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ABSTRACT

Program synthesis is the construction of a computer program from
given specifications. An automatic program synthesis system must com-
bine reasoning and programming ability with a good deal of knowledge
about the subject matter of the program. This ability and knowledge
must be manifested . both procedurally (by programs) and structurally
(by choice of representation).

We describe some of the reasoning and programming capabilities
of a projected synthesis system. Special attention is paid to the
introduction of conditional tests, loops, and instructions with side
effects in the program being constructed. The ability to satisfy seve-
ral interacting goals simultaneocusly proves to be iImportant in many con-
texts. The modification of an already existing program to solve a
somewhat different problem has been found to be a powerful approach.

We illustrate these concepts with hand simulations of the synthe-
sis of a number of pattern-matching programs. Some of these techniques
have already been implemented, scme are in the course of implementa-
tion, while others seem equivalent to well-known unsolved problems in

artificial intelligence.
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I. INTRODUCTION

In this paper we describe some of the knowledge and the reasoning
. ability that a computer system must have in order to construct compu-
ter programs automatically. We believe that such a system needs to
embody a relatively small class of reasoning and programming tactics
combined with a great deal of knowledge about the world. These tac-
tics and this knowledge are expressed both procedurally (i.e., expli-
citly in the description of a problem-solving process) and structurally
(i.e., implicitly in the choice of representation). We consider the
ability to reason as central to the program synthesis process, and
most of this paper is concerned with the incorporation of common-sense
reasoning techniques intoc a program synthesis system. However, sym-
bolic reasoning alcone will not suffice to synthesize complex programs;
therefore other techniques are necessary as well, such as

e The construction of "almost correct" programs that must be debugged

(ef. Sussman [19731).
e The modification of an existing program to perform a somewhat differ-
ent task (cf. Balzer [19721]).

e The use of "
(cf. Bundy [19731).

We regard program synthesis as a part of artificial intelligence.

visual" representations to reduce the need for deduction

Many of the abilities we require of a program synthesizer, such as

the ability to represent knowledge or to draw common-sense conclusions
from facts, we would also expect from a natural language understanding
system or a robot problem solver. These general problems have been
under study by researchers for many years, and we do not expect that

they will all be solved in the near future. However, we still prefer

to address those problems rather than restrict ourselves to a more limit-
ed program synthesis system without those abilities.

Thus, although implementation of some of the techniques in this
paper has already been completed, others require further development
before a complete implementation will be possible. We imagine the
knowledge and reasoning tactics of the system to be expressed in a
PLANNER-type language (Hewitt [1972]); our own implementation is in
the QLISP language (Reboh and Sacerdoti [1873]). Further details on

the implementation are discussed in Section V-A.



Part II of the paper gives the basic techniques of reasoning for
program synthesis. They include the formation of conditional tests
and loops, the satisfaction of several simultaneous goals, and the hand-
ling of instructions with side effects. Part III applies the techni-
ques of Part II to synthesize a nontrivial "pattern-matcher" that de-
termines if a given expression is an instance of a given pattern.
Part IV demonstrates the modification of programs. We take the pattern
matcher we have constructed in Part III and adapt it to construct a
more complex program: a "unification algorithm" that determines if two
patterns have a common instance. 1In Part V we give some of the histo-
rical background of automatic program synthesis, and we compare this

work with other recent efforts.



IT. TUNDAMENTAL REASONING

In this section we will describe some of the reasoning and pro-
gramming tactics that are basic to the operation of our proposed syn-
thesizer. These tactics are not specific to one particular domain;
they apply to any programming problem. In this class of tactics, we
include the formation of program branches and loops and the handling

of statements with side effects.

A. Specification and Tactics Language

We must first say something about how programming problems are
to be specified. In this discussion we consider only correct and
exact specifications in an artificial language. Thus, we will not
discuss input-output examples (cf. Green et al. [1974]1, Hardy [18741),
traces (cf. Biermann et al. [1973]1), or natural language descriptions
as methods for specifying programs; nor will we consider interactive
specification of programs (cf. Balzer [1972]1). Neither are we limit-
ing ourselves to the first-order predicate calculus (cf. Kowalski
(19741). Instead, we try to introduce specification constructs that
allow the natural and intuitive description of programming problems.
We therefore include constructs such as

Find x such that P(x)
and the ellipsis notation, e.g.,

Al11, AC21, ... , Aln] .
Furthermore, we introduce new constructs that are specific to certain
subject domains. For instance, in the domain of sets we use

{x| P(x})}
for "the set of all X such that P(x)". As we introduce an example we
will describe features of the language that apply to that example.
Since the specification language is extendible, we can introduce new
constructs at any time.

We use a separate language to express the system's knowledge and
reasoning tactics. In the paper, these will be expressed in the form
of rules written in English. In our implementation, the same rules
are represented as programs in the QLISP programming language. When
a problem or goal is presented to the system, the appropriate rules

are summoned by "pattern-directed function invocation™ (Hewitt [19721)}.



In other words, the form of the goal determines which rules are applied.
In the following two sections we will use a single example, the
synthesis of the set-theoretic union program, to illustrate the forma-
tion both of conditionals and of loops. The problem here is to com-
pute the union of two finite sets, where sets are represented as lists
with no repeated elements.
Given two sets, s and t, we want to express
union(s t) = {x|x€s or x€t}
in a LISP-like language. We expect the output of the synthesized pro-
gram to be a set itself. Thus
“union((A B) (R C)) = (A B.C).
We do not regard the expression {x|x€s or x€t} itself as a proper
program: the operator { |...} is a construct in our specification
language but not in our LISP-like programming language. We assume
that the programming language does have the following functions:
head (%) the first element of the list 2.
Thus head((A B C D)) = A.
the 1list of all but the first element of the list 2.
Thus tail((A B C D)) = (B C D).
add(x s)= the set consisting of the element x and the elements
of the set s.
Thus add(A (B C D)) = (ABC D)
whereas add(B (B C D)) = (B C D).
empty(s) 1is true if s is the empty list, and

tail(e)

false otherwise.
Our task is to transform the specifications for union into an equiva-
lent algorithm in this programming language. &
We assume the system has some basic knowledge about sets, such
as the following rules:
(1) x € s is false if empty(s).

(2) s is equal to add(head(s) tail(s)) if -~empty(s).
(3) x € add(s t) is equivalent to (x = s or x € t).

(4) {x|x € s} is equal to s.

" Since sets are represented as lists, head and tail may be applied to
sets as well as lists. Their value then depends on our actual choice
of representation.



(5) {x|x=a or Q(x)} is equal to add(a {x[Q(x)}).
We also assume that the system knows a considerable amount of propo-
sitional logic, which we will not mention explicitly.

Before proceeding with our example we must discuss the formation

of conditional expressions.

B. Formation of Conditional Expressions

In addition to the above constructs, we assume that our programm-

ing language contains conditional expressions of the form

(if p then q else r) = r if p is false

q otherwise.

