of a -
:'regioh depéﬁdé'primafily on:its-speétral'feflecténce chardcteristics but

also upon the incident illumination, which in turn is affected by the
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spectral characteristics and orientations of nearby surfaces. Consequently,
the accurate color interpretation of one region may require the simultaneous
global interpretation of color and orientation over all regions. Similarly,
relative depth, in the absence of range data, must be inferred from the
global consistency of partial depth orderings established by local cues,
.such as T-joints and texture gradients. Once the scene has been analyzed

in general terms that analysis can be used to guide a more detailed spe-
cific analyéis.

D. Applications to Problem Solving

The M* algorithm and its implementation in XDEMON are useful in other
areas of artificial intelligence. Scene interpretation typifies a broad
class of problems in which values must be assigned to variables subject
to constraints among the variables. This class encompasses symbolic
constraint satisfaction problems, such as language parsing, line-drawing
interpretation, and certain puzzles (e.g., Cryptarithmetic, Instant Insanity,
Fifteen Puzzle) as well as constraint optimization problems such as diag-
‘nosis, data interpretation (e.g., mineral exploration) and many design

tasks (e.g., architectural layout).

“We, and others, have previously recognized the utility of global
propagation techniques in simplifying symbolic constraint satisfaction
problems 2,29~ These problems often confound conventional heuristic
search algorithms because of large gearch spaces, which are not signifi-
cantly reduced by individual instantiations. Moreover, there is usually
little heuristic guidance available for choosjing hypotheses. An excellent
example of a problem with these characteristics is given in Appendix G

along with a sketch of how MSYS was configured to solve it.

Our work extends the use of propagation techniques to constraint
optimization problems openiﬁg up a wide range of real-world applications.
These problems in common with perception, are characterized by the added
éomplexities of noisy data, probablistic constraints, and multiple solu~
‘tions of varying utility..-M% seems especially well suited for cooperative
{man-machine) problém”solvihg-in'taské‘sdch as diagnosis; the egquilibrium
prdéess'can:dynamicaliy adjust the relative likelihoods of competing hypo-
theses to refledt new cohstraints, evidence, and hypotheses that may be

interjected by the man at any time.
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The related variables concept underlying XDEMON has additional
applications in planning and problem solving besides constraint propagation.
As one example, consider the prohlem of determining a cost-effective
execution path through an AND-OR planning graph. The utilities of subgoals
are interdependent and may vary with knowledge acquired during the course
of execution making detailed elaboration of alternative execution sequences
unwarranted. Garvey'3 describes an approach, first implemented in XDEMON,
in which the utilities of interacting subgoals are relaxed to equilibrium
- to determine the next best think to do. If execution of the selected
subgoal revises the utilities of remaining subgoals, the relaxation process
can be repeated to update priorities before selecting the subsequent step.
This incremental approach is particularly appropriate for information
gathering strategies where incomplete knowledge is inherent at each step

of the plan.

XDEMON can also serve as a simple event driven simulation language
for establishing interacting cause and effect relationships in an analogue
manner. J. S. Brown32 has remarked that simulation is most appropriate
as an inference technique in those situations where conventional "linear"
deductive reasoning breaks down; i.e., where the consequences of an action
:1ead to complex side effects including feedback type interactions that
can alter the state on which a deduction was initiated. BSuch a situation
motivated Brown's use of simulation to deduce the consequences of faults
" introduced into an electrical network. The interaction among circuit
variables in a network resembles the interaction among interpretation
likelihoods in a partitioned scene, which may account for resemblences

among the relaxation process in MSYS and a simulation program,

The versatility of XDEMON suggests the inclusion of a similar

subroutine package in artificial intelligence languages such as QLISP.22

E. Summary

Scene interpretation typifies a broad class of problem-solving tasks
“involving the assignment of values to variables that are mutually constrained.
- A general constraint optimization algofithm, M* has heen presented that
: ibf sufficiently constrained problems is more powerful than conventional
heuristic search methods, many of which can be treated as special cases

of this algorithm.
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The algorithm is based on the notion of representing alternative
hypotheses and constraints as (simulated) asynchronous parallellprocesses.
These processes interact in a dynamic equilibrium that egtablishes the
relative likelihoods of competing hypotheses. The equilibrium process
serves as a new kind of global lookahead that improves the order of

instantiation and context selectionat each stage of a best first search.

The admissibility and stability of the M* algorithm have been for-
mally proved for a restricted class of comstraints as has its optimality
compared with conventional search algorithms, measured by number of imnstan-
tiations. Open theoretical issues include a precise characterization
of the class of "sufficiently constrdined"” problems for which the method
is computationally cost-effective and explicit criteria for selecting

the best problem representation, constraints, and instantiation order.

_ The algorithm has been applied successfully to both scene interpre-
tation problems and constraint satisfaction puzzles. However, the scene
interpretation experiments should be regarded as inconclusive, because
of the simplicity of the test scene and the reliance on simulated range
data for assigning the initial interpretations. Further experiments

in more complex scenes are planned using an actual laser range finder.
Additional experiments will be performed without range data, using
constraints that infer height and orientation from pictorial cues such

as image height and shadows.
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Appendix A

E
THE ADMISSIBILITY AND OPTIMALITY OF M~ *

A. Introduction

In this appendix, we establish the admisgibility and optimality of
algorithm M*, when used with supportive constraints. We will first establish
conditions of admissibility and optimality for an abstract tree searching
algorithm A+ that encompasses M* and then show that with supportive constraints,

*
M fulfils those conditions.
B. Definitions

We consider the following search problem: Let Tr(s) be a finite tree
with root node s. For each node n in Tr(s), let Tr(n) be the sub-~tree
with root node at n. Each tip node, r, of Tr(s) has a value v{r). Let r*.
with value v*, be called a best tip node if no other tip node has a larger
value. For non-tip nodes, n, let v(n) be the value of the best tip node

in Tr(n). We note that for all n in Tr(s), v(n) sgv*

We are concerned with search processes for finding a best tip node in
Tr(s). This problem is analogous to that of finding a least costly path
in a tree. For the latter problem there is a search algorithm, A*, for
which admissibility and optimality theorems have been proved.5 Here we
prove analogous theorems for an analogous algorithm, A+, that finds best

tip nodes.

C. Algorithm AT

let 3 be an estimating function for estimating the value of nodes in
Tr(s). That is, v(n) is an estimate of the value, v(n), of the best tip

node in Tr(n). Search algorithm At is defined as follows:

1. Put node s on OFEN.

2. Select that node, n, on OPEN with the largest value of v. Resclve
' ties arbitrarily but always in favor of tip nodes.

3. .If node n is a tip node, terminate; else continue.

4, EXpénd'node n by putting its sﬁccessors on OPEN. Removeandé n
from OPEN.

5. Go to 2.

+The collaboration of Nils Nilsson in preparing this appendix is gratefully
acknowledged .
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With the assumption that G(n) = v(n) for all n in Tr(s), and that vir) = v(r)
for all tip neodes, r, we make the following observations:
' +
A) At any time prior to termination of A, a best tip node in

Tr{s) is in the*Tr(n) for some node n on OPEN. For this node n,
vin) 2 v(n) = v

B) A+ never re-opens nodes, because it is searching a tree.

C) Since Tr(s) is finite, A+ must terminate. We note that it

can only terminate by selecting a tip node in step 3.

'D. Admissibility of A"

We say that an algorithm is admissible if it terminates by finding
a best tip node.
Theorem 1: If G(n) = v(n) for all nodes n, and G(r) = v(r) for tip

nodes 1, then Af is admissible.

Proof: Assume the contrary. That is, assume that A+ terminates for
some tip node r‘f that is not best, i.e. for which v(r’) = () < v*. But
"then just before selecting r/, by observation A above, there was a node
n on OPEN with v(n) 2 v* contradicting our assumption that A" chose r’

instead of n.

E. Optimality of A

First we prove a lemma.

Lemma: If A" expands a non-tip node, n, and if v(n) = v(n) for all n,

~ *
then v{(n) > v

Proof; B§ observation A, at the time A+ expanded n, there existed on
~ E 3 ~ * *
OPEN a node n'/ with v(n/) = v . If n’ =n, v(n) = v . Otherwise, A

*
chose n in preference to n’ and v(n) = v(a’) =2 v

EN
Theorem 2: Let two versions of A+, namely Al+ and A2 , search a tree,

Tr(s), to termination using estimating functions v. and 32, respectively.

1
Then, if vz(n)y vl(n) = v(n) for all non~tip nodes n in Tr(s), and if
Gz(r) = Gl(r) = v{r) for all tip nodes in Tr(s), A2+ will expand all the
non~tip nodes expanded by A1+.

* Proof: Suppose the contrary. Let Tr; (s) and Tr,(s) be the trees of nodes
_éxpénded by Ai+ and A2+, respEctivelj. It Trl(s) contains a non-tip node

not contained in'Trz(s), then (since both are rooted in &) there will



exist a non-tip node, n, in Tr (s), not in Tr (s), with a parent in both.

+
That is, at the termination of A, , node n is on the OPEN list of Az

* ~
But if A2+ didn't expand node n, it must have been because v = v,(n).
Also, since Alfdid expand, n we have by the Lemma that

“~ *
vl(n) =V

But these relations contradict our assumption that for non-tip nodes

vz(n)> vl(n).
F. Discussion

Theorem 1 states that as long as v is an upper bound, algorithm A+ is
admissible. Clearly, the search can be safely terminated when a terminal
node is encountered whose actual score is higher than upper bounds on the
scores of all terminal nodes that are reachable from any open node. Theorem
2 gtates that A" is optimal in the sense that it will never expand more
nodes than any other admissible algorithm that relies on score estimates
that are strictly larger than the upper bound estimates used by At 1t
now remains to be shown that algorithm M* is an instance of the more general
algorithm A* and that with supportive constraints, M* fulfills the conditions

required for proving Theorems 1 and 2.

M* like A+ ig an algorithm for finding the highest scoring terminal
node in a tree. In scene analysis, the nodes of the tree represent states
of instantiation that are reached by pinning the likelihoods of particular
region interpretations to zero. Nodes representing a state where every
region has a unique interpretation are designated terminal nodes. Two
arcs emanate from each non~terminal node representing the assertion and
denial of the most likely interpretation of a previously uninstantiated

" region.

M* selects for expansion the node with the highest valued score. This
score is formed by summing the highest interpretation likelihood associated
with each region. Since these likelihoods are in fact upper bound estimates,
.the score of a non-terminal node is an upper bound on the score of any
termlnal node reachable by further instantiation. The restriction to

supportive constraints means that interpretation likelihoods will never




increase as a consequence of decreasing the likelihood of another interpre-
tation. In particular, since instantiations are accomplished by setting
the likelihood of alternative interpretations to zero, they cannot raise
the likelihood of any uninstantiated interpretation. Consequently, the
score of a node is a true upper bound on the combined interpretation
likelihoods at any terminal node accessible from that node. This estab-
lishes the admissibility of M*. The optimality of M* follows from the
fact that the score of a node is at least as tight a bound as one based

on fewer supportive constraints or restricted propagation. Both of these
factors can only raise individual likelihood estimates, thereby, loosening
the upper bound on score. The tighter the bound on score, the more

directed the search.




Appendix B

DETAILED TRACE OF AN INTERPRETATION

‘This appendix contains a detailed trace of the interpretation process
for the vertical regions in Figure 4 as described in Sections II.C and III.
Jobs executed from the job queue are preceded by the designations JOB or EG.
BG stands for background jobs that were either placed on the queue to
initialize processing (e.g., NETSETUP jobs) or added to the end of the queue
to be processed last (e.g., OPTION variables). All other reevaluations are
.added dynamically to the front of the queue so that current lines of deduc-

tion are pursued first.

The real velued numbers following each job are updated likelihoods of

the corresponding XDEMON variables produced by running the job.

A, Initialization Phase

Lines 1 through 83 of the trace (Figure B-1) constitute the initializa-
tion phase during which the constraint network is constructed and equili-
" brium likelihoods are obtained. Each NETSETUP job retrieves the constraints
associated with an interpretation and then constructs and executes a global
evaluation function that computes support for those constraints in the cur-

rent scene partition.

The tag (0.0-setup) indicates an interpretation that was rejected out-
rightly because of an unsupported constraint. The likelihood of such inter-
pretations are permanently set to zZero and no evaluation function is compiled
_ for them., In line 8, for example, the interpretation (DOOR CBACK) was re-
Jjected by the conétraiét ROOMPARTITION. The resultant drop in likelihood
of (DOOR CBACK) triggered reevaluation of the likelihood functions for
(DOOR LWALL) at line 13 and (DOOR RWALL) at line 16 which had been pre-
viously evaluated iﬁ\lines 4 and 6, respectively, using the a priori
likelihood of (DOOR CBACK). (In effect, decreasing the likelihood that
a dark region was DOOR increased the likelihood that DOOR was a light
region,) Similarly, the likelihoods of (WALL LWALL) and (WALL RWALL) are
increased at lines 21 and 22 after rejecting (WALL CBACK) at 1line 18.
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BG=(NETSETUP (QUOTE (WASTEBASKET WBSKT))): .12

BG=(NETSETUP (QUOTE (DOOR WBSKT))): 0.,0=5ETUP

RGe(NETSETUP {QUOTE (WALL WBSKT))): 0.0-SETUP

BG=(NETSETUP (QUCTE (DOUOR RWALL}}): L0686

BG=(NETSETUP (QUOTE (WALL RWALL)1)? .0328

BG+=(NETSETUP (QUOTE (DOOR LWALL)}): .0688

BG=(NETSETUP (QUCTE (WALL LWALL)))! ,0328

BG=(NETSETUP (QUOTE (DOOR CBACK)})): 0,.0«SETUP

JOB={ (OR* (DOOR DR) {DOCR PIC) (DOOR CBACK) (DOOR WBSKT})):r ,459

JOB={ (NOT» (0OR# (DOOR DRY (DOOR PIC) {DOOR CBACK)} (DOUOR WBSKT)})): .541
JOB=( {AND# (NOT# (DR# (DOOR DR) (DOOR pIC) (DOOR CBACK) (DGOR WBSKTYY)
(NOT#* (AND# (ADJ LWALL PICY {PICTURE PIC)})))}t ,.379%

JOB={ (DOOR LWALL)): .088

JOB=~((AND® (NOT» (OR® (DODOK DR) (DOOR PIC) (DONR CBACK) (DOQR WBSKT)))
(NOT# (AND# (ADJ RWALL PIC)} (PICTURE PIC))))): .379

JOB=( {(DOOR RWALLY): ,086

BG=(NETSETUP (QUOTE (CHAIRBACK CBACK))): ,11

BG+~(NETSETUP (QUOTE (WALL CBACK))): 0.0=SETUP

JOB=( (CR* (WALL DR)Y {WALL PIC) (WALL CBACK) (WALL WBSKT)I)): .864
JOB=((NOT# (OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT)))): .136
JUB=¢{ {WALL LWALL)): ,10S

JOBe( {WALL RWALL)): .§0S5 .

