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ABSTRACT

This paper describes a theorem prover that embodies knowledge about
programming constructs, such as numbers, arrays, lists, and expressions.
The program can reason about these concepts and is used as part of a pro--
gram verification system that uses the Floyd-Naur explication of program
semantics. It is implemented in the QA4 language; the QA4 system allows
many pieces of strategic knowledge, each expressed as a small progranm,
to be coordinated so that a program stands forward when it is relevant to
the problem at hand. The language allows clear, concise representation
of this sort of knowledge. The QA4 system also has special facilities
for dealing with commutative functions, ordering relations, and equiva-
lence relations; these features are heavily used in this deductive
system. The program interrogates the user .and asks his advice in the
course of a proof. Verifications have been found for Hoare's FIND
program, a real-number division algorithm, and some sort programs, as
well as for many simpler algorithms. Additional theorems have been
proved about a pattern matcher and a version of Robinson's unification
algorithm. The appendix contains a complete, annotated listing of the
deductive system and annétated traces of several of the deductions pef-

formed by the system.

iii






CONTENTS

ABSTRACT . . . . v v v e v v h e e e e e e e e e e e e e e iii
LIST OF ILLUSTRATIONS . . . .« . . « v 4 « v v v o s 4 v v v 0 v - vii
LIST OF TABLES . . . . . « « « « « « v v « v v v o o v« w v w0 vii
ACKNOWLEDGMENTS . . . . . .+ + « o « v v v v v v v e e e e e e ix
I INTRODUCTION AND BACKGROUND . . . . . . ... « + « « « « « . 1
I1 THE FLOYD-NAUR METHOD . . . . . . . . . .« « « « « v &« « 4+ . 5
I1IT A PROGRAM THAT FINDS THE LARGEST ELEMENT OF AN ARRAY . . . . 9

IV THE QA4 LANGUAGE . . . . . .+ « + o ¢ v v v v 4 s o s « o o 15
Pattern Matching and the Goal Mechanism . . . . . . . . 15
Some Sample Rules . . . . . . . . . « « .« o« 4 .. 17

Demons . . . . . . 4 v v h e e e e e e e e e e e e 18

A
B
c
D. Representations . . . . . . . « + « « & 4 o 4 e 44 .. 19
E Contexts . . . . . . . . « « « & o 0. a e e e e . 22
F.

User Interaction . . . . . .+ .+« + « v « « v o v v o + 22

V NOTATIONS . v v v v v vt v e e e e e e e e e e e e 25
A. TUPA, SETA, BAGA . . . . . « « v v v v v i e v e e, 25
B. The STRIP Operator . . . .« .« ¢ v o « o 4 v o v = o & = 25

C. ACCESS and CHANGE . . . . . « « ¢ & & o 4 o o w o « « 4 26

V1 THE REAL NUMBER QUOTIENT ALGORITHM . . . . . . . . . . . . . 29

VII A PATTERN MATCHER . . . . . . . . . . . . . . . .« . .. 33
VII THE UNIFICATION ALGORITHM . . . . . .« « .+ . & &+ 4 &« « & + . 39

IX THE FIND PROGRAM e e e e e e e e e e e e e e e e 41




IX THE FIND PROGRAM (Continued)

A, Assertions for FIND . . . . . « . . .« + « « « « « + . 45

B. The Proof . . . . . . . V « v v v 4 o e e e e e e 46

X . SUMMARY OF RESULTS . . . . « . &« « « s v v & o « s o v 4 = S51

XI FUTURE PLANS . . . . &+t v & ¢ 6 o o s o o s o s o« o o + =« 53
APPEND ICES _

A LISTING OF THE DEDUCTIVE SYSTEM . . . . . . . . . . . 55

B TRACES OF SOLUTIONS . . . . . + .« « v v v o 4 o « « = 95

C EXAMPLE OF HOW A VERIFICATION CONDITION IS GENERATED 123

REFERENCES . . . . . . v v v v e v e e e e e e e e e e e e e 129

vi



ILLUSTRATIONS

1 Finding the Maximum of an Array . . . .« . . « « « v « « o« . 10

2 The Wensley Division Algorithm . . . . . . . . . . . . . . 30

3. The FIND PIrOZTam . . & « « « 2 s « o « o o % + « s » » & 44 _

4 Overall Structure of the Deductive System . . . . . . . . . 58

5 Finding the Maximum of an Array . . . . . . . + « « « « +« . 126
TABLES

A-1 Index of Functions and Goal Classes . . . . .+ + « « & + .+ . 93

vii






ACKNOWLEDGMENTS

The work on program verification was done in close collaboration with
Bernie Elspas. The work on QA4 was done with Jeff Rulifson and Jan Derk-~
sen., Irene Greif wrote the first version of the simplifier and partici-
pated in the conceptualization of the pattern matcher and unification
proofs. Jeff Rulifson encouraged us to write this paper and suggested
its format. Rich Fikes has helped with design modification and debugging
of QA4d. Bert Raphael read the manuscript and suggested many improvements.
This work has benefitted from our conversations with Cordell Green, Peter
Neumann, Earl Sacerdoti, René Reboh, Mark Stickel, and Steve Crocker.

Many members of the Artificial Intelligence Center and the Computer

Science Group at SRI helped with support and criticism.

A shorter version of this paper appears in Proceedings SIGACT/
SIGPLAN Symposium on Principles of Programming Languages, October 1-3,

1873 .

ix







Problems worthy
of attack

Prove their worth
by hitting back.

Piet Hein

I INTRODUCTION AND BACKGROUND

This paper describes a computer program that proves theorems about -
programs. Proving theorems about programs is of practical importance be-
cause it helps certify that‘they are correct. Instead of testing a pro-
gram on test cases, which may allow some bugs to remain, we can try to
prove mathematically that it behaves as we expect. We hope future sys-
tems that reason about programs and understand how they work will help us

to write and change programs.

Many programs have done this sort of reasoning. James King [19697%*
developed a program verifier that could prove theorems about programs;
his program proved an interesting class of theorems and was very fast.
Peter Deutsch [1973] has recently written a system for interactive pro-
gram writing that can also prove things about programs. It is perhaps not
as fast as King's system, but it can prove nore interesting theorems.
5. Igarashi, R. andon, and D. Luckham [1973] have recently applied a
resolution theorem prover to program verification, and their results are
impressive also. They can verify such programs as Hoare's [lQSlj FIND.
'Their system does little actual resolution and a lot of simplification
and reasoninglabout equality. A program devised by Boyer and Moore {1973]

can prove difficult theorems about LISP programs,

Thus, there is no shortage of interesting work related to our own.
The special characteristic of our own system is that it is markedly

concise, readable, and easy to change and apply to new subject areas.

¥References are listed alphabetically at the end of the paper.
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Qur program verifier consists of a theorem prover (or deductive sys-
tem) and a "verification condition generator."” The verification condi-
tion takes an annotated program as input and constructs a list of
theorems as output., The truth of the constructed theorems implies the

correctness of the program. The task of the deductive system is to

prove these theorems. The verification condition generator [Elspas et al.,
19737 is written in BBN-LISP [Teitelman et al., 1971}, and the deductive
system is written in QA4 [Rulifson et al., 19727. This paper focuses on

the deductive system but, to be complete, gives examples of verification

condition generation as well,

In writing our deductive system, we were motivated by several goals.

First, the system should be able to find proofs; it shouid havé enough
deductive power to prove, within a comfortable fime and space, the
theorems being considered. Also, these proofs should be at the level of
an informal demonstration in a mathematical textbook. This means that
the difficulty in following one line to the next in any proof should be

" small enough that the proof is understandable, yet lérge enough not to be
trivial. In any practicai program verifier, the user will wish to fol-
low the steps in a deduction. Who would believe a program verifier that
only printed out "true" in the course of pursuing a proof? Furthermore,
the strategies the system uses in searching for a proof should be strate-
gies that we find natural. Not only should the tactics that eventually
lead to the proof be ones we might use in proving the statement by hand,
but also the false starts the system makes should be ones we might make
ourselves. We do not want the system to rely on blind seaféh;'the trace

of an attempted solution should make interesting reading.

In addition ‘to the requirement that proofs be readable, the rules
the system uses in going from one line to the next should be easy to

read and understand. We should be able to loock at a rule and see what



it does. Also, it should be easy to change old rules and to add new rules.
The user of a program verifier is likely to introduce new concepts, such

as operators or data structures. We want to be able to tell the deductive
system how these structures behave and to have the system reason
effectively using the new symbols. Giving the system new information
should be possible without knowing how the system works, and certainly
without reprogramming the system. Furthermore, the addition of new in-

formation should not prohibitively degrade the performance of the system.

The system is intended to evolve with use. As we apply the system
to new problems, we are forced to give the system new information and,
perhaps, to generalize some old information. These changes are incorpo-

rated into the system, which may then be better able to solve new problems.

Since the system is easy to extend and generalize, we do not worry
about the completeness or generality of any particular version of the
system. It is powerful enough to solve the sort of problem on which it

has been trained, and it can be easily changéd when necessary.