The conditional expression is a technique for dealing with uncertain-
ty. In constructing a program, we want to know if condition p is true
or not, but in faet p may be true on some occasions and false on others,
depending on the value of the argument. The human programmer faced
with this problem is likely to resort to "hypothetical reasoning': he
will assume p is false and write a program r that solves his problem in
that case; then he will assume p is true and write a program q that
works in that case; he will then put the two programs together into a
single program

(if p then q else r).
Conceptually he has solved his problem by splitting his world into two
worlds: the case in which p is true and the case in which p is false.
In each of these worlds, uncertainty is reduced. Note that we must
be careful that the condition p on which we are splitting the world
is computable in our programming language; otherwise, the conditional
expression we construct also will not be computable (ef. Luckham and
Buchanan [1974]).

We can now proceed with the synthesis of the union function. Our

specifications were

union(s t) = {x|x € s or x € t}.
We begin to transform these specifications using our rules. Rule (1)
applies to the subexpression x € s, genérating a subgoal, empty(s). We
cannot prove s in empty - this depends on the input -- and therefore
this is an occasion for a hypothetical world split. (We know that
empty(s) is a computable condition because empty is a primitive in
our language.) In the case in which s is empty, the expression



{x|x € s or x € t}
therefore reduces to _
{x| false or x € t},
or, by propositional logic,
{x|x € t}.
Now rule (4) reduces this to t, which is one of the inputs to our pro-
gram and therefore is itself an acceptable program segment in our lan-
guage. e
In the other world--the case in which s is not empty--we cannot
solve the problem without resorting to the recursive loop formation
mechanism, which is the subject of the next section. However, we
know at this point that the program will have the form
union(s t) = if empty(s)
then t
else ....
where the else clause will be whatever program segment we construct

for the case in which s is not empty.

C. Formation of Loops

The term "loop" includes both iteration and recursion; however,
in this paper we will only discuss recursive loops (cf. Manna and
Waldinger [1971]1). Intuitively, we form a recursive call when, in
the course of working on our problem, we generate a subgoal that is
identical in form to our top-level goal. For instance, suppose our
top-level goal is to construct the program reverse(l), that reverses
the elements of the list & (e.g., reverse(A (B C) D) = (D (B C) A)).
If in the course of constructing this program we generate the sub-
goal of reversing the elements of the list tail(R2), we can use the
program we are constructing to satisfy this subgoal. In other words

we can introduce a recursive call reverse({tail{(f)) to solve the sub-

sidiary problem. We must always check that a recursive call doesn't
lead to an infinite recursion. No such infinite loop can occur here
because the input tail(f) is "shorter" than the original input 2.

Let us see how this technique applies to our union example. Con-
tinuing where we left off in ?he discussion of conditicnals, we attempt

to expand the expression



{x|x € s or x € t}
in the case 1n which s is not empty. Applying rule (2) to the sub-
expression s, we can expand our expression to

{x|x € add(head(s) tail(s)) or x € t}.
This is transformed by rule (3) into

{x|x = head(s) or x € tail(s) or x € t}.
Using rule (5), this reduces to
add(head(s) {x]x € tail(s) or x € t}).
If we observe that
{x]x € tail(s) or x € t}
is an instance of the top-level subgoal, we can reduce it to
union(tail(s) t).
Again, this recursive call leads to nc infinite loops, since tail(s)
is shorter than s. Our completed union program is now
union(s t) = if empty(s)
then t
else add(head(s) union(tail(s) t)).

As presented in this section, the loop formation technique can
only be applied if a subgoal is generated that is a special case of
the top-level goal. We shall see in the next section how this re-

striction can be relaxed.

D. Generalization of Specifications

When proving a theorem by mathematical induction, it is often neces-
sary to strengthen the thecrem in order for the induction to "go through."
Even though we have an apparently more difficult theorem to prove, the
proof is facilitated because we have a stronger induction hypothesis.

For example, in proving theorems about LISP programs, the theorem prover
of Boyer and Moore [1973] often automatically generalizes the statement
of the theorem in the course of a proof by induction.

A similar phenomenon occurs in the synthesis of a recursive pro-
gram. It is often necessary to strengthen the specifications of a
program in order for that program toc be useful in recursive calls.

We believe that this ability to strengthen specifications is an es-
sential part of the synthesis process, as many of our examples will

show.



For example, suppose we want to construct a program to reverse a
list. A good recursive reverse program is

reverse(l) = rev(l ())

where
rev(f m) = if empty (L)
then m
else rev(tail(f) head(f)-m).
Here

() is the empty 1list
x+% is the list formed by inserting x before the first
element of the 1list & (e.g., A-(B C D) = (A B C D)).

Note that rev(L m) reverses the list £ and appends it onto the list
m, e.g.,

rev((A B C) (DE)) = (CBADE).
This is a good way to compute reverse: it uses very primitive LISP
functions and its recursion is such that it can be compiled without
use of a stack. However, writing such a program entaills writing
the function rev, which is apparently more general and difficult to
compute than reverse itself, since it must reverse its first argu-
ment as a subtask. The synthesis of this reverse function involves
generalizing the original specifications of reverse into the specifi-
cations of rev.

The reverse function requires that the top-level goal be genera-
lized in order to match the lower level goal. Another way to strength-
en the specifications is to propose additional requirements for the
program being constructed. For instance, suppose in the course of the
synthesis of a function f(x), we generate a subgoal of the form
P(f(a)), where f(a) is a particular recursive call. Instead of prov-
ing P(f(a)), it may be easier to strengthen the specifications for
f(x) so as to also satisfy P(f(x)) for all x. This step may require
that we actually modify portions of the program f that have already
been synthesized in order to satisfy the new specification P. The re=-
cursive call to the modified program will then be sure to satisfy
P(f(a)). This process will be illustrated in more detail during the
synthesis of the pattern matcher in Part III.



E. Conjunctive Goals

The problem of solving conjunctive goals is the problem of synthe-
sizing a program that satisfies several constraints simultaneously.
The general form for this problem is

Find z such that P(z) and Q(z).

The conjunctive goals problem is difficult because, even if we

have methods for solving the goals

Find z such that P(z)
and

Find z such that Q(z)
independently, the two solutions may not merge together nicely into
a single solution. Moreover, there seems to be no way of solving
the conjunctive goal problem in general; a method that works on one
such problem may be irrelevant to another.

We will illustrate one instance of the conjunctive goals problem:
the solution of two simultaneous linear equations. Although this prob-
lem is not itself a program synthesis problem, it could be rephrased
as a synthesis problem. Moreover the difficulties involved and the
technique to be applied extend also to many real synthesis problems,
such as the pattern-matcher synthesis of Part III. Suppose our prob-

lem is the following:

Find <295 Z,> such that
221 = 22 + 1 and
222 = zl + 2.