BG«(NETSETUP (QUOTE (PICTURE PIC))): .251

BG={NETSETUP (QUUTE (DOOR PIC3)}): 0,.0«SETUP

JOB=¢ (OR# (DOOR DR) (DOQR PIC) (DQOR CRACK)Y (DOOR WBSKT))): .227

JOB=( (NOT% (OR® (DOQUR DR) (DQOR PIC) (DOOR CBACK) (DOOP WBSKTIYI): ,773
JOB=( (AND» (NOT# (OR+ (DOOR DR) (DOOR PIC) (DOOR CBACK) (DOOR WBSKT)))
(NOT# (AND# (ADJ LWALL PIC) (PICTURE PIC))J)))1 .541

JOB={ {DUOOR LWALL)): ,123

JOB=( (AND» (ADJ LWALL PIC) (DDOR LWALLI))y ,123

JOB=( (AND® (NOTs+ {OR« (DOOR DR) (DOOR PIC) (DODOR CBACK) (DOOR WBSKT)))
(NOT» (AND# (ADJ RWALL PIC) (PICTURE PIC))})): .541

JOB={ (DOOR RWALL)): .123

JOB=( (AND® (ADJ RWALL PIC) (DOOR RWALL)Y): ,123

BG=(NETSETUP (QUOTE (WALL PIC3})}: 0.0=SETUP

JOB=¢ (OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT))): .773
JOB=({NOT# (OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT})))l1 .227
JOB={ (WALL LWALL)): .17%

JOB=( {WALL HWALL)}: ,178

BG=(NETSETUP (QUAOTE (DOCR DRI)Y)S .175%

JUB=( (OR# (DOOR DR) (DOOR PIC) (DOOR CBACK) (DOOR WBSKT})): ,178

JOB={ (NOT* (UR* (DGOR DR) (DODR PIC) (DOOR CBACK) (DOOR WBSKT)))): .82%
JiB={ (AND« (NOT# (OR# (DODR DR} (DOCR PIC) (DOOR CBACK) (DODR WBSKT)))
¢(NOT# (AND» (ADJ LWALL PIC) (PICTURE PIC}333)): ,578

JOB=( (AND* {NOT# (OR# (DOOQR DR) (DOOR PIC) (DOOR CBACK) (DOQR WBSKT)))
(NOT+ (AND# (ADJ RWALL PIC) (PICTURE PIC))))): .578

BG=(NETSETUP (QUOTE {(WALL DR)))t ,52&

JOB=( (OR# (WALL DR} (WNALL PIC) (WALL CBACK) (WALL WBSKT))): ,526

JUB=( (NOT#» (OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT)))): .,474
JOBe{ (WALL LWALL)): .387 _

JOB=( (OR# (WALL LWALL) (WALL RWALL)))1 .478

" FIGURE B-1 . TRACE OF EXECUTION DURING ESTABLISHMENT OF INITIAL EQUILIBRIUM
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JUB~((NOT» (OR* (WALL LWALL) (WALL RWALL)))): ,522

JOB={ (WALL DR)}: ,404

JOB={ (OR# (WALL DR) (4ALL PIC) (WwALL CBACK) {(WALL WBSKT))): .404
JOB=( (NOT# (OR® (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT)))): .596
JOBe( (WALL LWALL)): .461

JOB=( (OR# (WALL UwALL)} (WALL RWALL))I): «556

JOB=({ (NOT* (OR# {WALL LWALL) (WALL RWALL}})Y: ,444

JUBw( (WALL DR)): .344

JOB=( (ORs (WALL OR) (WALL PIC) (WALL CBACK) (WALL WBSKT))): .344
JUB={ (NOT# (OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL wBSKT)1}}: .656
JOB~( (WALL LWALL)): ,507

JOB=( (WALL RWALL)): .507

JNBe( (OR¥ (WALDL LWALL} (WALL RWALL))): .757

JOB«( (NOT# (OR# (WALL LWALL) (WALL RWALLY})): .243

JOB=( (WALL DR)):; ,188

JUB=( (OR#® (wALL DR) (W#ALL PIC) (WALL CBACK) (#ALL WBSKT})}: ,188
JOB=( (NOT# (OR® {WALL DR} (wALL PIC} {WALL CBACK) (WALL WBSKT}))): .812
JOBw=(¢ (WALL LWALL)): .o628

JOBe{(OR® (WALL LWALL) (WALL RWALL))): .817

JOB=( (NOT* (OR® (WALL LWALL) (wALL RWALL)}))tr 1823

JNBe( (WALL DR)): 142

JOB=( (WALL RWALL}): .628

JOB=( (OR&% (WALL LWALL) (WALL RWALL)J)}: 862

BG+{{0NPTION (DOOR DR) (WALL DR))); (DOOR DR)=,175

BG=¢ ({OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)I): (PICTURE PIC)=.251
RG=((DPTION (DOOR CBACK} (CHAIRBACK CBACK) (%ALL CBACK))): {CHAIRBACK
CBACK)I=, 11

BGe((OPTION (DOOR LWALL) (WALL LWALL))): (WALL LWALL)=.628

BGe{ (OPTION (DOUR RWALL) (WALL RWALL))): (WALL RWALL)=-,.5628
BG=((OFTION (WASTEBASKET WBSKT) (DODOR WBSKT) (WALL WBSKT))): ¢
WASTEBASKET WBSKT)}=,12

SAVESTATE: (TOPCNTXTI), SCORE: 1.91, LENGTH(IQUEUE)! &

FIGURE B-1 TRACE OF EXECUTION DURING ESTABLISHMENT OF INITIAL
EQUILIBRIUM {Concluded)

B-3



Actual computation of the equilibrium likelihoods shown in Figure 5
is completed by line 74 following execution of all NETSETUP Jjobs and
consequent reevaluations. This phase is followed by the execution of
OPTION variabies in lines 75 through 82, which check for contradictions
(i.e., a region left without a likely interpretation), increment the
global score, and insert pointers to themselves in the priority queue
(IQUEUE) governing instantiation. OPTION variables return as a value,
the 1ikelihood of the most probable interpretation for their associated
region. The name of the interpretation is printed along with this likeli-
hood for experimental convenience. The initialization process is terminated
in line 83 by saving‘the resultant state and XDEMON variables before any

instantiation. The search state is summarized by printing the summed
| likelihoods of the current best interpretation for every region (SCORE)
and the number of instantiated regions remaining in that state and repre-

sented on IQUEUE.

B. Search Phase

in this phase, MSYS performs a best first search for the set of
unique region interpretations with the highest combined likelihood. (See
Figure B-2.) The search begins at line 84 by reinstating the highest
scoring state from SQUEUE which, by default, is ‘TOPCNTEXT. The most
likely interpretation of an uninstantinted region (WALL RWALL) is then
instantiated in line 85. The instantiation sets to zero the likelihoods
of alternative interpretations of the region RWALL. These adjustments
trigger reevaluations (lines 86 through 92) which raise the likelihood
of (DOCR DR).

State variables are then updated at line 93 by executing the OPTION
variable for region RWALL, the only region experiencing a significant
.(greater than 0.05) change in an interpretation likelihood. Since inter-
_pretation ambiguities remsin but no contradictions were detected, the
resulting search state is saved on SQUEUE (line 94), labeled by its
instantiation history. ?he alternative state based on denying (WALL RWALL)
‘is evaluated in lines 96 to 112 and placed on SQUEUE (line 113) behind the
higher scoring state, (((WALL RWALL) 1.0) TOPCNTXT). This concludes the

first stage of search.
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00114
00115
0o0t1e
00117
00118
00119
00120
00121
00122
00123
00124
Q0125
00126
00127
00129
00129
00130
001131
00132
00133
00134

REINSTATE: (TOPCNTXT)

ASSERT = (WALL RWALL) g

JOR=( (UR# (DOOR LWALL) (DOOR RWALLIID): .123

JOB=({NOT» (OR» (DOOR LWALL) (DUODR RWALL))Y}: .877

JOB=({ {AND» (NOT# (OR# (DRUOR LWALL) (DOGR RWALL3Y)Y (NOT® 0,0))): 877
JOB={ (DOOR DRY): .199

JOR={{ANDw% (ADJ RWALL PIC) (DODR RWALL}}): 0,0

JOR={ {OR¥ (AND* (ADJ RWALL PIC} (DOOR RWALL})) (AND# (ADJ LWALL PIC)
(DOGR LWALL)I)): .123

BG={({OPTION (DOOR RWALL) (WALL RWALL)1}: (WALL RWALL}=,528
SAVESTATEt (((WALL RWALL} , ,62%8) TOPCNTXT), SCORE: 1,91

, LENGTH(IQUEUE): §

REINSTATE: (TOPCNTXT)

DENY = (WALL RWALL)}

JOB={{OKR# (WALL LWALL) (WALL RWALL))): .628

JNB=({ (NOT# (OR# (WALL LWALL) {(WALL RWALL})}): ,372

JUB={ {WALL DR)): ,288

JHB={{0ORe {WALL DR) (WALL PIC)} (WALL CBACK) (WALL WBSKT)1)}: .288
JOB=( (NOT« (UR% {¥ALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT1))): .712
JUB={ (WALL LWALL)): .551

JOB~( (OR¥ {WALL LWALL) (WALL RWALL))): .351

JOB=(¢ (NOT# {(OR+ (WALL LWALL) (WALL RWALL)))Y): .449

JUBe( (WALL DR)}: .347

JNB=((OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT3 ) ): .347
JOR={ (NOT# (OR®» (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKTI}))t .653
JOB=( (WALL LWALL}): .50%

BG=((OPTINN (DOOR RWALL) (WALL RWALL))): (DDOR RWALL)=,123

BG=( (DPTION (LOOR DR} (WALL DR))): (WALL DPR)=,347

BG=( (OPTIUN (DODOR LWALL) (WALL LWALL)))t (WALL LWALL)=,505
SAVESTATE: (((WALL RWALL) , 0) FOPCNTXT), SCHORE: 1.46, LENGTH{IQUEUE): 6
REINSTATE: (¢ ((WALL RWALL) , ,628) TOPCNTXT)

ASSERT = (WALL LWALL)

JOBe((OR® (DOUR LWALL) (DOUR RWALL))): 0.0

JOB=( (NOT+ {(OR«+ (DOOR LWALL) (BOOR RWALL)))Y): 1.0

JOBR~( (AND% (NCGT#* (OR# (DOOR LWALL) (DDOR RWALLY)) (NOT# 0.0)33: 1.0
JOB=( (DOOR DR)}: ,227

JOB=((AND® (ADJ LWALL PIC) {DOOR LWALL})): 0,0 .

JOR«{ (OR% (AND* (ADJ RWALL PIC) (DOOR R#ALL)Y (AND# (ADJ LWALL PIC)
(POOR LWALL)))): 0.0

JOB=((NOT» (OR# (AND# (ADJ RWALL PIC) (DGOR RWALL)}) (AND# (ADJ LWALL
PICY (DDOR LWALLI))I)): 1,0

JUB=((PICTURE PICI): .3

BG=({OPTIUN (DOOR LWALL) (WALL LWALL)})t: (WALL LWALL)=.628

RG«( (OPTION (DOOR DR) {WALL DR})): (DOOR DR}e, 227

SAVESTATE: (((WALL LWALL) . ,.628) ((WALL RWALL) . .628) TOPCNTXT)

, SCORE: 1,96, LENGTH(IQUEUE); 4

REINSTATE: (((WALL RWALL)Y , .628) TOPCHNTXT)

PENY = (WALI LWALL)Y

JOB=({0OR# (WALL LWALL) (WALL RWALLJ))): .628

JUR=((NOT# (OR% (WALL LWALL) (WALL RWALL))))t .372

JOB={ (WALL DKR)): .238

FIGURE B-2 - CONTINUATION OF TRACE SHOWING EXECUTION OF SEARCH
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00135  JOB=({(OR# (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT))): ,288
00136 JOB=( (NOT# {(OR# (WALL DR} (WALL PIC) (WALL CBACK} (WALL WBSKT)))): .712
00137  JUBe((WALL RWALL)): ,5%1
00138  JOB={(OR# (WALL LWALL) (WALL RWALL})}: ,55%
‘00139  JOBe=( (NOT# {OR% (#ALL LWALL) (WALL RWALL))>)): .449
00140  JOB=((WALL DR)): ,347
001431  JOBa( (OR® (WALL DR) {#ALL PIC) (WALL CBACK) (WALL WBSKT))): ,347
00142 JOB={ {NOT# (0OR# (WALL DR) (wWwALL PIC) (WALL CBACK) (WALL WBSKT)))): ,653
00143  JOB={(WALT RWALL)): .505
00144 BG=~{{OFTION (DOOR LWALL) (WALL LWALL)))t (DOOR LWALL)=,123
00145 BG=({NPTION (DOOR DR) (WALL DR)I): (WALL DR)=,347
00146  BG={(OPTION (DOONR RWALL) (WALL RWALL))): (WALL RWALL)=,505
00147 SAVESTATF: (((WALL LWALL) ., 0) ((WALL RWALL) , ,628) TOPCNTXT), SCORE: 1.46
00148  LENGTH(IQUEUE): 5
00149  REINSTATE: (((WALL LWALL) . .62§) ((WALL ®RWALL) , .628) TOPCNTXT)
Qo150 ASSEPT = (PICTURE PIC)
00151  SAVESTATE: ((¢((PICTURE PIC) . .3) ((WALL LWALL) , ,628) (({WALL RWALL)
00152 + «628) TUPCNTXT), SCORE: 1,96, LENGTH{IQUEUE)}: 3
00153 REINSTATE: (((WALL LWALL) , .5628) ((WALL PWALL) , .628) TOPCNTXT)
00154  DENY = (PICTURE PIC)
00155 BG=((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC})):
00156 PCONTRADICTION DETECTED"
00157 REINSTATE: ({{PICTURE PIC) . .3) ((WALL LWALL) , .628) ({WALL RWALL)
00158 . «628) TOPCNTXT}
00159 ASSERT = (DUOR OR)
00160  JOB=((OR# (WALL DR} (WALL PIC) (WALL CBACK) (WALL WBSKT))): 0,0
‘00161 JOR«({ (NOT# {(OR#* (¥ALL DR} (WALL PIC) (WALL CBACK) (WALL WBSKT)})): 1.0
00162  JOB={(WALL LWALL}): ,773
Q0163 JOBe( (WALL RWALLY)Y: .773
N0164 BGe((UPTINN (DOOR DR) (WALL DR))): (DDOR DR)-,227
00165  BG«~((OPTINN (DGOR LWALL) (WALL LWALL))): (WALL LWALL)e,773
00166 EGe((OPTION (DOOR RWALL) (WALL RWALL))): (WALL RWALL)~=.773
00167  SAVESTATE: (((DOUR DR) ., ,227) ((PICTURE PICY , ,3) ((WALL LwWALL)
00164 . =628) ((wALL RWALL) , ,628) TOPCNTXT), SCURE: 2.25, LENGTH{IQUEUE)}: 2
00169  RETHNSTATE: (((PICTURE PIC) . .3) ((WALL LWALL) ., ,628) ({WALL RWALL)
00170 . «628) TOPCNTXT)
00171 DENY = (DOOR DR)
00172  BG=({OPTION (DOOR DR} (WALL DR))): (WALL DR)=.142
00173  SAVESTATE: (((DUOR DR) , 9) ((PICTURE RPIC) , ,3) ({WALL LWALL) . ,628)
00174 ((WALL RWALL) . .623) TOPCNTXT), SCORE:; 1,88, LENGTH(IQUEUE): 3
00175  REINSTATE: (((DOOR DR) , ,227) ((PICTURE PIC) . .3} ((WALL LWALL)
no17e . «528) ((WALL RWALL) , ,628) TUPCNTXT)
00177 ASSERT = (WASTEBASKET WBSKT)
00178  SAVESTATE: (((WASTEBASKET WBSKT) , .12) ((DOOR DR} , ,227) ((PICTURE
- 00179 PICY . .3) ((WALL LWALL) , ,A28) ((WALL RWALL) . .628) TOPCHTXT)
00180 . SCORE: 2,25, LENGTH(IQUEUE):s 1
00181  REINSTATE: (((ODQP DR) , ,227) ((PICTURE PIC) , ,3) C({WALL LWALL)
00182 . +628) ({WALL RWALL) , ,628) TOPCNTXT)
00183  DENY = (WASTEBASKET WBSKT)
00184 BGe{{UFTINN (WASTEBASKET WBSKT) (DOOR WwBSKT) (WALL WBSKT))):
00185 "CONTRADICTIOMN DETECTED"
00186  HFEINSTATE: ({(WASTEBASKET WBSKT) , ,12) ((DOOR DR} , ,227) ((PICTURE
00187 PIC) . .3) ((WALL LWALL) , .628} ((WALL RWALL) , .628) TOPCNTAT)
- 00188 ASSERT =~ (CHAIRBACK CBACK)
00189 nSUCCESS"

FIGURE B-2 CONTINUATION OF TRACE SHOWING EXECUTION OF SEARCH (Concl'u'ded).