These considerations played a part in the design of the programming
system called QA4, as well as in the construction of our deductive system,
which is written in the QA4 language. Some of the techniques described
below are embedded in the QA4 system itself; others are expressed as parts

of the deductive system.







II THE FLOYD-NAUR METHOD

Perhaps not all readers are familiar with the method of proving
statements about programs that we have followed in our work. Our method
is a natural technique introduced independently by Floyd [19671 and
Naur [19667 and formalized by Hoare [1969]. Knuth [1968] traces the germ
of the idea back to von Neumann and Goldstine [1963] in the paper that
introduced the concept of the flow chart. Although we cannct give a thor-
ough introduction to that subject here, we providé below an example of

its application to convey the flavor of the approach.

Consider a simple program that exchanges the values of two variables:

START

T+ X

X«Y

YT

TA-740522-3




We assume that before the program is executed, X and Y have some initial

values XO and YO. Suppose we want to prove that after the program is

executed, X = YO and Y = XO. We offer these input and ocutput assertions

as comments in our program:

XeY

.......................

TA-740522-4

These assertions are not to be executed by the program in any way, but
they tell us soﬁething about the way the programmer expects his program
to behave. He expects the assertion at A to be true when control passes

through A, and the assertion at D to be true when control passes through

b.

The essence of the Floyd-Naur apprcach is to generate from a com=~
mented program like the one above a set of statements called the verifica-
tion conditions. If these statements are true, then the assertions the
programmer has put in his program afe correct. Whereas the programmer's
assertions are correct only when control passes through the appropriate

point, the verification conditions are true in general, and they can be
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proved by a deductive system that knows nothing about sequential proces—
sing, loops, recursion, or other concepts about the flow of control and

nothing else about the particular program.

To generate the verification comdition for our sample program, we
pass the output assertion back toward the input assertion. As we
pass it back, we change it to reflect thé changing state of the system.
In particular, if any assignments are maae within the program, then the
corresponding substitution should be made in the assertion. Passing the

assignment at D back to point C(C changes it to X = YO and T = XO:

X =Y

N I SR

Y «T

T
TA-740522-5

We can argue that if the assertion at C is true when control passes through
C, then the assertion at D will be true when control passes through D,
In particular, if T = XO is true at C, and we execute Y ~ T, then ¥ = X

0
will be true at D.




Passing the assertion all the way back to A in this manner gives
the assertion Y = YO AKX = XO. If this assertion is true at A, then the
final assertion will be true at D. However, we are already given the
initial assertion X = XO AY = YO. The truth of the assertion at D then
depends on the truth of the implication X = XO AY = Y0 oY = Y0 AX = XO.
This statement is the verification condition for this program. It can

be proved by a deductive system independently of any knowledge about this

program.

Constructing verification conditions by this method is an algorithmic
process, not a heuristic one. Although the design of a language for ex-—
pressing assertions remains an important and challenging problem (we
introduce below some constructs for such a language), it is not a problem
in the artificial intelligence domain. On the other hand, there is no cut
and dried algorithm for proving verification conditions, and this is thus
a fit subject for artificial intelligence research. Although we have no
genéral algorithm for proving verification conditions, this somewhat re-

stricted domain is more tractable than the general theorem-proving problem.



III A PROGRAM THAT FINDS THE LARGEST ELEMENT OF AN ARRAY

Before we explain how the system is structured or implemented, let
us first look at a sample of some deductions performed by our system.
This example will give a better idea of the subjecf domain of the in-
ference system and of thé sort of reascning we have to do. It will alsc
give a better picture of the process of generating a verification condi-

tion (Floyd [1967]).

Suppose we are given the annotated program shown in Figure 1 to
compute the largest element in an array and its locétion. This program
searches through the array, keeping track of the largest element it has
seen so far and the location of this element. The intermediate assertion
at C* says that MAX is the largest element in the array between O and I
and that LOC is the inéex for MAX. Although our assertion language does
not permit the ellipsis notation ("..."), we have introduced some suita-

ble analogues, which are discussed later.

To prove assertions about a complex pregram, the system decomposes
it into simple paths. This program can be decomposed into four simple

paths:

& The path from B to C.
¢ The path from C to D.

¢ The path from C around the loop and back to C through
point E, '

e The path from C around the loop and back to C through
point F. * -

*In this program, and in examples throughout the paper, when we list se-

veral statements in an assertion, we mean the implicit conjunction of
those statements. We will often also refer to each conjunct as an

r . "
assertion,
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.....................

.....................

B loerrevrermiinmiieie .

L <0 D 'MAX = AlLOC] :
MAX < A[0] D AA[0] € MAX, Al1] < MAX,...:
LOC « 0 © Alll < MAX :

‘ . A0S LOCESISN :
C i :

Yes
N < I 5
? ;
No
o LAl S MAX, ... AIN] < MAX :
o . :
: A MAX = A[LOC]
I A0 < LOC < N
E | Yes
LOC « I F
MAX < All]

TA-740522-8

FIGURE 1 FINDING THE MAXIMUM OF AN ARRAY.
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Notice that the author of this program has put assertions not only
at the START and HALT nodes of the program, but alsc at the intermediate
point C. He has done this so that the proof of the program can be reduced
to proving straight-line paths in the same way that the simple program
of the previous section was verified. For instance, the path that begins
at C, travels around the loop through E, and returns to C can he regarded
as a simple, straight-line program with the assertion at C as both its
start assertion and its halt assertion. The assertion at C has been

cleverly chosen to be true when the loop is entered, to remain true

whenever control travels around the lcocop and returns to C, and to be

strong enough to allow the assertion at D to be proved when control leaves

the loop and the program halts. (The choice of suitable internal assertions
can be an intellectually exacting task; some heuristic methods have been
proposed that will work in this and many other examples (Elspas et al.

r19727, Wegbreit [1973], Katz and Manna [18731).

If all the straight=-line paths of the program are shown to be cor-
rectly described by the given assertions, and if the program can be
shown to terminate (this must be done separately), then we can conclude
that the program is indeed correct, at least with respect to the pro-

grammer's final assertion.

Although there are many paths in the decomposition of a program,
typically most of the paths are easy to verify. For this program, we

examine two of the paths.

First, suppose we want to demonstrate that if the assertion at point
C is true when control passes through C, then the assertion at C will
still be true if control passes around the loop and returns again to C.
We will restrict our attention to the mdre interesting case; in which
the test MAX < A[I]? is true; in this case, control passes through E.

Furthermore, we will try to prove only that the second conjunct of the

11



assertion at C remains true. OQur verification.coudition generator gives

us the following statement to prove:

MAX = A[LOCT A (1)
A[0] = MAX, ..., A[I] < MAX A (2)
0 cLOC < I <NA (3)
— (N < I+1) A | (4)
MAX < A[I+1] D | (5)
Al01 < ATI+1], ..., A[I+1] < A[I+1] . (6)

This statement is actually represented as five separate hypotheses and a
goal to be deduced from these hypotheses. Lines (1) through (3} come
from the assertion at C, and lines (4) and (5) come from the tests along
the path. Line (6} comes from the assertion at C again. How the above

statement is derived from the program is shown in detail in Appendix C.

The behavior of the deductive system in this problem is typical of
its approach to many problems. The goal, (6), is broken into two sub-

goals:

ATOT < ATI+L] A ... A[I] S A[I+1] : (7)
and

ATI+1] < A[T+17 . (8)

The second subgoal, (8), is immediately seen to be true. The first

subgoal, (7), is easily derived from (2) and (5).

Now let us look at the path from C to D. We will assume the assertion
at C is true and will prove the assertion at D. Ve will look at the first
conjunct of the assertion at D. Our verification condition generator gives

us the following statement to prove:

MAX = A[LOCT A (9)

ATO] < MAX A ... A A[I] < MAX A (10)

12




0 < LOC < I =<NA (11)
N < I+l o . (12)

A[07 s MAX A ... A ATN] < MAX . (13)

The reasoning required for this proof is a little more subtle than the
previous déductién. When the system learns that N < I+l (12), it imme-
diately concludes that N+l < I+1, since N and I are integers. 1t further
deduces that N < I. Since it already knows that I < N (11), it concludes
that N-= I. Using hypothesis (10), the system reduces the goal (13) to

proving that I = N, which it now knows.

This deduction involves a lot of reasoning forward from assumptions
and not much reasoning backward from goals. Both of these proofs are
typical of the behavior of the system at large because of their strong

use of the properties of equality and the ordering relations.

The QA4 system incorporates enough of the common techniques of theo-
rem proving and problem solving that our inference system needs no
general problem-solving knowledge, but only somerknowledge about numbers,
arrays, and other structures. The following sections show how the QA4

language allows that knowledge to be represented.
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IV THE QA4 LANGUAGE

A, Pattern Matching and the Goal Mechanism

The deductive system is made up of many rules expressed as small
functions or programs. Each of these programs knows one.fact and the
use for that fact. The QA4 programming language is designed so that all

these programs can be coordinated; when a problem is presented to the

system, the functions that are relevant to the problem ''stand forward"

in the sense explained below.