Suppose further that although we can solve single linear equations
with ease, we have no built-in package for solving sets of equations
simultaneously. We may try first to find a solution to each equation
separately. Solving the first equation, we might come up with

<zy, Z,> = <1,1>,
whereas solving the second equation might give
<zl, 22> = <2,2>.

There is no way of combining these two solutions. Furthermore, it
doesn't help matters to reverse the order in which we approach the
two subgoals. What is necessary is to make the solution of the first
goal as general as possible, so that some special case of the solu-

tion might satisfy the second goal as well., For instance, a i'general"
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solution to the first equation might be
<1 + w, 1 *+ 2w> for any w. ‘
This solution is a generalization of our earlier solution <1,1>.
The problem is how to find a special case of the general solution
that also solves the second equation. In other words, we must
find a w such that
2(1 + 2w) = (1 + w) + 2.
This strategy leads us to a solution.
0f course the method of generalization does not apply to all con-
junctive goal problems. For instance, the synthesis of an integer
square-root program has specifications
Find z such that
z is an integer and
22 £ x and
(z + l)2 > X,
where » > 0.
The above approach of finding a general solution to one of the
conjuncts and plugging it into the others is not effective in this

case.

T. Side Effects

Up to now we have been considering programs in a LISP-like lan-
guage: these programs return a value but effect no change in any
data structure. In the next two sections we will consider the syn-
thesis of programs with "side effects"™ that may modify the state of
the world.

For instance, a LISP-like program to sort two variables x and y
would return as its value a list of two numbers, either (x y) or (y %),
without altering the contents of x and ;Tx“On the other hand, a pro-
grém with side effects to sort x and y might change the contents of x
and y. , )

In order to indicate that a program with side effects is to be
constructed, we provide a specification of form

Achieve P.
This construct means that the world is to be changed so as to make P

true. For instance, if we specify a program
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Achieve % = vy,
we intend that the program actually change the value of x or y, say
by an assignment statement. However, if we specify

Find x such that x = vy,
the program constructed would return the value of y, but would not
change the value of x or y.

Many of the techniques we used in the synthesis of LISP-like pro-
grams also apply to the construction of programs with side effects. In
parficular, we can use pattern-directed function invocation to retrieve
tactical knowledge. The synthesis of the program in the following ex-
ample has the same flavor as our earlier union example, but involves
the introduction of side effects.

The program sort(x y) to be constructed is to sort the values of
two variables x and y. For simplicity we will use the statement
interchange(x y) to exchange the values of x and y, instead of the

usual sequence of assignment statements. OQur specification will be
simply

Achieve x € y.
Strictly speaking, we should include in the specification the addition-
al requirement that the set of values of x and y after the sort should
be the same as before the sort. However, we will not consider such
compound goals until section H, and we can achieve the same effect by
requiring that the interchange statement be the only instruction with

side effects that appears in the program.
The first step in achieving a goal is to see if it is already true.
(If a goal is a theorem, for instance, we do not need to construct a
program to achieve it.) We cannot prove =€y, but we can use it as a
basis for a hypothetical world split. This split corresponds to a
conditional expression in the program being constructed. In flowchart
notation the conditional expression is written as a program branch:
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At point 2 our goal is already achieved. At point 3 we know that
~(x<y), 1.e., x>y. To achieve xgy, it suffices to establish x<y,

but this may be achieved by executing interchange(x y). Thus we

have x€y in both worlds, and the final program is therefore:

interchange(x y)

4

This example introduced no difficulties that our LISP-like pro-

gram synthesis‘techniques could not handle. However, in general, pro-
grams with side effects must be given special treatment because of the
necessity for representing changes in the world. It is important to
be able to determine whether a given assertion is always true at a
given point in a program. To this end we study the relationship Le-

tween assertions and program constructs in the next section.

G. Assertions and Program Constructs

Suppose a program contains an assignment statement
o
xey |

2

and we wish to determine if x<3 at point 2. In order to do this it
suffices to check if what we know at point 1 implies that y&3. In
general, to determine an assertion of form P{(x) at point 2, check
P(y) at point 1. We will say that the assertion P(y) is the result
of "passing back" the assertion P(x) from point 2 to point 1. (This is
precisely the process outlined by Floyd [1967] and Hoare [1969] -
see also Manna [1974] - in reference to program verification.)
Furthermore, if our program contains the instruction
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1

Y
[_interchange(x y) {

—

Y

and we wish to establish x<y at point 2 we must check if y<x at
point 1. In general, an assertion of form P(x y) results in an
assertion of form P(y x) when passed back over interchange(x y).

Suppose the program being constructed contains a branch

To determine if an assertion Q is true at point 2, it suffices to
check whether

Q if P
(i.e., P o Q) is true at point 1. In order to determine if R is
true at point 3, it suffices to check whether

R if .P
(i.e., ~P o R) 1is true at point 1.

Suppose two control paths join in the program being constructed.

1 % 2
$3
Thus to determine if assertion P is true at point 3, it is sufficient

to check that P be true at both point 1 and point 2.

Assertions may be passed back over complex programs. For in-

otance; let us pass the assertion ysz “back over the program sort(x y)
which we constructed in the prev1ous section.

—
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y<z 1if xgy
1= 9x¢z if ~(xgy)
T ey F
= . stiz/ T
3 & —— x<z
i
T
ygz —— —-8 2 interchange(x y)
4 %————— YEZ
]
58— —y<z

By combining the methods that we have just introduced for passing
assertions back over program constructs, we can see that in order to
establish y€z at point 5, it is necessary to check that (y<z if

x<y) and (x<z if ~(x<y)) are true at point 1.

Often the specification of a program will require the simulta-
neous satisfaction of more than one goal. As in the case of conjunc-
tive goals in LISP-like programs, the special interest of this prob-
lem lies in the inter-relatedness of the goals. The techniques of
this section will now be applied to handle the interaction between

goals.

H. Simultaneous Goals

A simultaneous godl problem has the form
Achieve P and Q.
Sometimes P and Q will be independent conditions, so that we can
achieve P and Q simply by achieving P and then achieving ¢. For
example, i1f our goal is
Achieve x = 2 and y = 3,
the two goals x=2 and y=3 are completely independent. In this section,
however, we will be concerned with the more complex case in which P
and Q interact. In such a case we may make P false in the course of
achieving Q.
Consider for example the problem of sorting three variables x,y,
and z. We will assume that the only instruction we can use is the

subroutine sort(u v), described in the previous section, which sorts
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two variables. Our goal is then
Achieve x € v and v € z.
We know that the program sort(u v) will achieve a goal of form ugv.
If we apply the straightforward technique of achieving the conjunct
X<y first, and then the conjunct y<z, we obtain the program
sort(x y)
sort(y z).
However, this program has a bug in that sorting y and z may disrupt the
relation x€y: if z is initially the smallest of the three, in inter-
changing v and z we make y less than x. Reversing the order in which
the conjuncts are achieved is useless in this case.
There are a number of ways in which this problem may be resolved.
One of them involves the notion of program moedification. (cf. Sussman
[1973]). The general strategy is as follows: +to achieve P and Q simul-
taneously, first write a program toc achieve P; then modify that program
to achieve Q as well. The essence of this strategy, then, lies in a
technique of program modification.
Let us see how this strategy applies to the simple sort problem.
The specification is
Achieve x € v and v € z.
It is easy to achieve x<y; the program sort(x y) will do that immediately.
We must now modify the program sort(x y) to achieve y<z without disturb-
ing the relation x<y we have just achieved. In other words, we would
like to "protect" the relation x<y. We have seen that simply achieving
y¢z after achleving x<£y is impossible without disturbing the protected
relation. Therefore we will pass the goal y£z back to the beginning of
the program sort(x y) and try to achieve it there, where there are no
protected relations.
We have seen in the previous section that the goal y<z passed back
before the program sort(x y) results in two goals