Subsequent stages of search proceed in an analogous manner, by rein-
stating the top scoring state from SQUEUE and then exploring the consequences
of asserting and denying the highest likelihood interpretation ofi an unin-
stantiated region., The next step, for example, explores the consequences
of asserting and denying the hypothesis (WALL LWALL) in the restored state
(((WALL RWALL) 1.0) TOPCNTXT) (lines 114 to 148). 1In this example, the
search proceeded directly to the desired global scene interpretation, guided
by monotonically inereasing state scores resulting from a sequence of correct

instantiations.

Note the decreased amount of propagation following an instantiation
and the detection of global inconsistency (lines 155 and 184) as the search
becomes progressively more constrained. The search terminates successfully
" at line 189 with IQUEUE empty and no region without interpretation. Alter-
native sets of consistent interpretations, should any exist, could be
developed in order of decreasing goodness by continuing to search remasining

contexts until SQUEUE was emptied.

C. Final State of Data Base Following Search

The final state of the data base following search is shown in Figure
B-3. It differs from the initial equilibrium state (Figure 8) in two ways:
First, the likelihoods of incorrect interpretations have heen reduced to
zero. Second, the relative lists of some variables (e.g., (DOOR DR)3 have
been pruned by removing other variables whose likelihoods are pinned at

_zero or whose own relative lists have become empiy.



1 <TENFNBAUM>BAYES.RPT;2 WED 4=FEBe76 1153PM Page 4

00001
00002
00003
00004
0000%
00006
00007
" QO00R
00009
00010
00011}
00012
00013
00014
. 0001t5
00016
00017
‘00018
00019
00020
00021
00022
00023
00024
00025
00026
. 00027
000728
00029
00030
0003t
00032
00033
000134
00035
00036
000137
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
0004R
00049
00050
00051

VARIABLE: (WASTEBASKET WBSKT)
VALUE: 12
PROCEDURE :
(WASTEBASKET WBSKT)
RELATIVES:
((OPTION (WASTEBASKET WBSKT) (DQOR WBSKT) {(WALL WBSKT}))

VARIARLE: (DOOR WBSKT)
VALUE: 0.0
PROCEDURE:
(DOOR WBSKT)
RELATIVES:
(¢(OPTION (WASTEBASKET WBSKT) (DOOR WASKT) (WALL WBSKT)))

VARIABLE: (WALL WBSKT)

VALUE?: 0,0

PROCEDURE ¢
(WALL WBSKT)

RELATIVES:
((OPTION (WASTEBASKET WBSKT) (DOCR WBSKT) (WALL WBSKT)))
((OR=s (WALL DR) (WALL PIC)Y (WALL CBACK) {(WALL WBSKTI)

VARIABLE: (DOOR RWALL)
VALUE: 6.0
PROCFDURE:
{AND+ ,227 (AND» (NOTe# (OR+ (CDOR DR)
(DODR PIC)
(DDOR CBACK}
{DOCR WBSKT)))
(NQT+ (ANDs (ADJ RWALL PIC)
{PICTURE PIC]
RELATIVES:
((OPTION (DOOR RWALL) (WALL RWALL)))
({AND® (ADJ RWALL PIC) (DOOR FWALL)Y)
((UR* (DOOR LWALL) (DOUOR RWALL)))

VARTABLE: (WALL RWALL)
VALUE: .773
PROCEDURE:
{AND# ,773 (NOT# (OR# (WALL DR)
(WALL PIC)Y
(WALL CBACK)
(WALYL wBSKT]
RELATIVES:
((DPTION (DOOR RWALL) (WALL RWALLY))

FIGURE B-3 DATABASE FOLLOWING SEARCH
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00052
00053
poos4
‘0005%
00056
00057
00058
00059
00060
00061
00062
00063
Q0064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
0aa77
00078
00079
00080
00081
00082
00083
000”4
00QRS
00086
00087
000R8
00089
00099
60091
00092
00093
Q0094
00095
Q0096
00097
00098
00099
20100
00101
- 00102

VARIABLE: {DOUR LWALL)}

VAL UE: 0.0
PROCEDURE:
[AMD* ,227 (AND# (NOT# {(OR# (DOOR
(DooOR
(CONR
(DOOR

(NOT* (AND# (ADJ

Page 4:1

DR)

PIC)
CBACK)
WBSKT)))
LWALL PIC)

(PICTURE PIC)

RELATIVES:

((OPTION (DOOR LWALL) (WALL LWALL)})
( (AND®* (ADJ LWALL PIC) (DOOR LWALL}}}

¢ (OR# (DOOR LWALL) (DODR RWALL)))

VARIABLE: (WALL LWALL)
VALUE: «773
PROCEDURE:
{AND# ,773 (NOT# (OR# (WALL DR)
{WALL PIC)

(WALL CBRACK)
{WALL WBSKT)

RELATIVES:

{{UPTION (DNOR LWALL) (WALL LWALLY))

VARIABLE: (DOOR CBACK)
VALUE: Q0,0
PROCEDURE?

(DDOR CBACK)
RELATIVES:

((DPTION (DOOR CRACK) (CHAIRBACK CBACK) {(WALL CBACK)})

VARIARLE: (CHAIRBACK CBACK)
VALUE: .11
PROCEDURE:

(CHAIRBACK CBACK)
RELATIVES:

{(OPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))

VARIABLE: (WALL CBACK)
VALUE!: 0.0
PROCEDURE:

{WALL CBACK)

RELATIVES:

{(OPTION (DDOUR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))
{({NRs (WALL DR) (WALL PIC) (WALL CBACK) (WALL WBSKT)1)

FIGURE B-3 DATABASE FOLLOWING SEA.RCH {Continued)
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00103  VARIABLE: (PICTURE PIC)

00104  VALUE: .3

00105  PROCEDURE:

00106 [AND* .3 (NDT# (OR# (AND#¥ (ADJ RWALL PIC)
00107 (DOOR RWALL))
00108 (AND# (ADJ LWALL PIC)
00109 (DOOR LWALL]
00110  RELATIVES:

00111 ((UPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)))
80112

00112

00114  VARIABLE: (DOUR PIC)

00115  VALUE: 0,0

- 00116 PROCEDURE:

00117 (DOOR PIC)

00118 RELATIVFES:

00119 ((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC))}
00120

- oh124 .

00122 VARIABLE: (WALL PIC)

‘00123 VALUE: 0.0

00124 PROCEDURE:

0e125 (WALL PIC)

20126 RELATIVES:

00127 {(OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)))
go128 ((UR# (WALL DR) ¢wALL PIC) (WALL CRACK) (WALL wWBSKT)))
00129

00130

00131  VARIABLE: (DOUR DR)

00132 VALUE 1 «227

00133 PROCEDURE S

00134 (AND# ,227 (AND# (NOT+ {OR+ (DOOR LWALL)

20135 (DOOR RWALL)))
00136 (NOT® 0,0)))

00137 RELATIVES:

00138 (¢(OPTION (DOOR DR) (WALL DR)Y))

001139

00140

00141 VARIABLE: (WALL DR}

00§42 VALUE: 0.0

00143 PROCEDURE

00144 [AND# ,773 (NOT# (OR# (WALL LWaLL}

00145 {WALL RWALL]

40146 RELATIVES: ’

‘00147 ((OPTION (DOOR DR) (WALL DRI

00148 ((OR+ (WALL DR) (WALL PIC) (WALL CBACK) {(WALL WBSKT)))
00149

00150

00151 10088 conses

00152 128+ seconds

FIGURE B-3 ~ DATABASE FOLLOWING SEARCH (Conciuded)-

B-10



Appendix C

REPRESENTATIONS FOR SPATIAL RELATIONS

Spatial context is an important factor in resolving interpretation
ambiguities. Procedural representations have been implemented for some
common three dimensional spatial relationships between two regions, based
on the relative world coordinates of vertices in their polygonal boundaries.
These representations are described in Table C-1 and demonstrated in Table

C-2 using the test regions in Figure C-1.

The above representations were originally developed for room scenes,
assuming availability of range data, All relations except planarity can

be reformulated in terms of two-dimensional image coordinates for standard

eye level views,




3.

Table C-1

REPRESENTATIONS FOR SPATIAL RELATIONS BETWEEN TWO PLANAR SURFACES
GIVEX 2 RECIONS-=A (e.g., & Horizoncai Chatr Seat} and B (¢.8., & Yertical Chair Back)

B, LA
s
REGION B
!rrmn - "m-
IVERTICALL
"’—‘—1 allld-

WHALD COORDINATES

TARIZI D

Lefr of/Right of

Let Axain, Aciex « slnimom and naxioum X (mage coordinates of boundary pefata of Region A
Sxmin, Bxzax = slolmum and maximun % losge coordinates of boundary potnts of Regicn B
then

A.  Reglon A {» Left of Reglon §

iff txale + Bxpax > Axmin + Axmax
and Bxmin > Axmax or
by Bxmi = Axn, =1
Max (hocmin, Bxming nx 2 .49

Hin (Axmax = Axmin, Brmax - Gxoin} + 1
{The isat comdition peovides a rcasonahle incerpretation of che goncept “left” {n cazes vhore Reglons A and B par-
rially averlap.)
B. Region A is right of Regloa B

iff Bxmin + Bxmax s Acmin + Aomax
and Amin > Bxmax ot

HMin (Axcmax, Bxoax) » Axmip + 1 % .49
Min {Axmax - Axmin, Bamax = Bxmin) + 1 *
BolowfAbove

Let Azmin o Afmax = height of maximun and oinimum ¥ {mage coordinnces of boundary polnts of Reglon A (horizonzal surface)
Brmin, Brmax * height of maximum and oinisus ¥ lmage coordinates of boundary polnts of Reglon 8
then

Al Reglon & 15 below Region B

1ff Yzain + Basax > Azaln + Amax
and Brain > Azmax or

Hax {Azmin, Brmin) - Azmax = 1

Min (Armax = Azmin, Bzmax - Bazmln} + 1 s.1
2, Heglon A ta above Region 8
iff Srmin + Brmmax s Araln + Azmax
and Azaln > Bzmax or
Min (Armax, Brmax) « Armin + 1 a1

Hin (Azmax - Aroin, Brzmax « 8imia) + 1
{An additlonal telation, directly above/dlreetly below may be defined by requiring that the regicns lnvolved not be
to the right, tefz, in front, or in back of cach other.)

FrontfBack

Let Ammla, Amsx = caxioum ond minimus range of boundary points of Regiocn A
Srmin, Brmax * saxlews and minimum range of boundary polnts of Region B (vattical surface)
then

A.  PReglon A {3 In frent of Region B

iff Brojn + Brsax » Armin + Armax
and Bralr > Armax or

Max {Armin, Bromin) « Armax = 1
=¥

Hin (Armax - Arzin, Broax - 8min) + L

FrontfBack {Contluvded)

B. Reglon A is (o back of Reglon 3

134 PBrmin + Brmax = Amin + Armax
and Asmin » Brmax or

Hin (Aroax, Brmax} = Atoin + 1
Min (Amax - Armin, 8rmax - Brain) + 1

.9

Coplanar

Let PLA, » least squate planar surfatc Eif to boundary points of Reglen A
PLE, = least squace planar surfate £t to bousdary peints of Region B
then

Reglon A and Regfon B are coplanar 1ff the following criteria hold:

{1} The surface sormals of PLA and FLB sust be pacallel to within 1O dogrees.
{2) Each loeal plane must intercept the same coordinste axis (X, Y, or Z) closest to the origin,

(3) These (most teklable) Lntercepts must agree within 1on.

{These above cricerim compensute hevristically for uncertaincies i{n range data,)

c-2




Table C-2

RELATIONS OF SURFACES IN FIGURE 9 USING REPRESENTATIONS IN TABLE 3,3a
(Table lists relations of¢ object 1 to ohject 2)

where 3 3 above F = in front L = Left
BL = melow BK = in back R = rignt
OBJECT 2
: Chairback Chairseat Door Pleture Tabletop Wall Wastebasket
DRJECT 1
Chairmack ] A,BK R R,;BL F R,BL R,A
Chnalirseat B,F = R R¢BL,F BL,F R,BL P,A
Doer L L sea L L L 1L.BK
Picture LA L,A,BX R wee A,BK R R,A
Tabletep BK  ALBK R AL, F -ne R,BL  R,A
Walil L,2 L,A R L L,A we- R,A,BK
~ Wastespasket L,BL L+BL R,F L,BL L.BL L,BL,F w==
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REGIONS USED TO TEST SPATIAL RELATIONS {TABLE C-2)
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Appendix D

XDEMON: A CONSTRAINT SATISFIER

A, Qverview

A constraint satisfaction system has been implemented utilizing cooper-
ating independent processes coupled through a global data base. The data
base consists of variables representing constrained entities and constraints,
Associated with each variable is a procedure for computing a value in terms
of the current values of other variables. ZFEach variable also has a list of
related variables whose procedures utilize the present variable as input.
When the value of a ﬁariable is changed, its related variables are activated
by adding their procedures to a queue of jobs to be run, Thus, if running
a process changes the value of its associated variable, additional processes

may be activated. Execution terminates when the job queue is empty.

B. Details
Each variable in the data base contains four components:

. A FORM (procedure in the XDEMON program)

« A VALUE

+ A set of RELATIVES (a list of related variables)-
+ VARPROPS (property list).

There are selecting and updating functioms for each of the above
components. The form of a variable is an internal representation of some
s-expression. This internal representation, known as an H-expression, is
composed of either a LISP atom, or a list of other variables. Rach variable
corresponds to a particular s-expression: in LISP a variable corresponds
to a particular atom, and we have generalized this notion. For example,
(FOO X Y) has a corresponding variable, as do FOO, X, and Y. So also does
(FIE (¥00 X Y) Z). As in LISP, character strings are normalized to yield

a unique internal representation--the variable.

(NORMEXPR (expression)) is a function that returns the variable

corresponding to the given expression.

D=1



Variables are initislized to have the value Undef,. Relatives and
varprops are initialized to the wvalue Nil.

A collect;on of variables may be linked to form a network., (CONNECT
{variable)) puts (variable) on the lists of relatives of all the variables
in its form. (CONNECT! (variable)jdoes the same thing recursively for the
variables in the form as well. An example is given in Figure D-1. There
are corresponding inverse functions DISCONNECT and DISCONNECT!.

Note that pointers to subexpressions are available via the form and

pointers to superexpressions via the relatives.

The wvalue of a variable is normally set by th function HSET. (HSET
(variable) (value)) returns (value} as its result. HSET is executed for
its side~effects: 1f the new value is the same as the old wvalue (under
the equivalence HSETEQ, initially EQUAL), nothing happens: 1f the new
value 1s different, then the variableié réiatives are evaluated (or rather

the evaluations are added to a list of jobs to be run). Note

that other schemes could be used here; e.g., some relatives might be

evaluated before the variable is reset.

Ck %k k)

=

SENWs

. SA-1530-34

FIGURE D-1 REPRESENTATION FOR THE EXPRESSION
{CONNECT!
(NORMEXPR
{QUOTE
(AND{OR A B}
(OR B (EQ A CII}I))
D=2



Variables are evaluated by (HEVAL (variable)). HEVAL evaluates the
“form of the variable, and then HSETS the variable to the new value, perhaps
causing its relatives to be evaluated. It returns the new value as its
result. The value of an atomlc H-expression is the value of the variable:
otherwise, the value is the result of APPLYING the value of the CAR of the
H-expression to the CDR.