A program has the form

(LAMBDA (pattern)({body))

Part of the knowledge of what the program can be used for is expressed
in the pattern. When a function is applied t¢ an argument, the pattern

is matched against that argument. If the argument turns out to be an

instance of the pattern, the match is said to be successful. The un-

bound variables in the pattern are then bound to the appropriate subex-~
pressions of the argument, and the body of the program is evaluated with

respect to those new bindings.
For example, the program
REVTUP = (LAMBDA (TUPLE X ~Y) (TUPLE 3Y $X))

has pattern (TUPLE X «Y) and body (TUPLE $Y $X). The prefix '"~" means
that the variable is to be given a new binding, The prefix "$" means
that the variable's 61d binding is to be used. When REVIUP.is applied
to (TUPLE A B), the pattern (TUPLE X ~Y) is matched against (TUPLE A B).
The match is seen to be successful, the variable X to be bound to A and

the variable Y to be bound to B. The body (TUPLE $Y $X) is evaluated

15



with respect to these bindings, giving (TUPLE B A).

On the other hand, if a function is applied to an argument and the
pattern of that function does not match the argument, a2 condition known
as failure occurs. At many points in the execution of a program, the
system makes an arbitrary choice between alternatives. Failufe initiates
a backing up to the most recent choice and the selection of another al-

ternative. The mismatching of patterns is only one of the‘ways in which

failure can occur in a program.

We have yet to explain how a program stands forward when it is re-
levant. 1In the above example, the function was called by name, much as
it is in a conventional programming language. But it is also possible
to make an argument available to any applicgble program in a specified

class. This is done by means of the goal mechanism.

When we say (GOAL (goalclass)(érgument)), we assume that the goal
class is a tuple of names of functions. We are making that argument avail-
able to the:entire class of functions. ’The pattern of each of those func-
tions is matched in turn against the argument. If the match is successful,
the function is applied to thgt argument. If the function returns a value,
that value is returned as the value of the goal statement. On the other
hand, if a failure occurs in evaluating the function, backtracking occurs,
the next function in the goal class is tried, and the process is repeated.
If none of the functions in the goal class succeed, the entire goal state-

ment fails.

For example, in our deductiﬁe system, one of the goal classes is
called EQRULES, the rules used for proving equalities. One of these rules
is

EQTIMESDIVIDE = (LAMBDA (EQ ~W (TIMES (DIVIDE X ~Y) «Z})

(GOAL SEQRULES
(EQ (TIMES $Y $W)(TIMES $X $Z))))

16



This rule states that to prove W = (X/Y)*Z, we should try to prove Y*W =
X*Z, (The actual EQTIMESDIVIDE, shown in Appendix A, is more general

than this.) The rule has the pattern
(EQ ~W (TIMES (DIVIDES X ~Y) «Z))

If we execute (GOAL SEQRULES (EQ A (TIMES (DIVIDES B C) D))) [i.e., we

want to prove A = (B/C)*D], the system will try all the applicable EQRULES
in turn. If none of the previous rules succeed, the system will eventualiy
reach EQTIMESDIVIDE. It will find that the pattern of EQTIMESDIVIDE
matches this argument, binding W to A, X to B, Y to C, and Z to D. Then

it will evaluate the body of this funetion; i.e,, it will try
(GOAL SEQRULES (EQ (TIMES A C) (TIMES B D))) .

If it fails to prove (EQ (TIMES A C)(TIMES B D)), it will try to apply
the remaining EQRULES to the original argument, (EQ A (TIMES (DIVIDES B C)
D)). The goal statement is an example of the pattern-directed function

invocation introduced by Hewitt in PLANNER [19717.

The net effect of this mechanism is that it enables the user to
write his programs in terms of what he wants done, without needing to
specify how he wants to do it. Furthermore, at any point, he can add
new rules to EQRULES or any other goal class, thus increasing the power

of the system with little effort.

B. Some Sample Rules

The deductive system is a collection of rules represented as small
programs. One rule was given in the preceding section; two more rules
are presented here, The complete deductive system is included in Appen-

dix A.

The first rule, EQSIMP, attempts to prove an equality by simplifying

its arguments:

17



EQSIMP = (LAMBDA (EQ -X ~Y)
(PROG (DECLARE)
(SETQ X (3SIMPONE $X))
(GOAL $EQRULES (EQ 3X 3Y)))

’ BACKTRACK)

This rule says that to prove terms A and B are equal, simplify A and then
prove that the simplified A is equal to B. This rule, a member of EQRULES,
has the pattern (EQ X ~Y). SIMPONE, the simplifier, will fail if its
argument cannot be simplified. In that case, EQSIMP will also fail.
EQSIMP can actually simplify the right side of an equality, as well as

the left, as explained in the Appendix A.

The second rule is

FSUBTRACTI = (LAMBDA (~F (SUBTRACT «X ~Y) ~Z)
(GOAL SINEQUALITIES

(3F $X (PLUS 3Y $Z))))

This rule says that to prove X-Y < Z, try to prove X < Y+Z. It belongs
to the goal class INEQUALITIES and is thus used not only for the predicate
LTQ, but also for LT, GT, and GTQ. The variable F is bound to the ap-

propriate predicate symbol.

C. Demons

The goal mechanism is used for reasoning backward from a goal. How-
ever, sometimes we want to reason forward from a statement. For example,
suppose that whenever an assertion of the form X » Y is asserted, we want

to assert Y g X as well. We do this by a QA4 mechanism known as the demon.

A demon is imagined to be a spirit that inhabits a hiding ﬁlace,
waiting until some specified event occurs, at which time it appears, per-

forms some action, and vanishes again. We have put several demons in the
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system, each watching for a different condition. For instance, one demon
watches for statements of the form X > Y and makes the stafement Y = X.
The user of the system can create his own demons. Demons are a tool for
reasoning forward from an antecedent. In particular, we use demons to
drive antecedents into a canonical form. For example, we drive all ine-
quality expressions with integer arguments into an assertion of the form

.XsY.

D. Representations

To as great an extent as possible, we have chosen representations
that model the semantics of the concepts we use so as to make our deduc-~
tions shorter and easier. For example, our language has data structures
expecially intended to eliminate the need for certain inferences. In
addition to tuples, which are like the familiar lists of the list-proces-
sing languages, we have the finite sets of conventional mathematics and
bags, which are unordered tuples or, equivalently, sets that may have
multiple occurrences of the same element. (Bags are called multisets
by Knuth [19697, who outlines many of their préperties.) Furthermore,
we allow arbitrary expressions to have property lists in the same way

that atoms can have property lists in LISP [McCarthy et al., 19627.

These data structures are useful in the modeling of equivalence re-
lations, ordering relétions, and arithmetic functions. For instance, if
the addition of numbers and the multiplication of numbers are each re-
represented by a function of two arguments, then it becomes necessary to
use numerous applications of the commutative and associative laws to
prove anything about the number system; However, in QA4 all functions
take only one argument, but this argument can be a tuple, set, or bag,
as well as any other expression. Functions of multiple argﬁments can be
represented by a function defined on tuples. However, a function that

is commutative and associative, such as PLUS, is defined on bags. The
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expression (PLUS A 2 B) really means (PLUS (BAG A 2 B)). Recall that bags
are unordered; the system cannot distinguish between (BAG A 2 B) and

(BAG 2 A B). Consequently, the expressions (PLUS A 2 B) and (PLUS 2 A B)

are identically equal in our system, This makes the commutative law

for addition redundant and, in fact, inexpressible in the language. Most

needs for the associative law are also avoided.

The logical function AND has the property that, for instance,
(AND A A B) = (AND A B). The number of occurrences of an argument does
not affect its value. Consequently, AND takes a set as its argument.
Since (SET A A B) and (SET A B) are indistinguishable, (AND A A B) and
(AND A B) are identical, and a statement of their equality is unnecessary.
Some functions that take sets as arguments are AND, OR, EQ, and GCD

(greatest common divisor).

When a new fact is asserted to our system, the value TRUE is placed
on the property list of that fact. If at some later time we want to

know if that fact is true, we simply look on its property list.

However, certain facts are given special handling in addition. For
example, if we tell the system that certain expressions are equal, we form
a set of those expressions. On the property list of each expression, we
place a peinter to that set. For instance, if we assert (EQ A B C), the

system stores the following:

EQ EQ EQ
{SET A B C)
TA-740522-6
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If we subsequently discover any of these expressions to be equal to still
another expression, the system adds the new expression to the previously
formed set and puts the set on the property list of the new expression
as well. For instance, if we assert (EQ B D), our structure is changed

to the following:

A B c D
EQ EQ EQ EQ

(SET ABCD)
TA-740522-7

The transitivity, symmetry, and reflexivity of equality are thus impli-
cit in our representation., If we ask whether A and D are equal, the sys~

tem knows immediately by looking at the property list of A or D.