(1) y € zif x < vy
and
(1ii) x € z 1f ~(x € y).

Both of these goals must be achieved before applying sort(x y). We can
achieve (i) by applying sort(y z). (This will achieve y<z whether or not
xX€¢y.) Our program so far is thus
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sort(y z)

|

sort(x y)

l*

Y

We still need to achieve goal (ii) at point 2; however, we will pass

this goal back to point 3 so as not to endanger our protected relation
(y¢z if x<y) at point 2, which we have just achieved. Passing goal
(ii) back to point 3, using the techniques of Section G, yields two
more goals

(iii) x ¢ z if [~(x € y) and y € z]
and

(iv) x €y if [~(x € 2) and ~(y € z)1].
Both of these goals must be achieved at point 3. We can achieve (iii)

simply by inserting the instruction sort(x z) before point 3.

u%
sort(x z)

:

sort(y z)
3
{_. sort(x y)

1
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Apparently we must still achieve (iv) at point 3. However, since we
have just executed sort(x z), we know x<z at point 3, and so goal (iv)
is already satisfied vacuously. Thus the desired program is

sort(x z)

sort(y z)

- sort(x y).
If the subgoals are pursued in a different order, different variations
on this program are obtained.

The program modification strategy seems to be a fairly general
approach to the simultaneous goal problem. It also is a powerful pro-
gram synthesis technique in general, as we will see when we develob the
unification algorithm in Part IV.

This concludes the presentation of our basic program synthesis
techniques. In the next part we will show how these same techniques
work together in the synthesis of a more complex example.



18.

III. PROGRAM SYNTHESIS: THE PATTERN-MATCHER

We will present the synthesis of a simple pattern-matcher tc show
how the concepts discussed in the previcus section can be applied to
a non trivial problem. Later, in Part IV, we shall show how we can
construct a more complex program, the unification algorithm of Robinson
[1965]1, by modifying the program we are about to synthesize. We must
first describe the data structures and primitive operations involved

in the pattern-matching and unification problems.

A, Domain and Notations

The main objects in our domain are expressions and substitutions.

1. Expressions _
, Expressions are atoms or nested lists of atoms; e.g., (A B (X C)
'is an expreséion. AT atfom may Be either a variable or a constant.

D)

(In our examples we will use A,B,C,... for constants and U,V,W,...

for variables.) We have basic predicates atom, var and const to

distinguish these cobjects:
atom(f) = £ is an atom,

var{f) = £ is a variable,
and "const(l)= ¢ is a constant.

To decompose an expression, we will use the primitive functions
head(£) and tail(2), defined when £ is not an atom.
head(®) is the first element of %,
tail(f) is the list of all but the first element of &.

Thus
head(((A (X) BY C (D X))) = (A () B),
tail({(C(A (X)) BY C (D X))) = (C (D XW.

We will abbreviate head(?) as 21 and t3il(L) as 22.

'+' function: if & is any

To construct expressions we have the
expression and m is a nonatomic expression, £-'m is the expression
with £ inserted before the first element of m. For example

A-(BCD)=(ABCD), o
(A (X) B) « (C (DX))= (A (X) B C(ZX).

The predicate occursin(x £) is true if x is an atom that occurs

in expression £ at any level, e.g.,
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occursin(A (C (B (A) B) C)) is true,
but

cccursin(X Y) is false.

Finally, we will introduce the predicate constexp(£), which is
true if 2 is made up entirely of constants. Thus
constexp((A (B) C (D E))) is true,
but
constexp(X) is false.

nonatomic expressions.
2. Substitutions

A substitution replaces certain variables of an expression by

other expressions. We will represent a substitution as a list of
pairs. Thus
(<X (A B)> <Y (C Y)>)
is a substitution.
The instantiation function inst(s 2) applies the substitution s
to the expression L. For example, if
(<X (A B)> <Y (C Y)>)

s
and
(X (A Y) X)

o
1]

then

inst(s &) = ((A B) (A (C Y)) (A B)).
Note that the substitution is applied by first replacing all occur-
rences of X simultaneously by (A B) and then all occurrences of Y
simultaneously by (C ¥Y). Thus, if

s' = (<X ¥> <Y C>),
then

inst(s' &) = (C (A C) C).

The empty substitution A is represented by the empty list of pairs.

Thus, for any expression 2%,

inst(4 2) = 2.

We regard two substitutions s, and s, as equal (written 51=52) if

1
‘and only if |

inst(sl 2y = 'i’nst(s2 )
for every expression &. Thus
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(<X Y> <Y C>)
and
(<X C> <Y C>)
are regarded as equal substitutions.

We can build up substitutions by using the functions pair and °
(composition): If v is a variable and t an expression, pair(v t) is
the substitution that replaces v by t; i.e.,

pair(v t) = (<v t>).
is the substitution with
Thus

If 8,
the same effect as applying s

and s, are two substitutiens, 81082
1 followed by Sg-
inst(s,%s, %) = inst(s, inst(s; 2)).
For example, if
s, = (<X A> <Y B>)
and

(<Z C> <X D>)

[41]
n

then
81052 = (<X A> <Y B> <Z C>).
Note that for the empty substitution A
A®s = s°A = s

for any substitution s.