Unlike LISP the definition of a function is kept in the value of a
corresponding atomic variable, not in a special cell. Definitions are
established be executing (HDEF (function definition)). The {(function
definition) is a list of two elements, the name and the body (simllar to
LISP's DEFINE). The body can be the name of a LISP function, or a lambda
expression. Note also that when a variable is HEVALuated, the evaluation
is not recursive; the immediate value of the variables forming the H~-

expression are utilized without HEVALuating them,

Variables are only evaluated when the value of something to which
they are relatives is changed, never just because a variable higher in

the expression 1s evaluated. Values are thus remembered and not recomputed

unnecessarily.

A list of outstanding jobs to be run is held in the global variable
JOBLIST. Those jobs are executed by a call (RUNJOBS), which will succes-
sively execute and then delete the jobs on the list. RUNJOBS terminates

‘when there are no jobs left (including those which have been added

dynamically).

XDEMON listings are available from the authors.
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Appendix E

AN MSYS EMULATION OF WALTZ FILTERING

MSYS can be easily modified to emulate a variety of search paradigms
other than M*. This appendix describes an MSYS emulation of Waltz's
filtering algorithm®’ and its application to region analysis.

Waltz analyzed line drawings by initially assigning all locally
possible interpretations to each vertex and then eliminating any vertex
interpretation that was inconsistent with all possible interpretations
of a neighboring vertex along a common edge., Eliminating a possible
vertex interpretation could result in the elimination of additional
interpretations‘from adjacent vertices. This elimination process would
often propagate until each vertex was left with 2 unique interpretation.

A similar'paradigm can be apﬁlied to region analysis by initially assign-
ing all locally possible interpretations to each region and then eliminat-
ing interpretations inconsistent with those assigned to neighboring regions
sharing a common boundary. Here, inconsistency is defined in terms of a
1ist of legally adjacent interpretations. Such a paradigm was implemented
in MSYS and used to analyze the scene partition of Figure 4.

The analysis utilized the adjacency constraints given in Figure E-1,
where (LEGALADJ I1 (I2 ... IN)) specified a 1list (I2 ... IN) of legal
interpretations for regions adjacent to a region with interpretation Il.
The constraint (LEGALADJ DOOR (DOOR WALL FLOOR WASTEBASKET TABLETOP)),
for example, required that regions labeled DOOR could be adjacent only to
regions labeled DOOR, WALL, FLOOR, TABLETOP, or WASTEBASKET. (In a refine-
‘ment on Waltz, it was further required that two door interpretations could
be legally adjacent only if the regions involved had similar brightness.)
WALL regions, similarly, could be adjacent only to regions labeled DOOR,
WALI,, PICTURE, WASTEBASKET, or TABLETOP. These adjacency constraints are
somewhat contrived because region adjacency is an ill-defined concept in
a partially partitiohed scene. Fixtures, such as WALLS, DOORS, FLOOR, and
BASEBOARD, have well-defined mutual adjacencies whereas moveable objects,
such as WASTEBASKET and CHAIR, can appear in fairly arbitrary relationships

with each other and with the fixtures. The analysis also used the constraint

E-1



(LEGALADJ DOCR {DOOR WALL FLOOR WASTEBASKET TABLETOP))
(LEGALADJ WALL (WALL DOOR PICTURE TABLETOP WASTEBASKET BASEBOARD))

(LEGALADJ PICTURE (WALL PICTURE TABLETOP}H}
{LEGALADJ WASTEBASKET (FLOOR WALL BASEBOARD DCOR TABLETOP CHAIRBACK))
{LEGALADJ CHAIRBACK (CHAIRSEAT TABLETOP WALL DOCOR WASTEBASKET))

FIGURE E-1 ADJACENCY CONSTRAINTS FOR VERTICAL
SURFACES OF ROOM SCENES



ROOMPARTITION to eliminate DOOR and WALL as possible interpretations of

vertical regions with limited vertical extent.

Since Waltz dealt strictly with symbolic input, the classification
routine was modified to return an a priori likelihood of 1.0 for all region
interpretations that qualified as possibilities based on their height and
surface orientétion. This was the only actual mbdification to an MSYS

routine required to emulate the Waltz filtering algorithm.

Figure E~-2 contains a complete trace of the interpretation process
encompassing network initialization (lines 1 to 27) and evaluation of the
resulting solution (lines 28 to 35), A unique and consistent interpretation
of the scene has been achieved without any instantiation and with consider-
ably less propagation in the initialization phase than was required to
achieve equilibrium likelihoods with nondeterministic constraints (see
Appendix B). The final equilibrium likelihoods for all interpretation
variables appear in Figure E-3, which presents the data base at equilibrium
following initialization,

Figure E-3 also shows the procedures that were compiled from the
adjacency constraints of Figure E-1 for computing interpretation likeli-
hoods. These procedures contain support clauses that reduce the likeli-
hood of an interpretation to zero whenever the likelihoods of all compatible
interpretations in any adjacent region become zero. The evaluation function
for (WALL LWALL), for example, contains clauses requiring that regions DR
_be DOOR, that region PIC be PICTURE or DOOR, that region WBSKT be DOOR or
WASTEBASKET, and that region TTOP be TABLETOP. WALL was not an allowed
interpretation for regions DR and PIC because their brightnesses were

markedly different from that of region LWALL.
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00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
90016
00017
00018
00019
00020
00021
00022
60023
00024
00025
00026
00027
00028
00029
00030
00039
00032
00033
00034
00035
00036

BG={NETSETUP
BG={NETSETUP
BG»{NETSETUP
BG=({NETSETUP
BG=(NETSETUP
BG=(NETSETUP
BG=(NETSETUP
BG=(NETSETUP
JOB=( (UR® (W
BG=(NETSETUFK
BG-(NEISETUP
JOB=({ (OR+ (W
RG=(NETSETUP
BG= (METSETUP
JOB=( (ORs (D
BG=(METSETUP
JOB«{ (AND» (
(WALL DR) (W
JOB=( (DOOR L
JOB=((OR¥ (W
JOB~( (AND# ¢

JOB=( (DOOR RWALL)):

BG=(NETSETUP
BG=(NETSETUP

JOBe( (AND* (OR# (wALL WBSKT) (WAS

(WALL DR) (W
JNB=( (084 (W
BG={ (OPTILN
RG=({OPTION
BG={ (OPTJON
CBACK)=1.0
BG=((UPTION
BG=((OPTION
BG~((OPTION
WASTEBASKET
nSUCCESS*

FIGURE E-2

THY 26=FER=76 8:05PM Page 1

(QUOTE

(WASTEBASKET WBSKT))): 1.0
(QUOTE (DOOR 4W8BSKT))): 0.0=-SETUP
(QUOTE (WALL WBSKT))): 0.0-SETUP
(QUOTE (DOOR RAALL))): 1.0
(QUOTE (WALL RWALL})): 1.0
(QUOTE (DOOR LWALLI))1 1.0
(QUOTE (WALL LWALL})): t.0
(GUAOTE (DDOR CBACK)))1 G.0=SETUP

ALL CBACK) (CHAIRBACK CBACK) (PNDR CRACK)I)): 1.0
(QUOTE (CHAIRBACK CBACK)I))! 1.0
{QUAOTE (WALL CBACK))): 0,0=8ETUP
ALL CRACK) (CHAIRBACK CBACK) (DOOR CBACK))): 1,0
(AUOTE (PICTURE PI1C))): 1,0
(QUOTE (DDOR PICI)): 0,0-SETUP
QOR PIC) (PICTURE PIC}Y): 1.0
(WUOTE (WALL PIC))): 0,0-SETUP
GR* (WALL WBSKT) (WASTEBASKET WA8SKT)) (TABLETOP TTOP)
ALL PIC))): 0,0
wALL)): 0.0
ALL LWALL) (DOOR LWALL))):
TABLETOP TTOP) (WALL PIC)))
0.0
(QUOTE (DOCR DR)YJ): 1
(QUOTE (wALL DR))): 0O
T

1.0
: 0.0

»0
«0
EBASKET WBSKT)) (TABLETOP TTOP)
aLL PIC})): 0,0

ALL DR) (DODOR DR})): 1.0

{DOOR DR) (WALL DR))):; (DOOR DR)=1.0

(PICTURE PIC) (DOOR PIC) (WALL PICY})1 (PICTURE PIC)=1.0

(DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK))): (CHAIRBACK

{DOUR LWALL) (WALL LWALL))): {(WALL LWALL)~1,0
(POOR PWALL) (WALL RWALL))): (WALL RWALL)=1.0
(WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))s (
WBSET)}=1,0

EXECUTION TRACE OF WALTZ EMULATION
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00001
00002
00003
00004
00005
00006
00007
00009
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
06047
00048

© 00049

00050
00051

RELATIVES:

VARIABLE: (WASTEBASKET WBSKT)
VALUE: 1.0
PROCEDURE:
{AND#* 1,0 (AND# (TABLETOP TTOP)
(OrR# (WALL CBACK)
{CHAIRBACK CBACK}
(DOCGR CBACK))
(OR* (WALL DR)
(DOCR DR))
(OR#* (WALL LWALL)
(DOOR LWALL))
(FLOOR FLR}))}
RELATIVES:
({OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))
((OR# (WALL WBSKT) (WASTEBASKET WBSKT)))
({UR# (DOOR WBSKT) (WASTEBASKET WBSKT)))
{(AND# (CHAIRSEAT CSEAT) (WASTEBASKET WBSKT) (TABLETOP
TTOP}}?
{{OR#* {WALL WBSKT) (DODR WBSKT) (WASTEBASKET WBSKT)))

VARIABLE: (DOOR WBS3KT)
YALUE: 0.0
PROCEDURE®
(DOCR WBSKT)
RELATIVES:
(COPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))
((OR# (DOOR WBSKT) (WASTEBASKET WBSKT)))
(¢OR# (WALL WBSKT) (DOOR WBSKT) (WASTEBASKET WBSKT)))

VARIABLE: (WALL #BSKTY
VALUE: 0.0
PROCEDURE:

{WALL WBSKT)

{(OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))
({OR# (WALUL WBSKT) (WASTEBASKET WBSKT)))
((OR# (WALL wBSXT) (DOOR WBSKT) (WASTEBASKET WBSKT)})

VARIABLE:; (DOUR RWALL)
VALUE: 0.0
PROCEDURE:
¢AND# 1,0 (AND# (TABLETOP TTOP)
{waLl PIC)1}
RELATIVES:
' ((OPTION (DOOR RWALL) (WALL RWALLI})

VARIABLE: (WALL RWALL)

FIGURE E-3 DATABASE AT INITIAL EQUILIBRIUM
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00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
000613
00064
00065
00066
- 00067
00068
00069
06070
00071
00072
00073
00074
00075
00076
00077
¢0078
00079
06080
oQeal
0oo82
" Q0083
Qo084
0008s
00086
00087
00088
00089
00090
00091
00092
00093
00094
940095
00096
0gos?
00098
00099
00100
00101
00102

VALUE:
PROCFDURE®

RELATIVES:

VARIABLE:
VALUE:®
PROCEDURE :

RELATIVES:

1.0

[AND» 1,0 (AND# (TABLETOP TTOP)
(OR® (DDOR PIC)
(PICTURE PIC)

({(OPTION (DOOR RWALL) (WALL RWALL)))
((AND® (TABLETOP TTOP) (WALL LWALL) (WALL RWALL)))

(DOOR LWALL)
0.0

(AND® 1,0 (AND® (OR# (WALL WBSKT)
(WASTEBASKET WBSKT))
(TABLETOP TTOP)
(WALL DR)
(WALL PIC)))

((CPTION (DOOR LWALL) (WALL LWALL)))
((OR+ (WALL LWALL) (DOOR LWALL}))
((AND® (ORw (WALL WASKT) (DOOR WRAKT) (WASTEBASKET WBSKT))

(DOOR LWALL)Y (FLOOR FLR)Y)

VARTABLE:
VALUE:
PROCEDURE:

FELATIVES:

(WALL LWALL)
1.0

(AND# 1,0 (AND# (OR# (DOOR WBSKT)
{WASTEBASKET WBSKT))
(TABLETOP TTOP)
(DOOR DR)
(OR# (DOOR PIC)
(PICTURE PIC)

((OPTION (DOOR LWALL) (WALL LWALLYM)

{{OR# (WALL LWALL) (DOGR LWALL)))

{({AND# (TABLETOP TTOP) {(WALL LWwALL) (WALL RWALL)))

{{AND® (DR# (WALL WBSKT) (DOGR WBSKT) (WASTEBASKET WBSKT))

{WALL LWALL) (FLOOR FLR)))

VARIABLE:
VALUE:
PROCEDURE:

RELATIVES:

FIGURE

(DQOR CBACK)
0,0

(DOOR CBACK)
((OPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))
{(OR«# (WALL CBACK) (CHAIRBACK CBACK) (DOOR CBACK)}))

1

E-3 DATABASE AT INITIAL EQUILIBRIUM {(Continued)

E-6
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00103
00104
00105
00106
00107
00108
00109
00130
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133

" Q0134

0013%
00136
001137
00138
00139
00140
00141
00142

- 00143

00144
08145
0C1de
00147
Q0148
00149
Q0150
Q0151
00152
Q0153

VARIABLE: (CHAIRBACK CBACK)
VALUE: 1.0
PROCEDURE
{AND» 1,0 (AND# (CHAIRSEAT CSEAT)
(WASTEBASKET WBSKT)
(TABLETOP TTOP)))
RELATIVES:
((OPTIUN (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))
((OR# (WALL CBACK) (CHAIRBACK CBACK) (DOOR CBACK)))

VARLABLE: (WALL CBACK)

VALUE: 0.0

PROCEDPURE:
{WALL CBACK)

RELATIVES!?
((OPTION (DNOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)Y))
((OR# (WALL CBACK) (CHAIRBACK CBACK) (DOOR CBACK)))

VARTABLE: (PICTURE PIC)
VALUE: 1.0
PROCEDURE:
(AND# 1,0 (AND#+ (TABLETOP TTOP)
(WALL LWALL)
(WALL RWALLYM)
RELATIVES:
C((OPTION (PICTURE PIC) (DUDR PIC) (WALL PIC)))
((OR# {DOOR PIC) (PICTURE PIC)))

VARIABLE: (DOOR PIC)

VALUE: 0.0

PROCFDUNE:
(DUOR PIC)

RELATIVES:
((OPTION (PICTURE PIC} (DOOR PIC) (WALL PIC))Y)
((ORs (DOOR PIC) (PICTURE PIC)))

VARIABLE: (WALL PICH
VALUE: ¢,0
PPOCEDURE:
(WALL PIC)
RELATIVES:
((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC}))
(tAND* (TABLETOP TTOP) (wALL PIC)))
{(AND# (OR# (WALL WBSKT) (WASTEBASKET WBSKT)) (TABLETOP
TTOP) (WALL DR) (#ALL PIC)))

FIGURE E-3 DATABASE AT INITIAL EQUILIBRIUM ({Continued)
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00154 VARIABLE: (ROOR DR)

00155 VALUE: 1.0

00156 FROCFDURE:

00157 (AND# 1,0 (AND» (UR# (WALL WBSKT)

00158 (DOOR WBSKT)

00159 (WASTEBASKET WBSKT))
00160 (WALL LWALL)

00161 (FLOOR FLR}))

00162 RELATIVES:

00163 {(OPTION (DOOR DR) (WALL PR))?