Ordering relations are stored using the property list mechanism.'
If we know that some expression A is less than B, we place a pointer to

B on the property list of A:

LT

A———B

If we learn that B is less than C, we putla pointer to C on the property

list of B:

LT LT

If we then ask the system if A is less than C, it will search along the
pointers in the appropriate way to answer affirmatively. The transitive

law is built into this representation.

The system knows about LT (<), GT (>), LTQ (<), GTQ (=), EQ (=),

NEQ (#), and how these relations interact. For example, if we assert

21




X2>Y, Y= 2, and X £ 2, the system will know X = ¥ = Z and that (F X A)

(F YA)Y., Or if we assert X > Y and X # Y, the system will know X > Y.

E. Contexts

When we are trying to prove an implication of the form A — B, it is
natural to want to prove B under the hypothesis that A is true. Our as-
sumption of the truth of A holds only as long as we are trying to prove
B; after the proof of B is complete, we want to forget that we have as~-
sumed A. For this and other‘reasons, the QA4 language contains a context
mechanism. All assertions are made with respect to a context, either
implicitly or explicitly. For any context, we can create an arbitrary

number of lower contexts.

A query made with respect to a context will have access to all asser-
tions made with respect to higher contexts but not to any assertions made
with respect to any other contexts. For instance, suppose we are trying
toprove i « j o1+ 1 <« j with respect to some context CO. We may have
already made some assertions in contexT.CO. We establish a lowér context,
Cl, and assert i < j with respect to Cl. Then we try to prove i + 1 g j
with respect to C_. When proving i + 1 < j, we know i « j, as well as all
the assertions we knew previously in CO. When the proof of B is complete,
we may have other statements to prove in CO. In doing these proofs, we
will know all the assertions in C0 and also, perhaps the assertion i < j
=i+ 1< j, buy we will not know i < j because it was asserted with

respect to a lower context.

F. User Interaction

Sometimes our rules ask us whether they should continue or‘fail.
This allows us to cut off lines of reasoning that we know in advance to

be fruitless. If we make a mistake in answering the question, we may
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cause the system to fail when it could have succeeded. However, we

never cause the system to find a false or erroneous proof.

In addition to these mechanisms, which are built into the language
processor, we have developed some notations that make it easier to dis-
cuss programming constructs; these notations are a part of our assertion

language and are interpreted by the deductive system.
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V NOTATIONS

In speaking about the program to find the maximum element of an ar-
ray, we found it comvenient to use the ellipsis notation ("..."). We
have not introduced this notation into our language; however, we have -

found ways of getting around its absence.

A. TUPA, SETA, BAGA

Let A be a one-dimensional array and I and J be integers. Then

(TUPA A I J) is the tuple

(TUPLE A[I7, A[I+1], ..., A[JD

If I »>J, then (TUPA A I J) is the empty tuple.

(SETA A I'J) and (BAGA A I J) are the corresponding bag and set. To

state that an array is sorted between O and N, we assert

(LTQ (TUPA A O N)) .

To state that an array A is the same in contents between O and N as the
initial array AO, although these contents may have been permuted, we as-

sert

(EQ (BAGA A O N) (BAGA AO o N))

B. The STRIP Operator

Let X be a set or hag, X = (SET Xl, ..., X)), or X = (BAG Xl, ..y X ).
n
Then (LTQ (STRIP X) Y) means X < Y and ... X s Y. For instance, to
n
state that MAX is greater than or equal to any element in an array A

between I and J, we assert
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(LTQ (STRIP (BAGA A I J)) MAX)
This is perhaps not quite as clear as
A[I] = MAX, A[I+1] = MAX, ..., A[J] < MAX r
but we prefer it to
(yu) [I s u Au <J) DAfu] = MAX]

The STRIP operator is also used to remove parentheses from expres-—

sions:
(BAG A (STRIP (BAG B C D}))
is
(BAG A BCD)

We will eventually need two distinct operators, one to act as a
quantifier and one to remove parentheses, but the single operator STRIP

has played both roles so far.

C. ACCESS and CHANGE

Arrays cannot be treated as functions because their contents can be
changed, wheras functions do not change their definitions. Thus, while
f(x) is likely to mean the same thing for the same value of x at differ-
ent times, A[x] is not. We overcome this difficulty by adopting McCarthy
and Painter's [1967] functions ACCESS and CHANGE in our explication of the

array concept:

o (ACCESS A I) means A[IT.

® (CHANGE A I T) means the array A after the assignment
statement A[I] ~ T has been executed.

We do not propose that ACCESS and CHANGE be used in writing programs or

assertions; we do find that they make reasoning about arrays simpler, as
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King suspected they would.

The next sections show examples of some fairly difficult proofs pro-
duced by the deductive system. The actual traces for some of these are

included in Appendix B.
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V1l THE REAL NUMBER QUOTIENT ALGORITHM

Very little work has been done to prove properties of programs that
work on the real numbers or the floating point numbers, although there is
no reason to believe such proofs could not be done. Figure 2 shows, for
instance, a program (Wensley [1958], Elspas et al. [1972]) to compute an
approximate quotient Y of real numbers P and @, where 0 < P < Q. This

is an interesting and computationally plausible algorithm. It uses

only addition, subtraction, and division by two, and it computes a new

signigicant bit of the quotient with each iteration.

The algorithm can be understood in the following way. At the be-

ginning of each iteration, P/Q belongs to the half-open interval [Y,Y+D).

It is determined whether P/Q belongs to the left half or the right half
of the interval. Y and D are adjusted so that in the new iteration,
the half-interval to which Y belongs plays the role of the interval

(Y, Y+D). Thus Y becomes a better and better approximation for P/Q.

We will consider here only one path through this program, i.e.,
the path around the loop that follows the right branch of the test P <« A+B.
We will prove only one loop assertion: P < Y*Q + D*¥Q. Our verification

condition generator supplies us with the following hypotheses:

0<P (14)
P < Q , (15)
A = Q*Y | s (18)
2¥B = QD : (17)
P < Y*Q + D*xqQ : (18)
Y*%Q < P, (19)
— (b < E) R (20)

29




R I - - '
DA =AY B « Q/2 ‘P < Y.Q + E.Q°
- 2«8 = QD : :
TP < Y.Q + DaQ D« 1 5 Y.Q <P
Y‘QSP Y(_'O -------------------
D<E Yes
?
No ( HALT )
P<A+B Yes
?
No
B « 8/2 Y « Y + D2
D « D/2 A+ A+ 8B

TA-740522-9R
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P < A+B . (21)
The goal is to prove from these hypotheses that

P < Q%Y + Q*(D/2) , (22)

These hypotheses and the goal were constructed in a manner precisely
analogous to the generation of the condition for the previous example of

computing the maximum of an array.

The proof goes as follows. After an abortive attempt at using the
assertion (18), the system tries to show that the conclusion follows

from (21). It therefore tries to show that
A+B < Q*Y + Q*(D/2) . (23}
This goal is broken into the following two:

A £ Q*Y (24)

B < Q*(D/2) (25)

Of course, this strategy will not always be successful. However, in

this case goal (24) follows from (16), whereas (25) reduces to (17).

A complete trace of this proof and listings of the rules required

to achieve it are provided in Appendices A and B.
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VII A PATTERN MATCHER

As an experiment in the incorporation of new knowledge into the sys-
tem, we performed the partial verification of 2 simple pattern matcher
and a recursive version of the unification algorithm [Robinson, 1965]. -
These algorithms were of special interest to us because they involve con-
cepts we have actually used in the implementation of the QA4 program it-
self. They are thus in some sense realistic, although meither of these

programs appears literally in the QA4 code. The subject domain is as

follows.

We assume that expressions are LISP S-expressions [McCarthy, 19627;

for example, (F X (G A B)) is an expression. Atomic elements are desipgnated

as either constant or variable, and they can be distinguished by the use
of the predicates const and var. Here we use A, B, C, F, and G as con-

stants and U, V, W, X, Y, and Z as variables:

e var{X) is true
e const{A) is true
s var{A) is false

o var{{X Y)) is false.

A substitution replaces some of the variables of an expression by

terms. Substitutions are represented as lists of dotted pairs. ((X + A)
(Y » {(F &)) is a substitution. Varsubst(s,e) is the result of making

substitution s in expression e. If s is
((X « A) (Y » (G B))) |,
and e is

(F X A (Y B)) s
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then varsubst(s,e) is
(F A A ((GB) B))

The LISP functions car, cdr, list, and atom can be used to manipulate
expressions. The empty substitution is denoted by EMPTY and has no ef-
fect on an expression. An operation called compose, the composition of

substitutions, defined by Robinson [1965], has the following property:
varsubst(compose(sl, s2), e) = varsubst(sl, varsubst(s2, e))} .

The problem of pattern matching is defined as follows: Given two
expressions called the pattern and the argument, try to find a substitu-
tion for the variables of the pattern that makes it identical to the ar-
gument. We call such a substitution a match. For example, if the

pattern is
(X (Y A B) X) )
and the argument is
(D (C A B) D} y
then match(pat, arg) is
((X + D) (Y » C))

If there is no substitution that makes the pattern identical to the

argument, we want the pattern matcher to return the distinguished atom

NOMATCH., Thus, if pat is (X Y X) and arg is (A B C), then match(pat, arg) =

NOMATCH, since we cannot expect X to be matched against both A and C.