B. The Specifications

The problem of pattern-matching may be described as follows. We
are given two expressions, pat and arg. While pat can be any expres-

sion, arg is assumed to contain no variables; i.e., constexp(arg) is

true. We want to find a substitution z that transforms pat into arg,
i.e., such that

inst(z pat) = arg.
We will call such a substitution a match. If no match exists, we want
the program to return the distinguished constant NOMATCH. For example,
if

pat is (X A (Y B})
and

arg is (C A (D B)),
we want the program to find the match

(<X C> <Y D>).
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On the other hand, if
pat is (X A (X B))
and
arg is (B A (D B)), ‘
then no substitution will transform pat into arg, because X cannot be
matched with both B and D. Therefore the program should yield NOMATCH.
This version of the pattern-matcher is simpler than the pattern-
matching algorithms usually implemented 1n programming languages be-
cause of the absence of "sequence" or "fragment" variables. Our vari-
ables must match exactly one eXpression, whereas a fragment variable
may match any number of expressions. Thus if
pat is (X Y Z) and
arg is ((A B) C (A B)),
X and Z must be bound to (A B), and Y must be bound to C. If
pat is (X Y) and
arg is (A B C),
no match is possible at all, while if X and Y were fragment variables,
four matches would be possible.
In mathematical notation the specifications for our pattern-matcher

are:

- Goal 1: match(pat arg) =

Find z such that inst(z pat) = arg
else z = NOMATCH

where "Find z such that P(z) else Q(z)" means find a z such that P(z)
if one exists; otherwise, find a z such that Q(z).
The above specifications do not completely capture our intentions;

for instance, if

pat is (X Y), and

arg is (A B),
then the substitution

z = (<X A> <Y B> <Z C>)
will satisfy our specifications as well as

z = (<X A> <Y B>).
We have neglected to include in our specifications that no substitu-
tions should be made for variables that do not occur in pat. We will
call a match that satisfies this additional condition a most general
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An interesting characteristic of the synthesis we present is that
even if the user does not require that the match found be most general,
the system will strengthen the specifications automatically to imply
this condition, using the .method outlined in Section II-D. Therefore

we will begin the synthesis using the weaker specifications.

C. The Synthesis: The Base Cases

Rather than list all the knowledge we require in a special sec-
tion at the beginning, we will mention a rule only when it is about to
be used. Furthermore, if a rule seems excessively trivial we will omit
it entirely. The general strategy is to first work on

" Goal 2: Find z such that inst(z pat) = arg.

z exists), we will work on
Goal 3: Find a z such that z = NOMATCH;
which is seen to be trivially satisfied by taking z to be NOMATCH.

Thus, from now on we will be working primarily on Goal 2. How-
ever, in working on any goal we devote a portion of our time to show-
ing that the goal is impossible to achieve. When we find cases in
which Goal 2 is proven impossible, we will automatically return NOMATCH,
which satisfies Goal 3.

We have in our knowledge base a number of rules concerning inst,

including

Rule 1: inst(s %) = x for any substitution s
if constexp(x)

Rule 2: inst(pair(v t) v) = t

if var(v).

We assume that these rules are retrieved by pattern-directed func-
tion invocation on Goal 2. Rule 1 applied only in the case that
constexp(pat) and pat = arg. We cannot prove either of these condi-
tions; their truth or falsehood depends on the particular inputs to
the program. We use these predicates as conditions for a hypothetical
world-split. In“ﬁhe case that both of these conditions are true, Rule

1 tells us that any substitution is a satisfactory match. We will

have occasion to tighten the specifications of our program later; as

they stand now, we will simply return "any", so as not to restrict
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our choice. The portion of the program we have constructed so far
reads match(pat arg) =
if constexp(pat?)

then if pat = arg
q. then any
else ...
else ...
On the other hand, in the case constexp(pat) and pat # arg, Rule
1 tells us that
inst(z pat) # arg
for any z. Hence we are led to try to satisfy Goal 3 and return
NOMATCH.
We now consider the case
~constexp(pat).
Rule 2 establishes the subgoal
var(pat).

This is another occasion for a hypothetical world-split. When var(pat)

is true, the program must return pair(pat arg); the program we have
constructed so far is
- match(pat arg) =

if constexp(pat)

then if pat = arg
then any
else NOMATCH
else if var(pat)
then pair(pat arg)

else ....
Hencefore we assume ~var(pat). Recall that we have been assuming also
that ~constexp(pat). To proceed we make use of the following addition-

al knowledge about the funetion inst:

Rule 3: inst(s x-y) = inst(s X).inst(s y) for any substitution s.
This rule applies to our Goal 2 if pat = x.y for some expressions x
and y. We have some additional knowledge about expressions in gene-
ral:

‘Rule 4 u = ugtu,
if ~atom(u).
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Recall that u, is an abbreviation for head(u) and u, is an abbreviation

1 2
for tail(u).
Rule 5: u # v-w for any v and w

if atom(u).
Using Rule 4, we generate a subgoal
~atom(pat).
Since we have already assumed ~constexp(pat) and ~var(pat), we can actual-

ly prove ~atom(pat) using knowledge in the system. Therefore pat=pat1-pat2
and using Rule 3 our Goal 2 is then reduced to

Goal 4: Find z such that inst(z patl)°inst(z patz) = arg.
We now make use of some general list-processing knowledge.
Rule 6: To prove x+y = u*v, prove ¥ = u and y = v.
Applying this rule, we generate a subgoal to show that
arg = u-v
for some u and v. Applying Rule 4, we know this is true with
u = arg, and v = arg, if
~atom(arg).
This is another occasion for a hypothetical world-split.
Thus, by Rule 6, in the case that ~atom(arg), our subgoal reduces to
" Goal 5: Find z such that
inst(z pat;) = arg
and
i_nSl(Z Ez) = ﬂz'
We will postpone treatment of this goal until after we have considered
the other case, in which
atom(arg)
holds. 1In this case Rule 5 tells us that
inst(z pat,)-inst(z pat,) # arg

for any z. Hence, our goal is unachievable in this case, and we can
return NOMATCH.
The program so far is
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match(pat arg) =

if constexp(pat)

then if pat = arg
then any
else NOMATCH
else if var(pat)
then pair(pat arg)

else if atom(arg)
then NOMATCH
else
For the as yet untreated case neither pat nor arg is atomic.
Henceforth wusing Rule 4 we assume that pat is pat,-.pat, and arg is
arg,-arg,-

D. The Synthesis: " The Inductive Case

We will describe the remainder of the synthesis in less detail,
because the reader has already seen the style of reasoning we have
been using. Recall that we had postponed our discussion of Goal 5
in order to consider the case in which arg is atomiec. Now that we
have completed our development of that case, we resume our work on
Goal 5:

Find z such that

inst(z EEEl) = arg,, and

inst(z pat,) = arg,.
This is a conjunctive goal, and is treated analogously to the goal
in the simultaneous linear equations example (Section II-E): The system
will attempt to solve the first conjunct, using a recursive call to the
pattern-matcher itself.

The interaction between the two conjuncts is part of the challenge
of this synthesis. It is quite possible to satisfy each conjunct se-
parately without being able to satisfy them both together. TFor example,
if pat = (X X) and arg = (A B) then EEEI = X, pat, = (X, arg; = A and
arg, = (BY. Thus z = (<X A>) satisfies the first conjunct, z = (<X B>)
satisfies the second conjunct, but no substitution will satisfy both
conjuncts because no substitution can match X against both A and B.

Some mechanism is needed to ensure that the expression assigned to a
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variable in solving the first conjunect is the same as the expression
assigned to that variable in solving the second conjunct.