00164 {{OR#* (WALL DR) (DOOR DR)))

00165 [{(AND% (OR# (DOOR WBSKT) (WASTEBASKET WBSKT)) (TABLETOQP

00166 TTOP} (DONR DR) (OR« (DOOR PIC) (PICTURE PICYI)})
00167

00168

00169 VARIABLE: (WALL DR)

00170 VALUE: 0.0

00171 PROCEDURE;

00172 (AND» 1.0 (AND# (DR# (WALL WBSKT)

00173 (DOOR WBSKT)

00174 (WASTEBASKFT WHSKT))}
00175 {NOOR LWALL}

00t76 (FLOOR FLR1}}))

00177 PELATIVES:

00178 {(OPTION (DDOR DR} (WALL DR)))

00179 {{CR« (WALL DR) (DOOR DR)))}

00180 ((AND# (OR# (WALL WBSKT) (WASTERASKET #B8SKT}} (TABLETOP
00181 TTOPY (WALL DR) (WALL PIC)))

00182

00183

00184 11532 conses
00185 144. Seconds

FIGURE E-3 DATABASE AT INITIAL EQUILIBRIUM {Concluded)



Appendix F

AN MSYS EMULATION OF DUDA'S ALGORITHM

Duda®® formulated scene interpretation as a tree searching problem.
Pictorial regions were each represented by a node of the tree and the
branches emanating from a node corresponded to the possible interpretations
for that region. The first region selected for labeling was designated as

T

the "'start node.” A path through the tree from the start node to a terminal

node represented a unique labeling of the scene.

Every region interpretation had a likelihood based on the attributes
{e.g., color and size) of its associated region and every node had a score
representing the sum of interpretation likelihoods along the path from the
start node to that node. Iegal interpretations for adjacent regions were
conétrained deterministically, as in the Waltz analysis (see Figure E~1).
An A* gsearch was used to find the highest scoring path through the tree
that satisfied these constraints.

The A* search proceeded at each stage by expanding the open node with
the greatest score, Initially, only nodes emanating from the start node,
representing possible interpretations of the first region, are open. To
expand a node, a region was selected that was not previously considered
on the path to that node. The expansion node was removed from the list
‘of open nodes and new open nodes were added for each interpretation of
the selected region that was not incompatible with any previously assigned
region interpretation on the path. Node expansion was repeated until a
terminal node was selected for further expansion; the path to that terminal

node represented the highest scoring legal labeling of the scene.

Duda's algorithm differs from M* in two significant ways., First, the
selection of open nodes was based solely on the a priori likelihoods of
previously instantiated interpretations, rather than on globally refined
a posteriori estimates of all interpretation likelihoods, as in M*., As
in the Walt=z anal&sié,'cbnstraints were strictly Boolean and thus could
not be used to adjust likelihoods, except to zero. Second, Duda's algorithm

invoked constraintsz only when a node was expanded, and for the sole purpose

1



of determining which interpretations of the selected region were compatible
with the other interpretations on the path to that node. Waltz and M*, by
coentrast, do not require instantiation as a prerequisite for invoking a
constraint. Regilon interpretations are eliminated whenever they are incon-
sistent with all possible interpretations of any other region. This policy
allows all subtrees containing the eliminated interpretation to be pruned
from the search and avoids redundant discovery of the same inconsistency

on distinct branches of the search. Moreover, eliminations can propagate,

allowing additional inconsistencies to be discovered.

Figures F-1 through F-4 document the interpretation by Duda's algorithm
of the scene partition depicted in Figure 4, using the constraints given in
Figure E-1 (the same problem previously analyzed by Waltz's algorithm in
Appendix E). Figure F-1 documents the initialization phase. Unlike M*
(Appendix B) and Waltz (Appendix E), no likelihood reevaluation occurs
because constraints do not apply until interpretations are instantiated.
Figure F-2, a snapshot of the data base following initialization, shows
all interpretations still carrying their a priori likelihoods,

In the search phase (Figure F-3), instantiations are proposed on the
basis of the a priori interpretation likelihoods. As a consequence, the
region interpretation (WALL DR) was chosen as the third instantiation
(Figure F-3, 1line 78) and the search was forced to backtrack. Note that
reevaluations are propagated only when interpretatibns are asserted and
not when they are denied because only in the case of a unique instantiation
are new constraints activated. In the terminal state (Figure F~-4), the
likelihoods of correct interpretations remain at their a priori values while

_ the likelihoods of all other interpretations have been reduced to zero.

The emulation of Duda's algorithm in MSYS was accomplished by modifying
the procedures associated with region interpretation variables and OPTION
variables. The OPTION procedureﬁwas modified so that only the likelihoods
of instantiated interpretation variables contributed to the score of a
search state, The modified OPTION procedhre returned a Boolean value, 1.0,
if the associated region was uninstantiated, and 0.0, if it was instantiated.
‘The procedures that computed interprétation likelihoods were then modified
to always return the 2 priori likelihood of the interpretation 6r else zero.
The likelihood of an interpretation was =zero only if that interpretation had
been instantiated, and an adjacent region had previously been instantiated
to an incompatible interpretation. ‘

F-2




A comparison of the likelihood procedures in Figures E~3 and F-2
shows how the standard M* likelihood procedures used in the Waltz emula-
tion were modified to suppress propagation in the Duda emulation. Consider,
in particular, the procedures associated with the interpretation variable
(PICTURE PIC) at line 125 in Figure E-3 and line 188 in Figure F-2. First,
each supporting interpretation of a constraint was replaced by a disjunction
(OR**) of that interpretation and its associated OPTION variable. All sup-
port clauses were then enclosed in a grand disjunction with the OPTION
variable of the constrained interpretation (PICTURE PIC). AND** and OR**
were threshold versions of AND* and OR*, respectively, that evaluated to
zero or one depending on whether or not the corresponding unthresholded
function evaluated to less than 0.1, Since OPTION variables of uninstantiated
regions have thé value 1.0, the likelihood of (PICTURE PIC) is pinned at the
a priori likelihood 0.12, as long as region PIC is uninstantiated, or all
of the following conditions apply: Reglon TTOP is uninstantiated or
instantiated to TABLETOP, region LWALL is uninstantiated or instantiateq
to WALL, and region RWALL is uninstantiated or instantiated to WALL.
" Otherwise, the likelihood of (PICTURE PIC) drops to zero.
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00001 HG=(NETSETUF (QUOTE (WASTEBASKET WBSKT)}}; .12

00002 BG»(NETSETUP (QUOTE (DODR WBSKT1)}): 0.0=SETUP

00003 RG=(NETSETUP (QUOTE (WALL WBSKT))): 0.0<SETUP

00004 BG=(NETSETUP (QUATE (DOCR RWALL))): .227

00005 EG=(NETSETUP (QUDTE (wALL RWALL))): .773

00006 BG=(NETSETUP (QUUTE (DDOR LWALL))): .227

000u? BG=(NETSETUPF (QUOTE (WALL LWALLIY): 773

00008 RG+{NETSETUP (QUOTE (DOOR CBACKX)})): 0.0=SETUP

00009 JObe( (OR%» (OPTION (DOOR CBACK) (CHATRBACK CBACK) (WALL CBACK)) (WALL
0co10 CHACK) (CHAIRBACK CBACK) (DOOR CBACK))): 1.0

0001} RG=(NETSETUP (QUOTE (CHAIRBACK CBACKYI)})t .11

00012 AC=({NETSETUP (QUOTE (WALL CBACK}}): 0.0=SETUP

00013 JOB=( (OR¥% (OPTION (DODOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)) (WALL
00014 CHBACK) (CHAIRBACK CBACK) (DOOR CBACK)}}: 1.0

00015 BG=(NETSETUP (QUOTE (PICTURE PICI)):- .

00016 BG«(NETSETUP (QUOTE (DOOR PIC)1Y: 0. o.ssrup

00017 JUB=¢ (OR#s (OPTION (PICTURE PIC) (DODR PIC) tWALL PIC)) (DOOR PIC)
00018 (PICTURE PIC))): 1,0

00019 BG=-(NETSETUP (QUOTE (WALL PIC})}1 0,0=SETUP

00020 JOB«( (ORss (OPTION (PICTURE PIC) (DOGR PIC) (WALL PIC)Y) (WALL PICI)I): t,0
00021 BG=(NETSETUP (QUOTE (DOOR DR)})1 ,227

00022 BG=(NETSETUP {(QUOTE (WALL DR))): 717}

040023 RG={(QOPTION (DOOR DR) (WALL DR))I)t 1.0

00024 BG~( (OPTION (FICTURE PICY (DOQR PIC) (WALL PIC))): 1,0

00025 BG=((UPTION (DOOR CBACK) (CHATRBACK CBACK) (WALL CBACK))): 1,0

00026 BGe((OPTION (DOCGR LWALL) (WALL LWALL))): 1.0

00g27 BG-((OPTINN (DOOR RWALL) (WALL RWALL1)): 1.0

0002R BGe((UPTION (WASTEBASKET WBSKT) (DOQR WBSKT) (WALL wasxTI)): 1,0
00029 SAVESTATE: (TOPCNTXT), SCORE: 0, LENGTH(IQUEUEJ- &

FIGURE F-1 TRACE OF EXECUTION DURING ESTABLISHMENT OF INITIAL EQUILIBRIUM

F-4 -
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00001
00002
00g03
00004
0000s
00006
00007
00008
00009
00010
ooo011
00012
00G13
00014
0001S
D006
00017
oon1s
00019
00020
00021
00022
000213
00424
00025
00026
00027
00028
Qo029
00030
00031
00032
000133
00034
00035
00036
00037
0003R
Q0039
Q0040
00041
0nn42
Q0043
00044
060045
0004¢b
00047
00048
00049
00050
00051

VARIABLE:
VARLUE:
PROCFDURE?:

PFLATIVES:

wED 4«FEB=76 2:16PM Page 2

(WASTEBASKET #ABSKT)
I12

{AND#* ,12 (OR## (OPTION (WASTEBASKET WBSKT)
(DOOR WBSKT)
(WALL WBSET))
(AND#» (OR#s (OPTION (TABLETOP TTOP))

(TABLETOP TTOP)}
(HPTION (DOCR CBACK)

{CHAIRBACK CBACK})

(WALL CBACK))
(WALL CBACK)
(CHAIRBACK CBACK)
(DOOR CBACK))
{OPTION (DOOR DR}

(WALL DRY}
{WALL DR}
(DOQR DR}}
(QPTION (DOOR LwALL)

(WALL LWALL))
(WALL LWALL)
(DOQR LWALL))
(OPTION (FLOOQR FLR)}
(FLOOR FLR]

(ORwx»

(OR##»

{OR=4s

(OR®#

((UPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WRSKTY))

{(OR=% (DPTION (WASTERASKET WBSKT) (DOOR WBSKT) (WALL WBSKT})
(WALL WHSKT) (WASTERASKET WBSKT)))

((UR## (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT))
(DONR WBSKT) (WASTEBASKET WBSKT)}}} '

((UR##% (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKTJ)
(WASTERASKET WBSKT)))

((UR#¥ (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)Y)
{WALL WBSKT) (DNOR wBSKT) (WASTEBASKET WBSKT)}}

VARIABLE: (DOOR WBSKT)
VALUE: 6,0
PROCEDURE

(DOOR WBSKT)
RELATIVES:

( (OPTION (WASTEBASKET WRSKT)
((ORe# (OPTINN (WASTEBASKET WBSKT) (DOOR WRSKT)

(DOOR WBSKT) (WASTEBASKET

WBSKT1)}

(OOOR WBSKT)

(WALL

({OR## (UPTION (WASTEBASKET WBSKT) (DOOR WBSKT)
(WASTEBASKET WBSKT))?

(WALL WBSKT) (DOOR WBSKT)

WBSKTIY)
(WALL WBSKT))

(WALL WBSKT))

VARIABLE: (wALL WBSKT)
VALUE: n,o
PROCEDURE:
FIGURE F-2 DATABASE PRIOR TO SEARCH
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00052
00053
00054
00055
00056
Q0057
00056
00059
80060
000b1
00062
000613
00064
ngoN6eS
00066
Q0067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00677
0007R
00079
gooR0
LI
00082
00083
goga4d
- 00085
000RG
00a87
00088
00nA9
00090
000914
00092
00093
00094
00095
00096
00097

- 0N9R

- 00099
00100

- 00101

00102

{WALL WBSKT)
RFLATIVES:

((OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))

((OR#% (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT))
(WALL WBSKT) (WASTEBASKET WBSKTY))

((OR## (DPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT))
(WALL WBSKT) (DOOR WBSKT) (WASTEBASKET WBSKTYI))

VARIABLE: {UCOR RWALL)
VALUE: o227
PROCEFDURE s
[AND® ,227 (OR#s# (OPTION (DOOR RWALL)
{4ALL RwALLY)
(AND## {(DR## (OPTION (TABLETOP TTOP))
(TABLETOP TTOP))
(OR## (OPTIDN (PICTURE PIC)
(DOOR PIC)
(WALL PICY)
{WALL PIC)
RELATIVES:
((UPTION {DOOR RWALL) (WALL RWALL))}

VARIABILE: (WALL RWALL)
VALUE: L773
PROCEDURE:
{AND# ,773 (OR## (OPTION (DUOR RWALL)
(WALL RWALL))
(AND#w (DRse (OPTION (TABLETOP TTOP))
(TABLETOR TTOP))
(OR## (QPTION (PICTURE PIC)
(DOOR PIC)H
(WALL PIC))
(DDUR PIC)
(P1ICTURE PIC)
RELATIVES:
{(OPTION (DOOR RWALL) (WALL RWALLY3)
((OR## (QPTION (DOOR RWALL) (WALL RWALL)) (WALL RWALL)))

VARIABLE: (DOOR LWALL)
VALUE: »227
PROCEDURE ¢
LAND# ,227 (OR#s (OPTION (DOOR LwALL)
(WALL LWALL))
(ANDw» (ORw® (OPTION (WASTEBASKET WBSKT)
(DOOR WBSKT)
(WALL wBSKT))
(WALL WBSKT)
(WASTEBASKET WBSKT))

FIGURE F-2 DATABASE PRIOR TO SEARCH (Continued)
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00103 {OR#% (OPTION (TABLETOP TTOP))

00104 {TABLETDP TTUP))

an105 (ORs# (OPTION (DOOR DR)

00106 {WALL DR))

QU107 (WALL DR}))

00108 (OR## (OPTION (PICTURE PIC)

00109 {DOOR PIC)

00110 . (WALL PICY)

00111 (WALL PIC]

00112 RELATIVES:

00113 ((OPTION (PDOR LWALL) (WALL LWALL)))

00114 ((OR## (OPTION (DOCR LWALL) (WALL LWALL)) (WALL LWALL)

00115 f{DOOR LWALLJI)

001le ((OR## (OPTION (DOOR LWALL) (WALL LWALL)) (DOOR LWALL)})

00117

00118

00119 VARIABLE: {(WALL LWALL)

00120 VALUE: .773

001214 PROCEDURE :

00122 [(AND» ,773 (OR#s (DPTINN {(DODOR LWALL)

00123 . ¢(WALL LWALLY)

00124 (ANDa# {ORw% {(QPTION (WASTEBASKET WBSKT)

00125 (DOOR WBSKT)
060126 : {WALL WBSKT))
00127 (DDOR WBSKT)

00128 (WASTEBASKET WBSKT))
00129 (ORs* (OPTION (TABLETOP TTOP))

00130 (TABLETOP TTOPY)
- 0013 (OR##* (QPTION (DOOP DR)

001132 {WALL DR))

00133 (DOOK DR))

00134 _ (UR#» (DPTION (PICTURE PIC)

001135 {DDOR PIC)

00136 {WALL PIC))
"an137 (DOOR PIC)

00138 (PICTURE PIC]

00139 RELATIVES:

00140 ((OPTION (DOOR LWALL) (wALL LWALL)Y))

no141 {(OBse (OPTION (DOOR LWALD) (WALL LWALL)) (WALL LWALL)

00142 (DOUR LWALL)))