For simplicity, we assume that the argument contains no variables.

A LISP-like program to perform the match might be
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match(pat, arg) = prog ((ml m2)

if const(pat) then (if pat = arg then
return(EMPTY) else return(NOMATCH))

if var(pat) then return(list (cons(pat, arg)))

if atom(arg) then return(NOMATCH)

ml — match(car{pat), car(arg))

if ml = NOMATCH then return(NOMATCH)

m2 — match(varsubst{ml, cdr{pat)), cdr{arg))

if m2 = NOMATCH then return{NOMATCH)

return(compose (m2, ml))

The program does the appropriate thing in the case of atomic patterns
or arguments, and it calls itself recursively on the left and right halves
of the expressions in the nonatomic case. The program applies the substi-
tution found in matching the left halves of the expressions to the right

half of the pattern before it is matched so as to avoid having the same

variable matched against different terms.

We have proved several facts about a version of this program, but
we focus our attention here on one of them: If the program does not re-
turn MOMATCH, then the substitution it finds actually is a match; i.e.,
that applying the substitution to the pattern makes that pattern identi-
cal to the argument. Thus, the output assertion is:

match(pat, arg) # NOMATCH o
varsubst(match(pat, arg), pat) = arg

Since we assume the argument contains no variables, the input asser-
tion is

constexp(arg) {26)
We have verified one condition for the longest path of match with respect
to these assertions. This path is followed when the pattern and the ar-
gument are both nonatomic and when the recursive calls on match success—

fully return a substitution. In writing our verification condition, we

use the same abbreviations the program does, i.e.,
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ml = match(car(pat), car(arg))
and
m2 = match(varsubst(ml, cdr(pat)), cdr(arg))

In proving a property of a recursively defined program, we follow Manna
and Pnueli [1970j and assume that property about the recursive call to

the program. Thus, for this program we have the inductive hypotheses

constexp{car(arg)) A m2 # NOMATCH O

varsubst(ml, car(pat)) = car(arg)
(the program works for the car of the pattern) and

constexp(cdr(arg)) A m2 # NOMATCH o

varsubst(m2, varsubst{ml, cdr(pat)))= cdr{arg) . (28)

(the program works for the instantiated cdr of the pattern). The verifi-
cation condition generator would split both of these hypotheses into
three cases; we will consider only the case in which the antecedents of
both implications are ture. Hence, we assume that both the recursive

calls to the pattern matcher succeed in finding matches.
By the path we have taken through the program, we know that

— const(pat) (29)
(the pattern is not a constant).

— var(pat) (30)
(the pattern is not a wvariable).

— atom{arg) (31)
(the argument is not an atom). Since for this pathl
match(pat, arg) = compose{m2, ml) ,

the goal is to prove

36



varsubst (compose(m2, ml), pat) = arg . (32)
The proof produced by the system proceeds as follows. The goal is split

into two subgoals:

varsubst (compose(m2, ml), car{(pat)) = car{arg) (33)
and
varsubst (compose{(m2, ml), cdr(pat)) = cdr(arg) . (34)
From the property of "compose,' the first goal is simplified to
varsubst(m2, varsubst(ml, car(patj)) = car(arg)
Since
varsubst(ml, car(pat)) = car(arg)
by (27), this simplifies to
varsubst{m2, car(arg)) = car(arg)
Since arg contains no variables, neither does car(arg). Thus, the goal

simplifies to
car(arg) = car{arg)
The proof of (34) is even simpler:
varsubst (compose{(m2, ml), ecdr(pat))

simplifies to

varsubst{m2, varsubst(ml, cdr(pat)))
We know by our hypothesis (28) that

varsubst(m2, varsubst{ml, cdr(pat))) = cdr{arg)

and this completes the proof,.

This proof required not only that we add new rules describing the
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concepts involved, but also that we extend certain of our older capabili-
ties, particularly our ability to simplify expressions using known equal-

ities. A complete trace of the proof is included in Appendix B.

We worked nearly a week before the system was able to do this proof.
However, once the proof was completed, the effort necessary to enable the
system to do the proof of the unification algerithm was minimal. The lat-
ter proof, though longer than this.one, did not require much additional
intellectual capacity on the part of the deductive system, We do not
show that proof here because it is similar to the pattern matcher proof,

but we include the program and the assertion we proved about it.
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VIII THE UNIFICATION ALGORITHM

The problem of unification is similar to that of pattern matching
except that we allow both arguments to contain variables. We expect the
algorithm to find a substitution that makes the two arguments identical
when it is applied to both, if such a substitution exists. For example,
if x is (F U A) and y is (F B V), then unify(x, y) is ((U«B)(V.A)), where

U and V are variables and A, B, and F are constants.
A simple program to unify x and y is

unify(x, y) = prog({(ml m2)
if x = y then return(EMPTY)
if var{(x) then
return(if occursin(x, y) then NOMATCH
else list (cons(x, y)))

if var(y) then
return(if occursin(y, x} then NOMATCH
else list (cons(y, x}))

if atom(x) then return(NOMATCH)
if atom(y) then return(NOMATCH)
ml ~ unify(car(x), car(y))

if ml = NOMATCH then return(NOMATCH)
m2 ~ unify(varsubst(ml, cdr(x)),
varsubst(ml, cdr(y)))
if m2 = NOMATCH then return(NOMATCH)
return{compose(m2, ml)))
The predicate occursin(u,v) tests if u occurs in v. This program is

a recursive, list-oriented version of Robinson's iterative, string-
oriented program. Again, we have verified only the longest path of the

program, not the entire program. Furthermore, we have proved not the

strongest possible statement about this program, but only that

unify(x,y) # NOMATCH o
varsubst(unify(x,y), x) = varsubst{unify(x,y), y)
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IX THE FIND PROGRAM

The program FIND, described by Hoare [19617] is intended to rearrange
an array A so that all the elements tdvthe left of a certain index F are
less than or equal to A[FW, and all those to the right of F are greater -
than or equal to A[F]. In other words, the relation (STRIP (BAGA A 1 F-1))
< A[F] < (STRIP (BAGA A F+1, NN)) should hold when the program halts.

For instance, if F is NMN:2, then A[Fj is the median of the array. The

function is useful in computing percentiles and is fairly complex.

Hoare remarks that a sorting program would achieve the same purpose
but would usually require much more time; the conditions for FIND are
much weaker in that, for example, the elements to the left of F need not

be sorted themselves, as long as none of them are greater than AFFJ.
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The ALGOL representation of FIND is as follows:

BEGIN
INTEGER M, N;
M~ 1;
N — NN;
WHILE M < N DC
BEGIN INTEGER R,I,J;
R — A[FT;
I - M
J ~ N;
WHILE I < J DO
BEGIN WHILE A[I] < R DO I ~ I+l;
WHILE R < A[J] DO J ~ J-1;
IF I <« J THEN
BEGIN EXCHANGE(A I J)
I — I+l
J ~ J-1
END
END
IFF <J THEN N - J
ELSE IF I <« F THEN M~ I
ELSE GO TO L
END '

END

The general strategy of the program FIND is to move ''small” elements
to the left and "large” elements to the right. These relative size cate-
gories are defined as being less than or not less than an arbitrary array
element. The algerithm scans the array from left to right looking for a
large element; when it finds one, it scans from right to left locking
for a small element. When it finds one, it exchanges the large element
and the small element it has already found, and the scan from the left
continues where it left off until the next large element is found, and
so on. When the scan from the left and the scan from the right meet some-
where in the middle, they define a split in the array. We can then show
that all the elements tovthe left of the split are small and all those

to the right are large.
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The index F can be either to the left or to the right of the split,
but suppose it is to the left. Then the elements to the right of the
split can remain where they are; they are the largest elements in the
array, and the element that will ultimately be in position F is to the
left of the split. We then disregard the right portion of the array and
repeat the process with the split as the upper bound of the array and
with a refined definition of ""large” and "small.' We will eventually
find a new split; suppose this split is to the left of F. We can then
leave in place the elements of the array to the left of the split and
work only with the elements to the right; we readjust the left bound of
the array to occur at the split, and we repeat the proecess. Thus, the
left and right bounds of the array move closer and closer together, but
they always have F between them. Finally, they meet at F, and the algo-

rithm halts.

The flow chart in Figure 3 follows Hoare's algorithm closely.

In this program, I is the pointer for the left-to-right scan, J is
the pointer for the right-to-left scan, M and N are the lower and upper
bounds of the "middle" portion of the array, and R is the value used to
discriminate between small and large array elements. Hoare [1971] pro-
vided an informal manual procof of the correctness of his program. Iga-
rashi, London, and Luckham [1973] have produced machine proofs. The
proof we obtained required a minimal number (three) of intermediate as-
sertions; however, one of the verification conditions produced was quite
difficult to prove. This condition corresponds to the statement that the
elements to the right of the right boundary dominate the elements to its
left after an exchange is performed and a new right boundary is established.