There are several ways to approach this difficulty. For instance,
the programmer may satisfy the two conjuncts separately and then at-
tempt to combine the two substitutions thereby derived into a single
substitution. Or he may actually replace those variables in pat,
that also occur in‘Eggl by whatever expressions they have been matched
against, before attempting to match pat, against arg, . Or he may
simply pass the substitution that satisfied the first conjunct as a
third argument to the pattern-matcher in working on the second conjunct.
The pattern-matcher must then check that the matches assigned to vari-
ables are consistent with the substitution-given as the third argument.

We will examine in this section how a system would discover the
second of these methods. A similar system could also discover the
third method. We will not consider the first method heféﬂﬁeééuse it

is not easily adapted to the unification problem.
Qur strategy for'approaching the conjunctive goal is as follows.
We will consider the first conjunct independently:
Goal 6: TFind z such that inst(z EEEI) = arg,.
If we find a z that satisfies this goal, we will substitute that z
into the second conjunct, giving
Goal 7: Prove inst(z 2532) = arg,.
If we are successful in Goal 7, we are done; however, if we fail, we
will try to generalize z. In other words, we will try to find a broader
class of substitutions that satisfy Goal 6 and from these select cne
that also satisfies Goal 7. This is the method we introduced to solve
conjunctive goals in Section II-E.
Applying this strategy, we begin work on Goal 6. We first use a
rule that relates the construct
Find z such that P(z)
to the construct
Find z such that P(z) else Q(z).
Rule 7: To find z such that P(z),
it suffices to find z, such that P(zl) else Q(zl)

1
for some predicate Q,

and ~Q(zl).
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This rule, applied to Goal 6 causes the generation of the subgoal

Goal 8: Find z, such that'inSt(zi‘patl) ='argl else Q(zl),

1
and ~Q(zl).
The first conjunct of this subgoal matches the top-level Goal 1, where
Q(zl) is zq = NOMATCH. This suggests establishing a recursion at this

point, taking

zq = matbhfpgzi gzgl).
Henceforth we will use 2z, as an abbreviation for match(pat; arg,).
Termination 1s easily shown, because both‘EgEl and arg, are proper sub-
expressions of pat and arg, respectively. It remains to show, accord-
ing to Rule 7, that z, # NOMATCH. This causes another hypothetical
world-split: in the case z, = NOMATCH (i.e., no substitution will
cause RﬂEl and 5251 to match), we can show that no substitution can
cause pat and arg to match either, and hence can take z = NOMATCH.

We have thus constructed the following new program segment

Z, *+ match(patl'argl)

1
if z, = NOMATCH
then NOMATCH
else ...

We have used z, as a program variable to improve readability. The
actual program constructed would use’match(Patl argl) itself in place
of Zqp . .

On the other hand, if 21 # NOMATCH, we know that Zq
first conjunct (Goal 6). Thus, in keeping with the conjunctive goal

satisfies the

strategy, we try to show that z, satisfies the second conjunct (Goal 7),

1
as well, i.e.,

1nst(zl patz) = arg,.

However, we fail in this attempt; in fact we can find sample inputs
pat and arg that provide a counter-example to Goal 7 (e.g., pat=(A X),
arg=(A B), zl=A). Thus we go back and try to generalize our solution
to Goal 6. '

We already have a solution to Goal 6: we know 1nst(zl Eatl)=argl.

constexp(arg). Hence Rule 1 tells us that
'inst(zé'argl) = arg,
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for any substitution Z, - Therefore
inst(22 inst(z1 Eatl)) = arg,,

. o -
1nst(zl z, Eatl) arg,
for any substitution Zg e Thus having one substitution Zq that satis-
fies Goal 6, we have an entire class of substitutions, of form z.°z,,
each of which satisfies Goal 6. These substitutions may be conslidered to
be "extensions" of z,5 although Zq itself may not satisfy Goal 7, per-
haps some extension of Zq will,
The above reasoning is straightforward enough to justify, but
further work is needed to motivate a machine to pursue it.
It remains now to find a single z, so that zl°z2 satisfies Goal
7, 1.e.,
. 3 3 0 -
Goal 9: Find Z, such that_lnst(zl Z, Patg) = arg,,
or equivalently,
Find z, such that 1nst(22 :Lnst(z1 Eatg)) = arg,.

applying Rule 7, we establish a new goal

Goal 10: Find z,
and ~Q(z2)

The first conjunct of this goal is an instance of our top-level goal,

such that inst(z2 inst(zl pat,)) arg, else Q(zz),

taking pat to be inst(zl patz), arg to be arg, and Q(zz) to be

z, = NOMATCH. Thus we attempt to insert the recursive call

Z

2 * match(inst(zl pat,) arg,)

into our program at this point. (Again, the introduction of z, as a
program variable is for notational simplicity.) However, we must first
establish

~Q(22),

Z, # NOMATCH.

We cannot prove this: 1t is true for some examples and false for others.
Therefore we split on this condition.

In the case z, # NOMATCH Goal 10 is satisfied. Thus z,
fies Goal 9%, and z=zl°z2 satisfies Goal 7.

Qur program so far is

also satis-
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match(pat arg) =

if constexp(pat)
then' if pat = arg
then any
else NOMATCH
else if var(pat)

then pair(pat arg)

else if atom(arg)
then NOMATCH
else z, + match(pat, arg,)

if z, = NOMATCH

then NOMATCH
else z, * 'ma'tch(inst(zl patz) argg)
if z, = NOMATCH

2
then ...

[e]
else zZ, 22'

E. The Synthesis: The Strengthening of the Specifications

We have gone this far through the synthesis using the weak speci-
fications, i.e., without requiring that the match found be most gene-
ral. In fact, the match found may or may not be most general depend-
ing on the value taken for the unspecified substitution "any" produced
in the very first case. The synthesis is nearly complete. However,
we will be unable to complete it without strengthening the specifica-
tions and modifying the program accordingly. We now have only one case
left to consider. This is the case in which

Zg = NOMATCH
match(inst(z,; pat,) argz) = NOMATCH.
This means that no substitution w satisfies

inst(w 1n‘st(zl patz)) = arg,,
or, equivalently
inst(zl°w Eatz) # arg, for every substitution w.

This means that no substitution of form z.°w could possibly satisfy

inst(zl°w pat) = arg.

1
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We here have a choice: we can try to find a substitution s not of
form zl°w that satisfies

inst(s Eatl) = arg,;
and repeat the process; or we could try to show that only a substitu-
tion s of form zl°w could possibly satisfy

inst(s Eatl) = arg,,
and therefore we can take z=NOMATCH.