00143 ((OR#s (OPTION (DOOR LWALL) (WALL LWALL)) (WALL LWALL)))
00144

00145

00146 VARIABLE: (DOOR CBACK)

00147 VALUE: 0.0

00148 PROCEDURE ;

00149 (DOOR CBACK)

00150 RELATIVES:

00151 ((OPTION (DODR CRACK) (CHAIRBACK CBACK) {WALL CBACKI))

00152 {(OR## (OPTION (DDOR CBACK) (CHAIRBACK CBACK) (WALL CBACK))

S 00153 (WALL CHACK) (CHAIRBACK CBACK) (DOGR CRACK)))

FIGURE F-2 DATABASE PRIOR TO SEARCH (Continued}
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00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00179
00172
00173
06174
00175
00176
06177
00178
00179
001R0
00181
00182
00483
001R4
00185
00186
00187
Q0188
00189
00190
00191
00192
00193
00194
00195
00196
00197
Qo198
00199
00200
00201
00202
00203
an204

VARIABLE: (CHALIRBACK CBACK)
VALUE: .11
PROCFDURE 2
[AND# .11 (OR## (OPTION (DODR CBACK)
(CHAIRBACK CBACK)
(WALL CBACK))
(AND¥® (OR#» (OPTINN (CHAIRSEAT CSEATY)
(CHATRSEAT CSEATY)
{QOR#» (OPTION (WASTEBASKET WBSKT)
(DOOQR WBSKT)
(WALL WBSKT))
{WASTEBASKET WBSKT}))
{ORs« (QPTION (TABLETOP TTOP))
(TABLETOP TTOP)
RELATIVES:
{({NPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))
({OR=s (OPTION (DOOR CRACK) (CHAIRBACK CBACK) (WALL CBACK))
(wALL CRACK) (CHALRRACK CBACK) (DOOR CBACK)))

VARIARLE: (WALL CBACK)
VALUE 0.0
PROCEDURF.;
(WALL CBACK)
FELATIVES:
({OPTION (ODOR CBACK) (CHAIRBACK CBACK) (WALL CBACK}))
((DRws (OPTION (NODR CBACK) (CHAIRBACK CBACK) (WALL CBACK))
(WALL CBACK) (CHAIRBACK CBACK) (DOOR CRACK)))

VARIRRLE:* (PICTURE PIC)
VALUE: I
PROCFDURE:
[AND# ,3 (ORw# (OPTION (PICTURE PIC)
{DOGR PIC)
(WALL PIC))
{AND#® (CR#s% (OPTION (TABLETCP TTOP))
(TABLETOP TTOP))
(OR#% (OPTION (DOOR LWALL)
{WALL LWALL}}
(WALL LWALL))
(OR#* (OPTION (DOOR RWALL)
{WALL RWALL))
{WALL RWALL]
RELATIVES:
({OPTION (PICTURE PIC) (DDOR PIC) (WALL PIC)))
((OR##% (OPTION (PICTURE PIC) (DOUR PIC) (WALL PIC)) (DOOR
piC) (PICTURE PIC)YM)

FIGURE F-2 DATABASE PRIOR TO SEARCH (Continued)
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00205

- 00208

00207
00208
00209
00210
00211
00212
00213
00214
00215
00218
00217
oo0218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00225
00229
00230
00231
002132
002133
006234
002135
0021386
00237
00238
00239
00240
00241
no24z
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
- 00254

00255

VARIABLE: (DOOR P1C)
VALUE: 0.0
FROCEDURE :
(DOOR PIC)
RELATIVES:
((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)))
({URw® (OPTION (PICTUPE PIC) (DOUOR PIC) (WALL PIC)) (DOOR
PICY (PICTURE PIC)))

VARIABLFE: (WALL PIC)
VALUE: 0,0
PPOCEDURE:
(WALL PIC)
RELATIVES:
((OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)))
((OR«## (OFTION (PICTURE PIC) (DOOR PIC) (WALL PICY) (WALL
PICYY)

VARIARLF: (DOUR DR}
VALUE: £ 227
PROCEDURE?
FAMD® .227 (ORss (DPTION (DOOR DR)
{WALL DR))
(ANDa» (URw## (OPTION (WASTEBASKET WBSKT)
(DODR WBSKT)
(WALL WBSKT))
(WALL WBSKT)
(DODR WBSKT)
(WASTEBASKET WASKTY)
(OR#+ (0OPTION (DOCR LWALL)
{WALL LWALLY)
(WalL LwWALLI)
(OR## (OPTINN (FLUOR FLR))
(FLOOR FLR]
RELATIVES! _
((OPTTON (DOOR DR)Y (WALL DR)Y))
((UR«#® (OPTION (DOCR DR) (WALL DR)) (WALL DR) (DOOR DR)})
(({UR«s (OPTION (DUOR DR) (WALL DR)) (DGOR DR)))

VARIABLE: (WALL DR)
VALUE: <773
PROCEDURE.:
[AND» ,773 (OR#« (OPTION (DQOR DR)
{WALL DR
(AND#w (ORw»# (OPTION (WASTEBASKET WBEKT)
{DOCR WBSKT)
(WALL WBSKTY)

FIGURE F-2 DATABASE PRIOR TO SEARCH (Continued)
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00256
00257
- 00258
00259
00260
00261
00262
00263
00264
00265
002606
00267

(WALL WBSKT)
{DADR WBSKT)
(WASTEBASKET WBSKT))
(OR#» (OPTION (DOOR LWALL)
(WALL LWALLY)
(DOOR LWALL))
(OR#* (OPTION (FLODR FLR))
(FLOOR FLR}
RELATIVES:
((OPTION (DOOR DR} (WALL DR1))
{ (OR## (0OPTINN (DOOR DR) (WALL DR)J (WALL DR) (DODOR DR)})
{ (OR## (OPTION (DOOR DR) (WALL DR}Y) (WALL DR)))

FIGURE F-2 DATABASE PRIOR TO SEARCH (Concluded)
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00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00053
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080

REINSTATE: (TOPCNTXT)

ASSERT = (WALL RWALL)

RG=((OPTION {DOUR RWALL) (WALL RWALL)) )t 0.0

JUB«( (OR## (OPTION (DOOR RWALL) (WALL RwWALL)} (WALL RWALL}I): 1.0

JOB-( (CR%# (OPTION (DDOR RWALL) (WALL RWALL)) {ANDws (OR#x (OFTION
(TABLETOP TTOF})} {TABLETDP TTOP}) (QR»» (QOPTION (PICTURE PIC) (DOCR

PIC) (WALL PIC}} (DNOR PIC) (PICTURE PIC))I)I: 1.9

SAVESTATE: ({(WALL RWALL) . .773) TOPCNTXT), SCORE: ,773

+ LENGTH{IQUEUE): S

KETHSTATE: (TOPCNTXT)

DENY = (WALL RWALL)

JUB=((OR#* (OPTION (DOOR RWALL) (WALL RWALL)) (WALL RWALL)}): 51,0
BG=((NPTION (DOOP PWALL) (WALL RWALL))): 1.0

SAVESTATE: (((WALL RWALL) , 0) TOPCNTXT), SCORE: 0, LENGTH(IQUEUE): &
REINSTATE: (({WALL RWALL) , .773) TOPCNTXT)

ASSERT = (WALL LWALL)

JOBe( (OR## (OPTIUN (DNOR LWALL) (WALL LWALL)) (DOOR LWALL))}: 1.0
JOBe((OR## (OPTION (DOOR LWALL) (WALL LWALL}) (NALL LWALL) (DOOR LWALLYM)
t 1.0

AG=((OPTTON (DOOR LWALL) (WALL LWALL))): 0,0

JOB=( (OR#%. (OPTION (DODR LWALL) (WALL LWALL)) (DDOR LWALL})}1 0.0
JOBe((AND#® (OR## (OPTION (WASTEBASKET WBSKT) (DODR WBSKT) (WALL WBSKT))
(wALL WBSKT) (DOOR WBSKT)} (wASTEBASKET WBSK7T)) (ORes (OPTION (DOOR
LWALL) (WALL LWALL)) (DOOR LWALL)) (OR=+ (OPTION (FLOGR FLF)) (FLOOR
FLRY}Y): 0,0

JrB=¢ {Okss (OPTION (DOOR DR} (WALL DR}) (AND## (OR#s (OPTION (
WASTEKASKET WBSKT) (DODR WBSKT) (wWALL WBSKT)) (WALL WBSKT) (DOOR WBSKT)
(AASTEBASKET wWBSKT)) (ORw#s (OPTIOM (DOOR LWALL) (WALL LWALL)) (DOOR
LWALL)) (DRes (OPTION (FLODNR FLR)) (FLOUOR FLR)I}III: 1,0

JOBe({ (OR## (NPTICON (COOR LWALLY} (WALL LWALL)) (WALL LWALL)Y): 1.0

JNB=( (ORes (OPTION (DOOR LWALL)} (WALL LAALL)) {AND## (ORss (OPTION
{wASTEBASKET WHSKT) (DDOR WBSKT) (Wall wBSKT))} (DOOR WBSKT} (WASTEBASKET
WBSKT)) (OR«« (OPTION (TABLETOP TTOP)) (TABLETNP TTOP)) (OR#s (OPTION
(DOOR DR} {WALL DR)) (DOOR DR)} (OR##% (OPTION (PICTURE PIC) (DOOR

PICY (wALL PICY}} (DOOR PIC) (PICTURE PIC))I)): 1.0

JOBe( (O## (GPTION (DOOR LWALL) (WALL UWALL)? (WALL LWALL} (DOOR LWALL)))
T 1.0

SAVESTATE: (({{%WALL LWALL) . ,773) ((WALL RWALL) , ,773) TOPCNTXT)

+ SCORE: 1.55, LENGTH{IQUEUE): 4%

REINSTATE: ({{WALL RWALL) ., .773) TOPCNTXT)

DENY = {WALL LWALL)

JOB=( (OR#=» (NDPTION (DNOP LWALL) (wALL LWALL)) (¥ALL LWALL)))1 1.0

JUOB=( (OR#*# (OPTION (DOOR LWALL) {WALL LWALL)) (WALL LWALL) (DOOR LWALL}})
r 1.0

AG={(OFTION (DOUOR LWALL) (WALL LWALL))): 1.0

SAVESTATL: (((WALL LWALL) , 0) ((WALL RWALL) , .773) TOPCNTXT), SCORE: .773
, LENGTH{IQUEUE): 5

PEINSTATE: (((WALL LWALL) , ,773) ((WALL RWALL) , .773) TOPCNTXT)

ASSERT = (WALL DR)

JUOB=( (NMR#+ (OPTION (DOOR DP) (WALL DR}) (DOOR DR))): 1,0

JOBe=({(DR«# (OPTION (DOCOR DR) (WALL DR)}) (WALL DR) (DCOR DRY)): 1.0

FIGURE F-3 CONTINUATION OF TRACE SHOWING EXECUTION OF SEARCH
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00081 BG=((OPTION (DOQOR DR) (WALL DR))): 0.0

00082 JOB={(URes (OPTLON (DOOR DR) (WALL DR)) (AND#» (OR## (OPTION (

20083 WASTEBASKET WBSKT) (DDOR WBSKT) (WALL WBSKT)) (WALL WBEKT) (DOOR WBSKT)
00084 (WASTEBASKET WBSKT)) (OR## (0OPTION (DOOR LWALL) (WALL LWALL)) (DOOR
00085 LAALLY) (OR»s {(DPTION (FLOOR FLR)) (FLOOR FLR))))): 0,0

00086 JOB={{WALL DFK)): 0,0

00087 JOBe({OR#» (OPTION (DODR DR) (WALL DR)) (WALL DR) (DOOR DRY}): 0,0
00088 JNB=( (ANDx# (DR## (OPTION {TABLETOP TTNP)) (TABLETOP TTOP}} (OR#*»
0004”9 (OPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)} {WALL CBACK)
00090 (CHAIRBACK CBACK) (DOOR CBRACK)Y (OR## (OQFTION (DOOF DRY (WALL DR})
00091 (WALL DR) (DOOR DR)) (OR#» (OPTICN (DOOR LWALL)Y (WALL LWALL)) (WALL
00092 LWALL) (DODR LWALL)) (OP#s (OPTION (FLOOR FLR)Y (FLOOR FLR))Y): 0.0
00093 JOB=( (OR## (OPTION (WASTEBASKET WESKT) (DOOR WBSKT) (WALL WBSKT))
30094 (AND## (ORe% (OPTION {TABLETOP TTOPY) (TABLETOP TTOP)) (QR#+ (QPTION
00095 (DONP CBACK) (CHATRBACK CBACK) (WALL CBACK)) (WALL CBACK) (¢(CHAIRBACK
00096 CBACK) (DOOR CBACK)) (OP#s (OPTION (DONR DR)Y (WALL DR}) {WALL DR)
00697 (DOOR DR)) (ORs#s (OPTION (DOOR LWALL) (WALL LWALLY) (WALL LWALL) (DOOR
049098 LWALL)) {(Omres (OPTION (FLOOR FLR)) (FLGOR FLR))))): 1,0

40099 JOB={ (ORus (OPTION (DODR DR) (WALL DR)) (DOOR DR)I): 0.0

g0100 JOB=( (AND¥» (DF#% (OPTION (WASTEBASKET wBSKT) (DOOR WBSKT) (WALL WBSKT))
00101 (DOOR wBSKT) (WASTERASKET WBSKT)) {OR+4 (OPTION (TABLETOP TTOP)) {
00102 TARLETGP TTOP)) {OP## (OPTION (DOOR DR} (WALL DR)) (DOOR DR)) (OR#»
00103 tOPTION (PICTURE PIC) (DCOR PIC) (WALL PIC3)) (DOOR PICY (PICTURE PIC))))
00104 s 0.0

00105 JOBRe( (OR#s (DPTION (DOGR LWALL) (WALL LWALL)) (AND#» (ORes (DPTION
00106 (WASTERASKET WBSKT) (DOOR WBSKT) (WALL WBSKT}) (DOOR WBSKT) (WASTEBASKET
60107 WRSKT)) (ORws (OPTION (TABLETOP TTOP)) (TABLFTOP TTUP)) (OR#« (CPTION
6oing (DOUR DRY {WALL DR})} (DOOR DR)) (ORss (OPTION (PICTURE PICY) (DOOR
00109 PICY (WALL PIC)) (POOR PIC) (PICTURE PIC))I)): 0.0

70110 JOBe{ (WALL LWALL)): 0.0

00111 JOBw( (OH#% (DFTION (DOUR LWALL) (NALL LWALL)) (WALL LWALL)Y): 0.0
001172 JOoB=((AND®® (OR#* (OPTION (1ABLETOP TTNP))} (TARLETOP TTAP)) (OR##
00113 (OPTINN (DGOP LWALL) (WALL LWALL))Y {(WALL LWALL)) (CGR#» (OPTION (DQOR
00114 RWALL) (WALL RwaLL)) (WALL RWALL)IJ))I! 0.0

00115 JOB={ (OR## (OPTION (PICTURE PIC) (DUDR PIC) (W¥ALL PIC)) (ANDu#n (ORus
00116 (NPTIUN (TABLETOP TTOUP)) (TABLETOP TTOP)) (OR=# {OPTION (DOOR LWALL)
00117 (wALL LWALLY) (wALL LWALL)) (OR## (OP[IDN (DOOR RWALL) ¢WALL RWALLY)
00118 (WALL RWALL)2X}): 1,0

00119 JNBw( (OR#s (OPTION (DDOR LWALL) (WALL LWALL)) (WALL LWALL) (DOOR LWALL)Y)}
00120 : N 0

00121 JB={ (AND## (OR#s# (OPTION (TABLETOP TTOP)) (TABLETOP TTOP)) (OR#»
006122 {OFTICON (DOUR CHACK) (CHAIWBACK CHBACK) (WALL CBACK)) (WALL CBACX)
00123 {CHALIRBACKX CRACE) (DOOR CBACK)) (OR»=» (OPTION (DOOR DR) (WALL DRY)
00124 (wALL DR) (DOUR OFR)) (OR#s (OPTION (DUOR LWALLY (WALL LWALL)) (WALL
00125 LwALL) (DOOR LWALLY)} (ORes# (OPTION (FLOOR FLR)) (FLOOR FLRYXY)! 0,0
00126 BG=( (OPTION (DOOR DR) (WALL DR))I): "CONTRADICTION DETECTED"

00127 REINSTATE: ({ (WALL LWALL) , ,773) ({WALL RWALL) , .773) TOPCNTAT)
€0128 DENY » (wALL DR}

00129 JOB={ {OR#+ (OPTION (DOOR DRY (WALL DR)) (WALL DR) (DAQOR DRI)): 1.0
00130 BG=((OPTION (DOOF DR) (WALL DR}Y}: 1.0

001y SAVESTATE: ({(WALL DR} , 0) {(WALL LWALL) ., .773) ((WALL RWALL) .