We present a sketch of that proof below.
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FIGURE 3 THE FIND PROGRAM
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A. Assertions for FIND

The input assertion g for FIND is (the conjunction of)
S

1<F<NN |,

A = AP ’

The array AP is the initial version of A; we define it in the input as-

sertion so that we can refer to it after we have modified A.
The output assertion qH is

(STRIP (BAGA A 1 F-1)) < A[F] < (STRIP (BAGA A F+1, NN))
(BAGA A 1 NN) = (BAGA AP 1 NN) .

The second conjunct of qH states that when the program terminates,

the array A is indeed a permutation of the initial array AP.
The intermediate assertion q1 is

1< M<F< N < NN
(STRIP (BAGA A L M-1)) = (STRIP (BAGA A M NN))

(STRIP (BAGA A 1 N)) < (STRIP (BAGA A N+1 NN))
(BAGA A 1 NN) = (BAGA AP 1 NN)

This assertion is reached whenever a new bound on the middle section of

the array is established.

The assertion q2 is

1 <McF<NS=<NN

(STRIP (BAGA A 1 M~1)) < (STRIP (BAGA A M NN))
(STRIP (BAGA A 1 N)) < (STRIP (BAGA A N+1 NN})
Mg 1

J = N

(STRIP (BAGA A 1 I-1)) < R =< (STRIP (BAGA A J+1 NN))
(BAGA A 1 NN) = (BAGA AP 1 NN)

The assertion q3 is the same as the assertion qz, with the additional

conjunct
R < A[I] .
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B. The Proof

All but one of the verification conditions for this program were
proved fairly easily. The one difficult condition corresponds to the
path beginning at q3 that follows the heavy line and finally ends at q;

The verification condition generator supplied us with the following

hypotheses:
l<:M<F<N<NN (35)
(STRIP (BAGA A 1 M-1)) = (STRIP (BAGA A M NN)) (36)
(STRIP (BAGA A 1 N)) = (STRIP(BAGA A N+l NN)) (37)
Mg I (38)
J <N (39)
(STRIP (BAGA A 1 I-1)) < R < (STRIP (BAGA A J+1 NN)) (40)
R g A[I] (41)
(BAGA AP 1 NN) = (BAGA A 1 NN) T (42)
- (R < A[JD] (43)
I1<J - (44)
- (I+1 5 J-1) (43)
F<J-1 . (46)

The interesting consequence for this path is
(STRIP (BAGA A° 1 J-1)) = (STRIP (BAGA A” (J-1)+1 NN)) (47)
where
A’ = (EXCHANGE A I J) )
the array that results when elements A[I] and A[J] are interchanged in A.

The proof sketched below roughly parallels the proof produced by the

inference system. Portions of the trace are shown in Appendix B.

The (J-1)+1 term in the goal (47), is simplified to J, giving the

goal
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(STRIP (BAGA A" 1 J-1)) < (STRIP (BAGA A" J NN)) (48)

The difficulty in the proof arises from the uncertainty about whether
Jd < I. We are reasoning about an array segment, and it is not clear
whether that segment is affected by the exchange or not. Hand analysis
of hypothesis (44) and (45) reveals that I = J or I = J=1. The value of
a term like (BAGA (EXCHANGE A I J) 1 J-1) depends on which possibility is
actually the case.
The system "simplifies” the term into
(IF J < I THEN (BAGA A 1 J-1)
ELSE (BAG (STRIP (BAGA A 1 I-1))
AlJ]
(STRIP (BAGA A I+1 J=1))))

Intuitively, if J < I, then both I and J are outside the bounds of the
array segment,whereas if I < J, then the array segment loses A[I1] but
gains A[J].
Similarly, the term
(BAGA (EXCHANGE A I J) J NN)
is "simplified" into
(IF J < I THEN (BAGA A J NN)
ELSE (BAG (STRIP (BAGA A J J-1))
A[II
(STRIP (BAGA A J+1 NN))))

Note that (BAGA A J J=1) is empty; the ELSE clause is then

(BAG A[I17 (STRIP (BAGA A J+1 NN)))
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Cur goal can thus be reduced to showing that

(IF J < I THEN (STRIP (BAGA A 1 J-1))
ELSE (STRIP (BAG (STRIP (BAGA A 1 I-1))
AfJ]

{STRIP (BAGA A I+J J=1)))))

=

(IF J < I THEN (STRIP (BAGA A J NN))
ELSE (STRIP (BAG A[I]
{STRIP (BAGA A J+1 NN))))) . (49)

The system approaches the conditional expression by creating two contexts:

In one context, J < I holds, and in the other, I « J is true. 1In the

first context we must prove that
{STRIP (BAGA A 1 J-1)) < (STRIP (BAGA A J NN)) . (30)
In the second context, the statement to be proved is
(STRIP (BAG (STRIP (BAGA A 1 I-1))

ALJ]
(STRIP (BAGA A I+1 J-1))))

=

(STRIP (BAG A[IT
(STRIP (BAGA A J+1 NN)))) . (51)

Note that in the first context, J = I by (44). In working on (50),
(BAGA A J NN) is expanded to (BAG A[J] (STRIP (BAGA A J+1 NN))). Thus,

{50) breaks into two subgeoals:
(STRIP (BAGA A 1 J-1)) < A[J] (52)
and
{STRIP (BAGA A 1 J-1)) =< (STRIP (BAGA A J+1 NN)) . (53)

Since I = J, (52) follows from {(40) and (41l), and (53) follows from (40)

alone.
Work on the goal (51) proceeds in the second coﬁtext, in which I < J.
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Since J-1 < I+1 (11), we know (BAGA A I+1 J-1) is empty. The inequality

(51) may thus be broken into four inequalities:

(STRIP (BAGA A 1 I-1)) < A[I] , (54)
(STRIP (BAGA A 1 I-1)) s (STRIP (BAGA A J+1 NN))} (55)
A[d] < A[I] , (58)
and

ATJ] s (STRIP (BAGA A J+1 NN)) . (57)

Line (54) follows from hypotheses (40} and (41}, Goal (55) follows from

(40). Goal (57) follows from (43) and (40). This completes the proof.

This procf is the longest achieved by our deductive system so far.
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X SUMMARY OF RESULTS

Complete proofs have been found of the correctness of the following

algorithms:

a Finding the largest element of an array
¢ Finding the quotient of two real numbers
® Hoare's FIND program

¢ The Euclidean algorithm for finding the greatest common
divisor

® The exponentiation program from King's thesis
® Integer quotient and remainder
® Integer multiplication by repeated addition

® The factorial.
Theorems have been proved about the following algorithms:

® The pattern matcher.
® Unification.

e Exchanging two array elements (the theorem is that the bag
of the contents of the array is'unchanged).

e King's exchange sort.

We believe the system now has the power to do all of King's problem
set except the linear inequalities problem, which is not really a proof

about an algorithm.
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XI FUTURE PLANS

We are currently applying the verifier to more and more complex
programs in a variety of subject domains. We are continuously being
forced to add new rules and occasionally to generalize old ones; a spe-

cial purpose rule that worked for one problem may not work for the next.

The deductive system is implemented in the QA4 language. Although
QA4 is ideally suited for expressing our rules, it is an experimental sys-
tem evaluated by an interpreter and is written in LISP; furthermore, it
useé space inefficiently. R. Reboh and E. Sacerdoti are in the process
of integrating QA4 into BBN-LISP to produce a system known as QLISP
[Reboh and Sacerdoti, 19737. QLISP programs will be LISP programs that
can be evaluated by the LISP interpreter or even compiled. Furthermore,
QLISP is much more conservative in its use of space. We expect that
this system will be considerably faster and more compact than the exist-

ing system. Our deductive system is already being translated into QLISP.

QA4 subtly encourages its users to write depth-first search strate-
gies, since it implements the goal mechanism by means of backtracking.
The deductive system uses depth-first search, and for the most part, this
has been the proper thing to do. There have been times, however, when we
have felt the need for something more discriminating. Suppose, for
example, we are trying to prove an expression of the form x = y. We
can do this by trying to simplify x and then proving that the simplified
X is equal to y, or we can try to find some assertion a = b and prove
X = aand vy = b. In the current system, we must exhaust one possibility
before trying another, whereas we would like to be able to switch back

and forth between different approaches, giving more attention to the one
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that currently seems to be making the best progress. In other words, we
hope to use processes rather than backtracking in the implementation of

the goal mechanism.

Finally, we hope to apply this work to the generation of counter-
exﬁmples for "wrong' programs, to the generation of Floyd assertions,
and to the automatic construction of programs. It seems inevitable that
if we know how to reason about programs, that reasoning should be able

to help us in the process of forming or changing a program. Rather than

taking a handwritten and hand-debugged program to a verifier for approval,

we hope to collaborate with a system that will play an active role in the

creation of the algorithm.
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Appendix A

THE DEDUCTIVE SYSTEM

The deductive system has the overall structure shown in Figure 4,
The names on the chart are either function names or goal classes. Only

important substructures are included.