Pursuing the latter course, we try to show that the set of sub-

stitutions s of form zl°w is the entire set of solutions to

inst(s Eatl) = arg,.
In other words, we show that for any substitution s,

1f inst(s Eatl) = argy then s = zl°w for some w.
This condition is equivalent to saying that Zq is a most general match.
We cannot prove this about zq itself; however, since z, is

match(patl apgl) it suffices to add the condition to the specifications

for match, as described in Section II-D. The strengthened specifica-

tions now read

Find z such that
{inst(z pat) = arg and
for all s [if inst(s pat) = arg

then s = z°w for some wl}
else z = NOMATCH.

Once we have strengthened the specifications it 1s necessary to
go through the entire program and see that the new, stronger specifi-
cations are satisfied, modifying the program if necessary. In this
case no major modifications are necessary; however, the assignment

Z + any
that occurs in the case in which pat and arg are equal and constant
is further specified to read

z + A.

Our final program is therefore



31.

match(pat arg) =

if constexp{pat)

then if pat = arg
then A
else NOMATCH

else if var(pat)
then pair(pat arg)

else if atom(arg)
then NOMATCH
else z, « ma‘tch(pa'tl argl)
if zq = NOMAT CH
then NOMATCH
else z, * match(inst(zl patz) argz)
if z, = NOMATCH
then NOMATCH
else z1°zz.
The above pattern-matcher is only one of many pattern-matchers

that can be derived to satisfy the same specifications. In pursuing

the synthesis the system has made many choices; some of the alterna-
tive paths result in a failure to solve the problem altogether, where-
as other paths result in different, possibly better programs.
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IV. PROGRAM MODIFICATION: THE UNIFICATION ALGORITHM

In general, we cannot expect a system to synthesize an entire com-
plex program from scratch, as in the pattern-matcher example. We would
like the system to remember a large body of programs that have leen
synthesized before, and the method by which they were constructed.

When presented with a new problem, the system should check to- see
if it has solved a similar problem before. If so, it may ‘be able
to adapt the technlque of the old program to make it solve the new
problem. ’ T

There are several difficulties involved in this approach. First,
we cannot expect the system to remember every detail of every synthe-
sis in its history. Therefore, it must decide what to remember and
what to forget. Second, the system must decide which problems are
similar to the one being considered, and the concept of similarity
is somewhat ill-defined. Third, having found a similar program, the
system must somehow modify the 61d synthesis to solve the new problem.
We will concentrate only on the last of these problems in this discus-
sion. We will illustrate a technique for program modification as ap-
plied to the synthesis of a version of Robinson's {1965} unification
algorithm.

A, The Specifications

Unification may be considered to be a generalization of pattern-
matching in which variables appear in both pat and arg. The problem
is to find a single substitution (called a "unifier") that, when ap-
plied to both pat and arg, will yield identical expressions. For

instance, if

pat = (X A)
and
arg = (B Y),

then a possible unifier of pat and arg is
{ <X B> <Y A> ).

The close analogy between pattern-matching and unification is
clear. If we assume that the system remembers the pattern-matcher we
constructed in Sections III-B through III-E and the goal structure
involved in the synthesis, the solution to the unification problem is
greatly facilitated.
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The specifications for the unification algorithm, in mathemati-

cal notation, are

unify(pat arg) = .)
Find z such that inst(z pat) = inst(z arg) |
else z = NOUNIFY |

B. The Analogy with the Pattern-Matcher

For purposes of comparison we rewrite the match specifications:

match(pat arg)

Find z such that inst(z pat) = arg
else z = NOMATCH.
In formulating the analogy, we identify unify with match, pat with

pat, the arg in unify(pat arg) with arg, and inst(z arg) alsoc with

arg, NOMATCH with NOUNIFY. In accordance with this analogy, we must
systematically alter the goal structure of the pattern-matcher syn-
thesis. For example, Goal 5 becomes modified to read

Find z such that

inst(z pat,) = inst(z arg ) and

inst(z EEEQ) = inst(=z 2352).

In constructing the pattern-matcher, we had to break down the syn-

thesis into various cases. We will try to maintain this case structure

in formulating our new program. Much of the savings derived from modi-

fying the pattern-matcher instead of constructing the unification algo~

rithm from scratch arises because we do not have to deduce the case
splitting all over again.

A difficult step in the pattern-matcher synthesis involved the
strengthening of the specifications for the entire program. We added
the condition that the match found was to be "most general." In for-

mulating the unification synthesis, we will immediately strengthen the

specifications in the analogous way. The strengthened specifications

read

unify(pat arg) =
Find z such that
{inst(z pat) = inst(z arg) and

for all s [if inst(s pat) = inst(s arg)
then s = z°w for some wl}
else z = NOUNIFY.
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Following Robinson, we will refer to a unifier satisfying the new
condition as a "most general-unifier.”

Note that this alteration process is purely syntactic; there is
no reason to assume that the altered goal structure corresponds to a
valid line of reasoning. TFor instance, simply because achieving Goal 2
in the pattern-matching program is useful in achieving Goal 1 does not
necessarily imply that achieving the corresponding Goal 2' in the uni-
fication algorithm will have any bearing on Goal 1'. The extent to
which the reasoning carries over depends on the soundness of the ana-
logy. If a portion of the goal structure proves to be valid, the cor-
responding segment of the program can still remain; otherwise, we must

construct a new program segment.

C. The Modification

Let us examine the first two cases of the unification synthesis
in full detail, so that we can see exactly how the modification process
works. In the pattern-matcher, we generated the subgoal (Goal 2)
Find z such that inst{(z pat) = arg.

The corresponding unification subgoal is |
Find z such that inst(z pat) = inst(z arg).

In the pattern-matcher we first considered the case constexp(pat)

where pat=arg. In this case the corresponding program segment will
return A. This segment also satisfies the modified goal in this case,
because

inst(A pat) = inst(A arg).

The system must also check that A is a most general unifier, i.e.,
for all s [if inst(s pat) = inst(s arg)

then s = A°w for some wJ.
This condition is easily satisfied, taking w=s. Thus, in this case,
the program segment is correct without any modification.
The next case does require some modification. In the pattern-

matcher, when constexp(pat) is true and patfarg, z is taken to be

NOMATCH. However, in this case in the unification algorithm we must
check that
inst(s pat) # inst(s arg),

i.e.,

pat # inst(s arg)
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for any s, in order to take z=NOUNIFY. Since for the unification prob-
lem arg may contain variables, this condition cannot be satisfied. We
must therefore try to achlieve the specifications in some other way.

In this case (where constexp(pat)), the specifications of the unifica-

tion algorithm reduce to
Find z such that
{pat = inst(z arg) and

for all s [if pat = inst(s arg)
then s = z°w for some wl}
else z = NOUNITFY.
These specifications are precisely the specifications of the pattern-
matcher with pat and arg reversed; consequently, we can invoke

match(arg pat) at this point in the program.