FIGURE F-3 CONTINUATION OF TRACE SHOWING EXECUTION OF SEARCH (Continued)
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00132
00133
00134
00133
00136
00137
00138
00139
00140
00141
00t42
00143
00144
00145
00146
00147

- 00148

00149
100150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168

- 00169

00170
00171
00172
00173
00174
00175
0017e
00177
00178

,773) TOPCNTXT), SCORE: 1,55, LENGTH(IQUEUE): 4

REINSTATE: (((WALL PRY . 0) C((WALL LWALL) , ,773) ((WALL RWALL) ,
,773) TUPCNTXT)

ASSERT = (PICTURE PIC)

SAVESTATE: (((PICTURE PIC) . .3) ((WALL DR) . 0) ((WALL LWALL) . .773)
¢ (WALL RWALL) . .771) TOPCNIXT)., SCORE; 1,5%, LENGTH(IQUEUE)}: 3
REINSTATE: (((WALL DR) , 0) ((WALL LWALL) . .773) ((WALL RWALL) ,
,773) TOPCNTXT)

DENY = (PICTURE PIC) _

JUB~( (OR%+ (OPTIOM (PICTURE PIC) (¢DOOR PIC) (WALL PIC)) (DOOR PIC)
(PICTIURE PICI)):z 1.0

BG=( (DPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)H)):

PCONTRADICTION DETECTED"

BREINSTATE: (((PLCTURE PIC) . .3) ((WALL DR) ., 0) ((WALL LWALL) . .773)
((WALL RWALL) . .773) TOPCNTXT)

ASSERT = (DOOR DR)

SAVESTATE: (((DOGR OR) , ,227) ((PICTURE PIC) , .3} ((WALL DR) . 0)
{(WALL LWALL) . .773) ((WALL RWALL) . ,773} TOPCNTXT), SCORE: 1.55

, LENGTH{IGQUEUE): 2

REINSTATE: (({PICTURE PIC} . .3} ((WALL DR} . 0) ((WALL LWALL) . .773)
((WALL RWALL) . ,773) TOPCNTXT)

DENY « (DOOR DR)

JOB=( (OR#» (OPTION (DDOOR DR) (WALL DR)) (DOOR DRY}}t 1.0

JOB=( ((R## (NPTION (DOOR DR) (WALL DR)) (WALL DR) (DODR DR))): 1.0
BG«( (OPTIUON (DOOR DR)Y (WALL DR))): *CONTRADICTION DETECTED"

REINSTATE: (((DUCOR DR) , ,227) ((PICTURE PIC) . .3) ((WALL DR) . 0)
{(WALL LWALL) . .773) ((WALL RWALL) . ,773) TOPCNTXT)

ASSERT = (WASTEBASKET WBSKT)

SAVESTATE: (((WASTEBASKET WBSKT) , .12) ((DDOR DR) , .227) ((PICTURE
PICY . .3) C((WALL DR) , 0) ((WALL LWALL) , .773) ((WALL RWALL) . ,773)
TUPCNTXT), SCURE: 1,55, LENGTH(IQUEUE): 1|

REINSTATE: (((DOGR DR)Y , ,227) ((PICTURE PIC) , .3) ((WALL DR) , 0)
(C(WALL LWALL) . .773) ((WALL RWALL) . .773) TOPCNTXT)

DENY » {(WASTEBASKET WRSKT)

JOB=((OR## (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT))
(WALL WBSKT) (DOOR WBSKT) (WASTEBASKET wBSKT))): 1.0

JOBe({{ORew (OPTINN (WASTEBASKET wWBSKT) (DOOR WBSKT) (WALL WBSKT))
(WASTEBASKET WBSKT)})Y: 1.0

JOB={ {OR## {OPTION (WASTEBASKET WBSKT) (DOUOR WBSKT) (WALL WBSKT))
({NOOR WBSKT) {WASTEBASKET WBSKT))): 1,0

RG=( (DPTIUN (#ASTEBASKET WBSKT) {DOOR wHSKT) (WALL WHSKT))):
"CONTRADICTION DETECTED"

REINSTATE: (((WASTEBASKET WBSKT) , .12) ((DPOOR DR) , ,227) ((PICTURE
PIC) ., .39 C(WALL DR) , 0) ((wALL LWALL) , .773) ((WALL RWALL) . ,773)
TOBCNTXT)

ASSERT = (CHAIRBACK CBACK)

*SUCCESS™

FIGURE F-3 CONTINUATION OF TRACE SHOWING EXECUTION OF SEARCH (Concluded)
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FIGURE F-4 DATABASE FOLLOWING SEARCH
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CBACK)

WBSKT)))
(WALL WBSKT))

(WALL WBSKTY)

(WALL WBSKT))

WBSKT)))
(WALL WBSKTY)

(WALL WBSKT))

1 <TENENBAUMSDUDA,RPT;2 WED 4=~FEB=76 2:16FPM Page
60001 VARIABLE: (WASTEBASKET WBSKT)
00002 VALUE: .12
00003 FROCEDURE :
00004 {AND# ,12 (ORw»s (OPTION (WASTEBASKET WBSKT)
00008 (DOOR WBSKT)
000086 (WALL WBSKT))
043007 (AND#» (DR#% (QPTION (TABLETOP TTOP))
_oooog (TABLETOP TTOPR)Y)
00009 (OR## (OPTION (DCOR CBACK)
00010 (CHAIRBACK
Qootitl (WALL CBACK)Y)
00012 {WALL CBACX)
00013 (CHAIRBACK CBACK)
00014 (DOUR CBACK))
00015 (ORs# (QPTION (DODOR DR)
00016 (WALL DR))
00017 (WALL DR}
00018 (DOOR DR))
00019 (OR#» (QPTION (DOOR LWALL)
00020 (WALL LWALL})
00021 (WALL LWALL)
00022 (DODR LWALL))
00023 (OR#» (OPTION (FLOOR FLR))
00024 (FLOOR FLR]
0002% RPELATIVES:
00026 ((OPTION (WASTEBASKET ~BSKT) (DOOR WBSKT) (WALL
00027 ((OR#% (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT)
00028 (DDOR WBSKT) (WASTEBASKET WRBSKT)))
00029 ((GR#% (OPTION (WASTERASKET WBSKT) fDDROR WBSKT)
Q0030 (WASTEBASKET WBSKT)))
00031 ({OR## (OPTINN (WASTEBASKET WBSKT) (DOOR WBSKT}
Q0032 (WALL WBSKT) (DOOR WBSKT) (WASTEBASKET WBSKT)))
00033
pon34e
00035 VARIABLE: (LOUR WBSKT)
00038 VALUE: 0.0
00037 PROCEDURE:
Q003is (DOOR WRSKT)
00039 PELATIVES:
00040 (¢OPTION (WASTEBASKET WBSKT)} (DOOR WBSKT) (WALL
00041 ({OR»% (OPTION (WASTEBASKET WBSKT) (DOOR WBSKT)
00042 (DOOR WRASKT) (WASTERASKET WBSKT)))
00043 ((OR#e (OPTION (WASTEBASKET WBSXT) (DODR WBSKT)
00044 (WALL WBSKTY (DOOR WBSKT) (WASTEBASKET WBSKT)))
00045
00046 [
00047 VARIABLE: (WALL wBSKT)
00048 VALUE: 0,0
- 00049 PROCEDURE
. 00030 (WALL WRSKT)
00051 FELATIVES:
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00052
00053
00054
00055
00056
00057
00058
00059
00060
a006&1
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
006075
00076
00077

- 00078

00079
00080
00081
00082
00081
000R4
0008S
QG086
00087
QooRs
00089
00090
00091
00092
00N93
00n94
00095
00096
00097
00098
00099
00100
Q0101
00102

{{OPTION (WASTEBASKET WBSKT) (DOOR WBSKT) (WALL WBSKT)))
((OR## (OPTION (WASTEBASKET WBsKT) (DDOR WBSKT) (WALL WBSKT))
(WALL WBSKT) (DUOR WBSKT) (WASTEBASKET wBSKT)))

VARIABLE: (DOUR RWALL)
VALUE: 0.0
PROCEDURE:
[AMD® ,227 (OR## (OPIION (DQOR RWALL)
(WALL RWALL))
(ANDw## (OR## (OPTION (TABLETOP TTOP))
(TARLETOP TTOP))
(GR#+ (OPTION (PICTURE PIC)
{DDOR PIC)HY
(WALL PICY)
(WALL PIC)
RELATIVES:
((OPTION (DOUR RWALL) (WALL RWALL)Y))

VARIABLE: (WALL RWALL)
VALUE: L7713
PROCEDURE :
[AND# ,773 (ORss (DPTION (DOOR RWALL)
{WALL RWALL))
(ANC## (OR#% (OPTION (TABLETOP TTOP))
(TABLETOP TTOP))
(OR#% (OPTION (PICTURE PIC)
(DOOR PIC)
{WALL PICY)
(DUOR PIC)
(PICTURE PIC]
RELATIVES:
((NPTION (DOOR RWALL) (WALL RWALL)))
({OR#» (OPTION (DOOR RWALL) (WALL RWALL}) (WALL RWALL)))

VARIABLE: (DOUR LWALL)
VALUF ¢ 0.0
PROCEDURE:
(AND® ,227 (UR## (OPTION (DOOR LWALL)
(WALL LWALL))
(AND#w (OR## (OPTION (WASTERASKET WBSKT)
(DOOR WBSKT)
(WALL WBSKT))
(WALL WBSKT)
(WASTEBASKET WBSKT))
(OR#s (OPTION (TABLETOP TTOP))
(TABLETOP TTOP))
(OR#% (OPTION (DOOR DR)
(WALL DRY)

FIGURE F-4 DATABASE FOLLOWING SEARCH {(Continued)
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00103
00104
00105
06106
00107
00108
00109
00110
- 00111
00112
00113
00114
00115
Q0116
00117
00118
00119
00120
go0121
00122
p0123
00124
00125
00126
00127
00128
00129
001130
00131
001132
00133
00134
00135
00136
001137
001138
00138
90140
no141
00142
00143
00144
00145
00146
00147
001486
- 00149
00150
60151
- 00152
00153

(WALL DR))
(OR## (OPTION (PICTURE PIC)
(DOOR PIC)
(WALL PICY)
(WALL PIC]
RELATIVES?:
((OPTION (DOOR LWALL) (WALL LWALL)))
((OR## (OPTION (DOOR LWALL) (WALL LWALL)) (WALL LWALL}
(POOR LWALL)))

VARIABLE: (WALL LWALL)
VALUE S 773
PROCEDURE!
{AND# ,773 (QRe# (GPIION (NOOR LWALL)
(WALL LWALL))
(AliD#» (OR#s (OPTION (WASTEBASKET WBSKT)
(DDOR WBSKT)
. {WALL WBSKT))
(DOOR WBSKT)
(WASTEBASKET WBSKT))
{DRes (OPTION (TABLETOP TTOPR))
(TABLETOP TTOP))
¢ORe» (OPTION (DOOR DR)
(WALL DRY)
(DGOR DR))
{DR#+ (OPTION (PICTURE PIC)
(DOOR PIC)H
t{WALL PICY)
{DOOR PIC}
(PICTURE PIC}
RELATIVES:
((NPTION (DNOR LWALL) (WALL LwALL)))
((LUR## (OPTION (DUOR LWALL) {(WALL LwALL)) (WALL LWALL)
(DONR LWALL)))
{(URw# (OPTION (DONR LWALL) (WALL LWALL)) (WALL LWALL)))

VARTABLE: (LOUR CBACK)
VALUE: 0,0
PROCEDURE;
(DOOP CBACK)
RELATIVES:
{(OPTIUN (DOOR CBACK) (CHAIRBACK CBACK) {WALL CBACK)))
{((Pws (NPTTON (DUOR CBACK) (CHAIRSACK CBACK) {WALL CBACK))
(WALL CBACK) {(CHAIRBACK CBACK) (DOOP CHACK)))

VARIABLE: (CHAIRBACK CBACK)
VaLUE: «11
PROCEDURF;

FIGURE F-4 DATABASE FOLLOWING SEARCH (Continued}
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H

00154
00155
00156
00157
00158
00159
00160
00161
00162
00163

00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
0017%
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204

:  <TENFNRAUM>DUDA  KPT:2 WED 4«FER=76 2:16PM Page 4:3

LAND® .31 (OR## (OPTION (DOOR CBACK)
(CHATRRBACK CBACK)
(WALL CBACK))
(AND%% (OR## {OPTION (CHAIRSEAT CSEAT))
{CHAIRSEAT CSEAT))
(OR#s (OPTION (WASTEBALSKET WBSKT)
(DODR WBSKT)
(WALL WBSKTY)
(WASTEBASKET WBSKT))
(DR#s (OPTION (TABLETOP TTOP))
(TARLETOP TTOP]
RELATIVES:
((UPTION (DOOR CBACK) (CHAIRBACK CBACK) (WALL CBACK)))
{(OR## (OPTION (DUNR CBACK) (CHAIRBACK CBACK) ({WALL CBACK))
(WALL CBACK) (CHALRBACK CBACK) (DOOR CHACKY))

VARTABLE: (WALL CBACK)
VaLUE: 0,0
PROCEDURE:
(WALL CBACK)
RELATIVES:
f(OPTION (DOOR CBACK) (CHAIRBACK CRACK) (WALL CBACK})}
{ (ORa## (DPTINN (DONR CBACK) (CHAIRBACK CBACK) (WALL CBACK))
(WALL CBACK) (CHAIRRACK CBACK}‘{DDUR CBACKY))

VARIABLE: (PICTURE PIC)
VALUE: -3
PROCEDURE:
[AND® .3 {(OR=+ (OPTION (PICTURE PIC)
(DOOR PIC)
{wWALL PiC))
- (AND## (OFes (OpPTION (TABLETOP TTOP))
(TABLETDP TTOP))
(OR#«+ (OPTION (DOOR LWALL)
{WALL LWALL))
(WALL LWALL}}
(OR## (QPTION (DOOR RWALL:Y
{WALL RWALL))
{WALL RWALL]
RELATIVES:
(¢(OPTION (PICTURE PIC) (DOQR PIC) (WALL PICI))
{(OR=» (OPTION (PICTURE PIC) (DOOR PIC) (WALL PIC)) (DOGR
PIC) (PICTURE ¥I1C3I)}

VARIABLE: (DOOR PIC)
VALUE: 0.0
PROCEDURE 3

(DOOR PIC)

FIGURE F-4 DATABASE FOLLOWING SEARCH (Continued)
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00205
00206
00207
00208
00209
Qo210
00211
00212
00213
00214
00215
00216
00217
00218
6o219
00220
00221
00222
00223
00224
00225
006226
00227
00228
00229
00230
00231

- 00237

00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
100252
00253
00254
00255

RELATIVES:

((OPTION (RPICTURE PIC) (DDOR PIC) {(WALL PIC)))

{{ORw# (OPTION (PICTURE PIC) {DOQOR PIC) (WALL PIC)) (DOOR
PIC) (PICTURE PIC)))

VARIABLE: (WALL PIC)
VALUE: 0,0
PROCEDURE
{WALL PIC)
RELATIVES:
((UPTION (PICTURE PIC) ({DOOR PIC) (WALL PICHID)

VARTABLE: (DOOR OR)
VALUE .227
PROCEDURE §
[AND# ,227 (OR## (OPTION (DO0DR DR)
(WALL DH))
(AND&%# (ORw# (OPTION (WASTEBASKET WBSKT)
(DOOR WBSKT)
(WALL WBSKTY)
(WALL WBSKT)
(DOOR WBSKT)
(WASTEBASKET WBSKT))
{ORw» (OPTION (DODR LWALL)
(WALL LWALLY)
(WALL LWALLY)
(UR#» (OPTION (FLOOR FLR))
{FLOOR FLR)
RELATIVES:
((OPTION (DONR DR) (WALL DR)))
((UR#% (OPTINN (DNOR DR) (WALL DR)) (WALL DR} (DOOR DR})}
{(NH## (OPTION (DOOR DR) (WALL DR)) (DOOR DR)))

VARIABLE: (WALL DR)
VALUE: 0,0
PROCEDURE
(AND® ,773 (ORss (OPTION (DOOR DR}
{WALL DRI}
{ANDw#w (ORs## (OPTION (WASTEBASKET WBSKT)
{DOOR WBSKT)
{WALL wBSKT)Y)
(WALL WBSKT}
(DOOR WBSKT)Y
(WASTEBASKET WBSKT))
(OR##+ (OPTION ({DUOR LWALL)
{WALL LWALL)Y)
(DOOR LWALLY)
(CRs# (OPTION (FLOOR FLR))

FIGURE F-4 DATABASE FOLLOWING SEARCH (Continued)
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00256
00257

00258

0n2%9
00260
00201

00262
00263

'+ <TENENRAUMDDUDA ,KPT;2

RELATIVES:

16078 conses
179, seconds

FIGURE F-4

WED 4«FEB=76 2:16PM

Page 4:5%

tFLOOR FLR)

( (UPTION (DOOR DR) (WALL DR)Y))
((OR** (OPTINN (DONR DRY {WALL DR})

DATABASE FOLLOWING SEARCH

F-19

(WALL DR} (DDOR DRI

(Concluded}






Appendix G

SOLVING CONSTRAINT SATISFACTION PUZZLES WITH A VISION SYSTEM

The puzzle, defined in Figure G-1, exemplifies a class of constraint
satisfaction problems that are very difficult to solve by conventional
heuristic search methods, These problems have state spaces that are far
too large to search by exhaustive enumeration and usually, there are no
obvious heuristics for selecting instantiations. Moreover, backtracking
is of limited utility because many of the constraints cannot be tested

until several problem variables have been instantiated.

A reasonable state space representation for the problem defined in
Figure G~1 consists of 58 (approximately 15, 000) sextuples, each containing
instantiations of the variables nationality, house position, house color,
drink, cigarette, and pet (e.g., (ENGLISHMAN, MIDDLE HOUSE, RED, TEA, KOOLS,
and DOG)). The problem is solved by finding five sextuples, having unique

instantiations for each variable, that satisfy all 15 constraints.

An exhaustive search of this space, choosing sextuples five at a time,
requires examination of 55 y 45 x 35 y 25 x 18 = 2.5 x 10'° sets of sextuples.
(There are five choices of house position, house color, pet, drink, and
cigarette available in the sextuple corresponding to the first nationality,
leaving four choices in each category free for the second nationality,
three choices each for the third nationality, and so forth.) Even if these
sets of sextuples could be tested against the constraints at a rate of
100/second, it would still take almost eight years to complete the exhaustive

search.

Fortunately, astute puzzle solvers have discovered that the require-
ments for search can be sharply reduced or even eliminated by using infor-
‘mation in the constraints directly to eliminate inconsistent elements from

the ranges of problen variables, 3%, 33

Constraints 1 and 5, for example,
allow immediate deletion from the original set of problem states of all
sextuples containing the nationality Ukranian and a drink other than tea,
‘as well as all those containing the drink tea and a nationality other than
Ukranian. Constraints 4, 9, 6, and 13, respectively, eliminate additional
sextuples in which the nationality Ukranian is paired with the green house,
the middle house, the house to the right of the irovy house, and the house

where Luckys are smoked., The elimination process has a cumulative effect
G-1
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CENOO S ON

There ara five houses, sach of a different color and inhabited by men of different nationslities, with different
pats, drinks, and cigarettes.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffea is drunk in the green house.

The Ukranian drinks tea.

The green house is immediataly to the right {your right! of the ivory house.
The Qid Goid smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the first house on the laft.

. The man who smokes Chesterfields lives in the house next to the man with the fox.

Kools are smoked in the house naxt to the house where the horse is kept.
The Lucky Strike smokar drinks orenge juice,

. The Japanese smokes Parliaments.

The Norwegian lives next to the blua house. )
WHO DRINKS WATER? WHO OWNS THE ZEBRA?

FIGURE G1 A CCNSTRAINT SATISFACTION PUZZLE




since deletions can combine with other constraints to trigger further
deletions. Thus, from constraint 6, whenever ivory is eliminated as

a bossible color for one of the houses, green can be immediately elimi-
nated as a possible color for the house immediately to the right.
Moreover, by constraint 1, eliminating all but one of the possible
colors for one house allows the elimination of all tuples in which

that color is paired with a different .house.

The constraint satisfaction mechanisms in MSYS provide an ideal

way to efficiently propagate such deletions.

A, Solving the Problem in MSYS

The state space for the puzzle in Figure G~1 was represented in
MSYS as canonic variables representing all the possible pairwise associ-
ations between different problem variables. The sextuple (H1 English
RED KOOLS TEA DOG), for example, was partitioned into the following
15 MSYS variables.™

(H1 ENGLISH) (H1l RED) (H1 KOOLS) (H1. TEA) (H1 DOG)
(ENGLISH RED) (ENGLISH KOOLS) (ENGLISH TEA) (ENGLISH DOG)
{RED KOOLS) {RED TEA) (RED DOG)
(KOOLS TEA)  (KOOLS DOG)
" (TEA DOG)

A total of 375 tuples were required to represent the complete state space.

An initialization procedure was written to generate these variables
and set their initial iikelihoods to 1.0. The likelihood procedure as-—
sociated with each tuple was a conjunction containing other tuples and
disjunctions of tuples whose validity provided support for applicable
constraints. Deletions were propagated by reevaluating the procedures

of tuples in which a deleted tuple appeared.

Sets of tuples representing alternative associations for the same
problem variables are again linked by OPTION variables. Each tuple
appears in two OPTION variables, one for each element of the pair., For

example, the tuple (Hl RED) is linked to all possible colors for house

*The five houses in left-right order are designated as Hl----HS5,

G-3



H1 by the variable (OPTION (HL RED) (H1 YELLOW)----(Hl1l BLUE)) and to all
possible houses associated with the color red, by the variable (OPTION

(Hl RED) (H2 RED)-—---(H5 RED)). OPTION procedures again perform a variety
of functions, such as checking for contradictions (where all alternatives
have been eliminated) and updating the instantiation queue., They also

play a crucial role in propagating deletions resulting from the elimination
of all but one of their alternatives, as explained below., OPTION variables
evaluate to the number of currently valid alternatives they encompass,

initially 5.

MSYS proceeds towards a solution by deleting all tuples (i.e., setting
their likelihood to 0.0) shown to be inconsistent with the given constraints.
Constraints 2 through 15 were represented in MSYS by the procedural con-
gtraints ASSERT, RIGHTOF, and NEXTTO, as shown in Figure G-2. ASSERT oper-
ates by deleting all remaining alternatives in both OPTION variables as-—
sociated with the asserted pair, For example, ASSERT(UKRANIAN TEA) deletes
all tuples of the form (UKRANIAN—TEA) where - TEA designates anﬁ beverage
other than TEA, as well as all those of the form (— UKRANIAN TEA).

The constraint RIGHTOF (IVORY GREEN) (specific arguments are used for
clarity) states that a house cannot be IVORY if the house immediately to
its right cannot be green. Similarly, a house cannot be colored GREEN
unless the house adjacent on its left can be colored IVORY. [This constraint
operates by deleting all tuples of the form (HI GREEN), 1 < I <« 5 for which
(H1-1 IVORY) is already eliminated, as well as all tuples of the form
(HI IVORY) for which (HI+1 GREEN) is false. (HI GREEN) and (H5 IVORY) are
always eliminated, Any remasining, mutually supporting tuples of the form
(HI IVORY), (HI+1l GREEN) are then added to each others likelihood procedufes
so that the subsequent deletion of either one will automatically trigger
" deletion of the other.

The constraint NEXTTO(KOOLS HORSE) operates in a similar fashion by
deleting all variables of the form (HI KOOLS) when neither (EI-1 HORSE)
or (HI+1 HORSE) are still valid. Similarly, 21l variables of the form
(31 HORSE) unsupported by either (HI-1 KOOLS) or (HI+1l KOOLS) get deleted.
.Support clauses are then formulated for surviving instances of (Hl KOOLS)
"and (HI HORSE) and added to their likelihood procedures. These clauses
are expressed as disjunctions of the form (OR (HI-1 HORSE) (HI+1 HORSE))
and (OR (HI-1 KOOLS)(HI+l1 KOOLS)) for instances of KCOLS and HORSE,

G4




{ASSERT (@
{ASSERT (@
(ASSERT (@
(ASSERT (@
[ASSERT (@
(ASSERT (@
{ASSERT (@
[ASSERT (@
{ASSERT (@
{ASSERT (@

{ENGLISH REDI)
{SPANISH DOG))
{GREEN COFFEE)}
{UKRAN TEAI}D
(OLDGOLD SNAILS))
(YELLOW KOOLSIH
(H3 MILK}}}

{H1 NORWEG)H)
{LUCKYS ol

{JAPAN PARLIAMENT})

{RIGHTOF {IVORY GREEN}
{(NEXTTO (CHESTERFIELDS FOX))
NEXTTO (KOOLS HORSEY
(NEXTTO (NORWEG BLUEI}

FIGURE G2 MSYS REPRESENTATION OF CONSTRAINTS



respectively. The disjunctions prevent deletion of the supported variable
unless the required supporting interpretation has been eliminated at both

adjacent houses,

Relatively few variables are directly eliminated by constraints 2
through 15, Far more inconsistencies are deduced by a process of elimina-
_tion based on the uniqueness requirements expressed in constraint 1., MSYS
capitalizes on uniqueness in two ways. First, whenever an OPTION procedure
observes that all but one alternative has been eliminated, it eliminates
variables associated with the surviving alternative through that survivor's
other OPTION variable. For example, eliminating (H1 YELIOW), (H1 GREEN),
(H1 IVORY), and (Hl BLUE) causes the OPTION variable associated with the
color of H1 to delete all variables that are inconsistent with the surviving
alternative (H1 RED); namely, (H2 RED) (H3 RED) (H4 RED) and (H5 RED).

Second, a tuple can be eliminated when both of its components are
uniquely associated with different values of a third variable. Thus, the
assertion of (ENGLISHMAN RED) and (COFFEE GREEN) requires elimination of
* (ENGLISHMAN COFFEE). The mechanism for propagating this kind of deletion
is set up by the ASSERT procedure. A set of functions are created that
compare pairs of OPTION variables, linking the two elements of the asser-
+ion with alternative bindings of a common third variable. For example,
the ASSERTION (ENGLISHMAN RED) creates a function

(MATCH [OPTION (COFFEE ENGLISHMAN)----(WATER ENGLISHMAN)]
[OPTION (COFFEE RED)-~~~(WATER RED)])

for comparing the OPTION variables assoclating ENGLISHMAN and RED with
alternative beverages. Similar expressions are created linking ENGLISHMAN
and RED to alternative house numbers, pets, and cigarettes, The function
MATCH compares corresponding alternatives (left to right) in a pair of
OPTION variables and deletes any alternative whose opposite number is
jnvalid., FEvaulation of this function is automatically triggered whenever
.the value of either OPTION variable is altered by deletion of one of its
_alternatives. In particular, the elimination of (COFFEE RED) following
the assertion of (COFFEE GREEN) triggers execution of the MATCH variable
illustrated above, resulting in the elimination of (ENGLISHMAN COFFEE).



Execution of the constraints shown in Figure G-2 and propagation of
their consequences, immediately eliminates 193 of the 375 original variables,
Further state~space reductions must then be accomplished by instantiation.
The search proceeds as in scene interpretation by poppi;gkfrom IQUEUE the OPTION
variable with fewest remaining alternatives and then instantiating one of

.those alternatives.*

The system was fortunate in selecting a correct hypothesis (UKRANIAN BLUE)
from the OPTION variable (OPTION (NORWEGIAN BLUE) (UKRANIAN BLUE)----(JAPAN BLUE)),
for its first instantiation. Deductions propagated from this single asser-
tion led directly to a successful termination consisting of the 75 surviving
variables shown in Figure G-3. These variables provide unique associations
between people, beverages, hbuses, house colors, pets, and cigarettes
_summarized in Figure G-4 that satisfy all problem constraints. (The reader
might wish to try his own skill before peeking at the nationalities associated
with Water and Zebra,) Altogether, the solution required almost 30 minutes
of PDP-10 CPU time running in interpreted LISP., About one-half of this time
was spent in setting up the data base and in the initial phase of constraint
satisfaction prior to instantiation. The power of the constraint satisfaction
approach utilized by MSYS compared with an exhaustive search is

clear,

The OPTION variable used in the above instantiation ﬁas one of 35
candidates with three eliminated alternatives, all of equal priority. A
less fortuitous instantiation might have eliminated fewer variables or
even led to a contradiction. In either case, MSYS would then have explored
in a sepérate context the consequences of denying the hypothesis. The
search would then have continued, if necessary, in whichever context had
the largest total number of eliminated variables. A few experiments were
performed wherein incorrect hypotheses were purposefully asserted and

" correct ones denied. These errors led to immediate contradictions,

- %*In the absence of real valued Boolean likelihoods, the priority of OPTION
variables on IQUEUE was based on the number of their alternatives already
eliminated., OPTION variables, reduced to a2 unique alternative, were re-
moved from the queue. The instantiation priority of alternatives within

- an OPTION variable was assigned arbitrarily based on their position in

the OPTION expression.
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{COFFEE ZEBRA) (OJ DOG) (MILK SNAILS) (TEA HORSE) (WATER FOX) (PARLIAMENT
ZEBRA} (LUCKS DOG) (OLDGOLD SNAILS) (CHESTERFIELDS HORSE) (KOOLS FOX)
{PARLIAMENT COFFEE} {LUCKYS 0QJ) (OLDGOLD MILK) {CHESTERFIELDS TEA} {KOOLS
WATER) (GREEN ZEBRA) (IVORY DOG} (RED SNAILS} (BLUE HORSE) (YELLOW FOX)
{GREEN COFFEE) {{IVORY 0J) (RED MILK) (BLUE TEA) {YELLOW WATER) (GREEN
PARLIAMENT) {IVORY LUCKYS) (RED OLDGOLD) (BLUE CHESTERFIELDS) (YELLOW
KOOLS) {JAPAN ZEBRA) {SPANISH DOG) {ENGLISH SNAILS) (UKRAN HORSE) (NORWEG
FOX) (JAPAN COFFEE) (SPANISH OJ) (ENGLISH MILK} (UKRAN TEA} (NORWEG WATER)
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FIGURE G-3 FINAL STATE OF DATA BASE
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