An annotated listing of the programs used for reasoning is presented
below. An index of functions and goal classes is included at the end of
this appendix. The reader will note how little of the space is devoted to
general strategies and how much is devoted to subject-specific knowledge.
Some of the programs use QA4 features that are not described in this pa-
per. The reader can rely on the English explication of the programs, or
he can refer to the QA4 manual (Rulifson et al. [19737).

To start a deduction, we say to the system

(GOAL $PROVE(some statement))
*
° PROVE is a goal class:

{TUPLE ANDSPLIT ORSPLIT OPSPLITMANY PROOFSWITCH)

Y PROOFSWITCH determines whether the goal is an equality, otherwise

it is assumed to be an inequality.

* Bullets are used to indicate the beginning of the description of a
new function.
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PROOFSHI TCH= (LANBDRA  (<F <X)
(FROG (DELLARE}
(IF (CrrlAl 8F (QUOTE EQ))

THEN
{Goal BEORLILES (8F §X))
ELLE
{GOAL BINEDQUALITIES
(8F $X}))
(ASTERT (8F 8¥))

{RETLRNT 1 GF 8X3t

In either case, the appropriate set of rules is applied.

1. Equalities

L The equality class is

EURILES =
(TUPLE ANCSPLIT RELCHECK EQTINMES01VIDE EQSUBST LEIBT LEIBF
LEIRE LETRS EOSINP PROGFLE 10

- The rule ANDSPLIT takes a goal that is a conjunction of two or more

expressionst and tries to prove each conjunct independently.

AMDSFL T=(LAMBDA {AND «X «&Y) .
{ATTENPT (GOAL $GOALCLASS 8X)
THEN
{ATTENFT (GOAL SGOALCLASS
{AND 88Y))

ELSE
(FAIL})

ELSE

{FAILI]

If repeated applications of ANDSPLIT are successful eventually, the goal

(AND) will be generated. However, (AND) is an assertion in the data base,

annd so the rule will then succeed.

L] ORSPLIT applies to a goal that is the disjunction of two expressions

+ The right bracket represents a string of right parentheses long enough
to balance the expression.

% Variables with double prefixes, "—" or "$$," respectively match or
evaluate to a sequence of terms rather than a single term.- In the rule,
for example, Y can be bound to a set of terms, including the empty set.
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and works on each separately.

LURSPLIT=(LAIBDA (DR =X «Y)
(ATTENPT {COAL SGOALCLASS 8X)

ELSE
(GOAL $GOALCLASS 8Y]

The expression x is attempted as a goal first; if this is successful, we
are done. Otherwise, ORSPLIT works on y; if it is unsuccessful, then a

failure is generated.
] ORSPLITMANY is similar to ORSPLIT, except that it takes as a goal the
disjunction of three or more expressions:

WRSEL T THANY (LANMBLA (OR ~¥ <Y 7 el
(' (ATTEMPT (GOAL SGOALCLASS #X)

ELGE
(GOAL 8GOALCLASS
(OR 8y $Z &8W]

The expression x is attempted first; if the proof is successful, the dis-
Jjunction is true. Otherwise, the disjunction of the remaining expressions
is established as a new goal. Continued failure to prove members of a

disjunction will eventually cause ORSPLIT to be invoked.

) The rule RELCHECK merely checks the property lists of the expressions

to see if they are already known to be equal:

RELCHECK =ILAMBDA X (ISREL? 8X1)

When RELCHECK is applied, x is bound to an equality statement, which is
fed to the ISREL? statement. ISREL? will succeed not only if the equality
has been explicitly asserted, but also if the equality follows by the
transitive law from other equalities or inequalities. ISREL? is the
mechanism for making queries about special relations. It will work with

inequality relations, such as LT, GTQ, and NEQ, as well as EQ.

EQTIMESDIVIDE and EQSUBST are rules for reasoning about numbers and

substitutions, respectively. They are discussed in the relevant sections.
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[.E[BF= (LAHBOA (EQ (+F X}

(«F «Y))
(FROG (QECLARE]
{8ASK {7 (EQ 84X 8&Y)}
FRINVE?)

{GOAL SECRULES {EQ X 8Y]

LEIRT=(LANROA (EQ (TUFLE <X ~<Z)
{(TUFLE <Y <))
(PROG (DECLARE)
(GOAL SEQRULES (EQ &X 8Y))
{GOAL SECRULES {EQ 82 $U]

| EIRS=0 AMBDA (EQ (SET <X «+Z)
' (SET «Y «=Z1)
{GOAL #EQRULES (EQ #X 8Y]

LETRB=Il AlRDA (EQ (BALG =X <7)
(BAG <Y +=2))
(GOAL BECQRLILES (F(I $Y §Y]

The LEIBF rule asks the user if he wants that rule to be applied. The
function ASK that performs the interaction is described in the section

on utility functions.

- EQSIMP and PROOFLEIE are very time consuming but also very powerful.
EQSIMP says that to prove x = y, simplify x and try to prove that the
simplified x is equal to y.
LA P =[LANBDA {EQ ~X «Y)
(FROG (DECLARE)
{(SETU «X (85[MPONE $X))
AGOAL $EORULES {EQ #X 8Y}))
BACKTRACK])
Since the program uses the BACKTRACK option, and since EQ implicitly
takes a set as its argument, EQSIMP can work on y as well as on x. In

other words, if it fails to simplify x, it will go ahead and try to sim-

plify vy.

. PROCFLEIB tries to make use of information stored in the data base.

It is used to prove inequalities as well as equalities.
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FROUFEE B =(LANBDA {(-F --X)
(FROG {DELLARE)
(EXESTS (8F <Y))
(8ASK (" (EQ X 8v})
FROVE?)
(COAL SEZRILES (EQ #¥ 8Y]

It says: to prove u = v, find an assertion of the form a2 = b and prove
U =aand v = b. It relies on user interaction to cut off bad paths.
Note that if F is EQ, we can expect X and Y to be sets, so that LEIBS
will ultimately be called to prove the equality expréssion generated by

PROCFLEIB.

2. Inequalities

We now turn to the rules for proving inequalities.

PHEGUALTTIES

(TUFEE ANDSPLIT SELCHECK ORSFLIT URSPLITHMANY PROOFSIMP
THEGIFTHEMELSE INEQSTRIFBAG INEQSTRIFPSTRIP
FHEQSTRIFTRAN GTOLTO LTANANY FSUBTRACTI FSUBTRACTZ2
ITHEUTTTESDIVIDE EQIMEOMUNOTONE LTQPLUS PROOFLEIB
IMEALETB) ) :

RELCHECK has been mentioned above.
. GTQLTQ says that to prove y > x, try to prove x = y:

GTOLTO SLAMBDA (GTQ «Y «X)
{GOAL SINEQUALITIES (LTQ $X 8Y]

. LTQMANY takes an inequality goal, such as

and breaks it into separate goals,

X = x and x £ x and ... X = x
1 2 2 3

LICHANY ALAMBDA (LTQ X «Y w2 <el)
{PROG {DECLARE}
(GOAL SIMNEQUALITIES (LTQ 8X 8Y)}
{(COAL SINEQUALITIES
{LTQ 8 #Z 88W)
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LTQPLUS, FSUBTRACTL1, and FSUBTRACTZ are special rules for reasoning

about numbers and are discussed in the relevant section.

. PROOFSIMP proves an expression F{(Y) by trying to simplify Y and

proving the simplified expression.

PROCGESTNP= (LANBDA  (PAND X (=F Y}
{(FROG (QECLARE GUALCLASSL)
{SETI ~[IALCLASS]L 8G0OALCLASS)
(ATTOHPT (SETQ <X (BARGSIMP 8X))
ELSE
(FAILY)
{GOAL BLOALCLASSL $X]

It has more general application than just to inequalities, although so

far we have used it only for inequalities.

e INEQLEIB is similar to PROOFLEIB, but it works only for inequalities

IMEALE [B=(LAMBDA (L -X -Y)
(PROG (QECLARE LOWER UPFER)
(EXISTS (6L «LOMER «~UPPER})

{$AGK FROVE (' (LTQ 8X $LOWER))
AND

{* (LTQ SUPPER 8Y))

7]
(GOAL BINEQUALITIES
(AND {LTQ 8X SLCHER)
(LTQ SUPFER 8Y]

L is expected to be LT or LTQ. To prove x <y, for example, find

an asserted statement LOWER <« UPPER and prove x < LOWER and UPPER < y.
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] INEQIFTHENELSE is a rule that sets up a case analysis:

THEDTFTHEHELSE = (LAMBDA  (oF e=Ul {[FTHEMELSE «X «Y =Z)
~H2)
(FROG (DECLARE VERICON)
(ATTENPT (SETQ «~VERICOM
{CONTEXT PUSH
LOCAL})
{ASSERT $X WRT $VERICON)
THEN
(COAL #1NEQUALITIES
{(BF $8W1 8y 88U2)
WRT SVERICOM))
(ATTEMP'T (SETQ ~VERICON
" {CONTEXT FUSH
LOCAL])
{DENY $X LRT SVERICON)
THEN
(GOAL $INEQUALITIES
(8F 8841 8Z 88W2)
WRT SVERICONI
ELSE
{(RETURN (SUCCESS WITH
IMEQIFTHENELSE]

For example, suppose the goal is (IF x THEN y ELSE z) < w. This rule
establishes two subcontexts of the local context. In one of these con-
texts, x is trug; in the other, x is false. In the first context, the
rule tries to prove y < w, whereas in the second, it tries to prove Z < w.
Note that the system that stores equalities and inequalities will cause

a failure if an assertion (or a denial) would lead it to contradict what

it knows. In that case the goal is considered to be achieved.