The balance of the modification can be carried out in the same
manner. The derived unification algorithm is
unifx(ggﬁ arg) =
if constexp(pat)

then if pat = arg
then A
else match(arg pat)

else if var(pat)
then if occursin(pat arg)
then NOUNIFY
else pair(pat arg)

else 1f atom(arg)
then unify(arg pat)

else z, +‘unify(patl argl)
if 2, = NOUNIFY
then NOUNIFY
else z, + unify(inst(z, pat,) inst(z, 3352))
if 2y = NOUNIFY
then NOUNIFY

else z.%°z
1

0°
Recall that oecursin(pat arg) means that pat occurs in arg as a sub-

expression.



36.

The termination of this program is considerably more difficult
to prove than was the termination of the pattern-matcher. However,
the construction of the unification algorithm from the pattern-matcher
is much easier than the initial synthesis of the pattern-matcher it-
self.
Note that the program we have constructed contains a redundant
branch. The expression
if pat = arg
then A
else match(arg pat)

could be reduced to
match(arg pat).

Such improvements would not be made until a later optimization phase.
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V. DISCUSSION

A. Implementation

Implementation of the techniques presented in this paper is under-
way. Some of them have already been implemented. Others will require
further development before an implementation will be possible.

We immagine the rules, used to represent reasoning tactics, to be
expressed as programs in a PLANNER-type language. Our own implementa-
tion is in QLISP (Reboh and Sacerdoti [1973]). Rules are summoned by

pattern-directed function invocation.

World-splitting has been implemented using the context mechanism
of QLISP, which was introduced in QA4 (Rulifson et al. [1972]). The
control-structure necessary for the hypothetical worlds, which involves
an actual splitting of the control path as well as the assertional data
base, is expressed using the multiple environments (Bobrow and Wegbreit
[1973]) of INTERLISP (Teitelman [1974]). Although the world-splitting

has been implemented, we have yet to experiment with the various strate-

gies for contrelling it.

The existing system is capable of producing simple programs such
as the union function, the program to sort two variables from Part II,
or the loop-free segments of the pattern-matcher from Part III.

The generalization of specifications (Sections II-D and III-E)
is a difficult technique to apply without its going astray. We will
develop heuristics to regulate it in the course of the implementation.
Similarly, our approach to conjunctive goals (Section II-E) needs
further explicaticn.

B. Historical Context and Contemporary Research

Early work in program synthesis (e.g. Simon [1963], Green [19691],
Waldinger and Lee [1969]), was limited by the problem-solving capabili-
ties of the respective formalisms involved (the General Problem Solver
in the case of Simon, resolution theorem proving in the case of the
others). Our paper on loop formation (Manna and Waldinger [1971]) was
set in a theorem-proving framework, and paid little attention to the
implementation problems.

It is typical of contemporary program synthesis work not to at-
tempt to restrict itself to a formalism; systems are more likely to

write programs the way a human programmer would write them. For
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example, the recent work of Sussman [1973] is modelled after the de-
bugging process. Rather than trying to produce a correct program at
once, Sussman's system rashly goes ahead and writes incorrect programs
which it then proceeds to debug. The work reported in Green et al.
[1974] attempts to model a very experienced programmer. For example,
if asked to produce a sort program, the system recalls a variety of
sorting methods and asks the user which he would like best.

The work reported here emphasizes reasoning more heavily than the
papers of Sussman and Green. For instance, in our synthesis of the
pattern-matcher we assumed no knowledge about pattern-matching itself.
Of course we do assume extensive knowledge of lists, substitutions,
and other aspects of the subject domain.

Although Sussman's debugging approach has influenced our treat-
ment of program modification and the handling of simultaneous goals,
we tend to rely more on logical methods than Sussman. Furthermore,
Sussman deals only with programs that manipulate blocks on a table;
therefore he has not been forced to deal with problems that are
more crucial in conventional programming, such as the formation of
conditionals and loops.

The work of Buchanan and Luckham [1974] (see also Luckham and
Buchanan [1974]) is closest to ours in the problems it addresses.
However, there are differences in detail between our approach and
theirs:

The Buchanan-Luckham specification language is first-order pre-
dicate calculus; ours allows a variety of other notations. Their me-
thod of forming conditionals involves an auxiliary stack; ours uses
contexts and the Bobrow-Wegbreit control structures. In the Buchanan-
Luckham system the loops in the program are iterative, and are specified
in advance by the user as "iterative rules," whereas in our system the
(recursive) loops are introduced by the system itself when it recog-
nizes a relationship between the top-level goal and a subgoal. The
treatment of programs with side effects is also quite different in
the Buchanan-Luckham system,‘in which a model of the world is maintain-
ed and updated, and assertions are removed when they are found to con-
tradict other assertions in the model. Our use of contexts allows the
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system to recall past states of the world and avoids the tricky prob-
lem of determining when a model is inconsistent. It should be added
that the implementation of the Buchanan-Luckham system is considerably

more advanced than ours.

C. Conclusions and Future Work

We hope we have managed to convey in this paper the promise of Pro-
gram synthesis, without giving the false impression that automatic syn-
thesis is likely to be immediately practical. A computer system that
can replace the human programmer will very likely be able to pass the
rest of the Turing test as well.

Some of the apprcaches to program synthesis that we feel will be
most fruitful in the future have been given little emphasis in this
paper because they are not yet fully developed. For example, the tech-
nique of program modification, which occupied only one small part of the
current paper, we feel to be central to future program synthesis work.
The retention of previously constructed programs is a powerful way to
acquire and store knowledge. Furthermore program optimization (ef.
Darlington and Burstall [1973]) and program debugging are just special
cases of program modification.

Another technique that we believe will be wvaluable is the use of
more visual or graphic representations, that convey more of the pro-
perties of the object being discussed in a single structure. A mathe-
matician will often informally use a diagram instead of a symbolic re-
presentation to help himself find a proof. The theorem-proving systems
of Gelernter [1963] (in geometry) and Bundy [1973] (in algebra), for
example, use diagram-like notations to facilitate proofs. We suspect that
program synthesis would also benefit from such notations. For instance,
we have found that the synthesis of the pattern-matcher could be made
shorter and more intuitive by the introduction of the substitution no-
tation of mathematical logic. If we represent an expression P as
P(xl,...,xn), where Xpsewe X is the complete 1list of the variables
that occur in P, then P(tl,...,tn) is the result of substituting vari-
ables Xs by terms ts in P. We can then formulate the problem of pat-

tern-matching as follows:
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Let pat = pat(xl,...,xn).
Find z such that

if arg = pat(tl,...,tn) for some tl,...,tn
then z = {<xl Ty% s <Ky tn>}
else z = NOMATCH.

Note that this specification includes implicitly the restriction that
the match found be a most general match, because each of the variables
x. actually occcurs in pat. Therefore, the specifications do not need
t; be strengthened during the course of the synthesis.

We hope to experiment with visual representations in a variety of
applications. Clearly, while the reasoning required is simplified by
the use of pictorial notation, the handling of innovations such as the

ellipsis notation ("..."yin an implementation is correspondingly more

complex.
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