] INEQSTRIPBAG is an inequality rule that has a bag as one of its

arguments.

IHEGSTRIPBAC=(LANMBOA (+F «cl (STRIF ({BAG «X ~«¥Y}}
‘ )
(GOAL BIMEQGUALITIES
(AND (8F f8l) 8X 887)
(8F 88U (STRIP (BAG 88Y))
8871
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This rule would be invoked when we want to show, for example, wl <

(STRIP (BAG ¢ cy ot )) = L The intention here is to demonstrate

that w < ¢. = w2 and Wl €C, < wz, and so forth. Ultimately, we might
1

have to demonstrate that wl < (STRIP (BAG)) = w The special relations

o9
handler (ISREL?) succeeds vacuously with any inequality relation where

one of the arguments is (STRIP (BAG)).

3. Deduce
] DEDUCE is a goal class of rules that are guaranteed to terminate

quickly. It is used when we want something more inquisitive than EXISTS
but less timeconsuming than PROVE, EQRULES, or INEQUALITIES.
NEQUCE=
{TUPLE BELCHECK AHWDSPLIT DRSFLIT ORSPLITHANY LTPLUS FSUBTRACTI
FSUBTRACTZ2 LTQPLUS NOTATOM CONSTCAR CONSTCOR))

We have already described RELCHECK.

The other DEDUCE rules are for special applications and are discussed

in the appropriate sections.

4. Simplification

) The top-level simplification function is SIMPONE. This function
does not try to simplify its argument completely. It will find a partial
simplification; repeated applications, if necessary, will completely sim-

plify the expression.

The simplification rules may, of course, be added by the user. We
expect that each simplification rule should make the expression simpler

in some sense. Otherwise, the program may loop interminably.
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SENIPONE =(LANBDA «GOALL (PROG (DECLAKE SINMPGOAL}
(IF {EQUAL (STYFE $GOALI)
NUMBER)
THEN
(FAIL))
(BASK HGOALL SIMPLIFY?)
[SETE ~51MPGOAL
(ATTENFT
(GQAL $TOPRULES $GOALL)
ELSE
($TRY STOPRULES
(GOAL $BOLINRULES
$GOALL)
(PUT SGOALL SIMPLIFIED $SIMPGOAL
WURT ETERNAL)
(RETURN 8SIMPGOAL]

SIMPONE fails if it cannot simplify its argument at all. It treats num-
bers as being completely simplified. It asks the user for permission to

go ahead. It tries a goal class, TOPRULES, on the expression.

o TOPRULES is a set of rules that work con the top level of the expres-
sion:
IOFRULES
(TUFPLLE HASSIME FAILINTODOWHNRULES PLUSOF TIMESGOP MINUSOP
FITTHEHELGE DAGANR SUBSTOP EXPZERD EXPEXP SUBPLUS
SURHUN GCOED ACCH CONSDIFF {MFOIF DIFFCONS DIFFONE
NA¥PLLS MAXYOME BAGSTRIFP ACCEX EGNUMB)
If any of these rules apply, SIMPONE returns the simplified expression

as its value. Otherwise, it tries to simplify some subexpression of the

given expression:
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POLEHULES =(TUPLE ARGLINRE TUPSIHE BAGSIPP SETSINR))

ARGETP =ULANBDA T-F - ‘
(SURST (' (8F 5¥))
{(TUFLE X (SSINFONE 5X1

HIES 1R =[LANBOA (TUFLE «—-n of «ed)
(TUPLE #6X (SSITPONE 8Y)
$87)
BACKTRALK] )

BAGSINP ={LANMBDA {BAG «X ««Y)
(BAG (S$STMFONE $X)
$8Y)
BACKTRALK])
SETSIMP={LAMBDA (SET <X «+Y)
{SET {$SIMPONE $X)

8BSy}
BACKTRACK] )

The DOWNRULES simplify a complex expression by simplifying the component
parts of the expression. If any of the DOWNRULES apply, SIMPONE applies
the TOPRULES again to the new expression. SIMPONE calls the functions

ASK and TRY that are described in the section on utility functions.

[ ] SIMPONE puts the simplified expression on the property list of the’
original expression. In this way, if it ever comes across the original
expression again, one of the TOPRULES, HASSIMP, will immediately know

what simplification was found before.

HASSIHP=(LAMBDA <X (IF (NOT (IN (ZETQ <X (CET 8$X SIMPLIFIED))
(TUFLE DONE NGSUCHPRDPERTY)))
THEN #X ELSE (FAIL]

] If the expression. to be simplified is a set, tuple or bag rather
than a function application, none of the TOPRULES will apply to it. To
avoid the cost of searching for a match among all the TOPRULES, the rule
FAILINTODOWNRULES will first test for this condition and cause the entire

goal statement to fail should it arise:

67



FATLTNTCGOOMNRLILE S= (LATIRDA «X
(IF 1IN (STYPE $X)

(TUPLE TIIFLE SET BAG}H)
THEN

(FATL GOAL}
ELSE
{FAIL]

SIMPONE will then apply the DOWNRULES to the argument to see if any of its

subexpressions can be simplified.

- One of the most general TOPRULES is EQNUMB, which replaces any ex-—

pression by the "smallest” known equal expression:

EONUNB =(LAMBDA X {FROG {(DECLARE BEST EQSET)
{(IF {EOIAL (SETO ~EQSET (GET 8X EQ))
NOSUCHFROFERTY)
THEN
{FATL))
(SETQ ~BEST (8SHORTEST SEQSET})
{IF {EQUAL SBEST 8X}
THEN
{FAIL)
ELSE
(RETURN 9BESTI

The "smallest' element of a set is computed by the QA4 function SHORTEST,

described among the utility functions,

If EQNUMB fails to find a smaller representation for x, it fails.

. FI1FTHENELSE= (LAMBDA (F (IFTHENELSE W «X «Y))
(* ([FTHENELSE SW (8F 8X)
o (8F 8v]

FIFTHENELSE moves conditional expressions outside of function applications.

An expression of the form
f(IF w THEN x ELSE y)
translates into
IF w THEN f(x) ELSE f(y)

The remaining rules in TOPRULES are discussed in the sections dealing

with special subject domains.
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S. Reasoning About Numbers

a. Equality and Inequality Rules

. EQFIMESDIVIDE is an EQRULE. It means that to prove w = (x/y)*z,

prove w¥y = x¥gz:

EQTINESD VIDE=[LANMBOA (20 W (11PLS (DIVIDES X «Y)
-eZ})
(COAL. SECELILES (EQ (TIMES 8Y $W)
(TIMNES 8X 887} ))
BACKTRALKT)

Some inequality rules that know about numbers are presented below.

- LTQPLUS says that to prove i < j+k, prove 1 £ j and 0 < k:

L TOPLES=TLAIMBDA (LTA 1 (PLUS «J «K])
{GOAL SDEDUCE (AND (LTQ 81 .9
(LTQ @ 8K}

BACKTRACK])

First, the rule attempts to prove that i « j and 0 = k. If-either of
these proofs is unsuccessful, then the backtracking mechanism will inter-

change the bindings of the arguments of LTQPLUS. This then leads to an

attempt to prove i £ k and 0 < j.

[ ] LTPLUS is the analogue of LTQPLUS for LT:

[.TPLUS= (LAMBDA (LT <] (PLUS «J «KJ}
{GOAL SDEDUCE (AND (LTQ 81 8.0}
{LT 8 $K}1)

BACKTRACK])

It means that to prove i < j+k, prove 1 = j and 0 < k. It can backtrack

to reverse the roles of j and k.

FSUBTRACT]1 and FSUBTRACT2 allow us to make deductions: for

example, to prove x~y < z try to prove x < y+z.
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FOURTRACTL =(LANBDA  §-F (SUBTEACT «X +-Y)
-7}
{GOAL HGOALCLASS (8F 8X (PLUS 8Y $2]

POURTRACTZ=ILANEOA {-F X (SUGTRALT Y «2))
(GOAL 50G0ALCLASE (8F (FLUS 83X 82)
By

e INEQMONOTONE says that to prove w+x < y+zZ, prove w < ¥y and

X<czZoOrwe<zand x < V.

COTNEQMDNOTONE [LADRDA (<l (PLUS L =X)
(PLUS =Y =731}
[FROG (OCCLARE)
{SASK FROVE (° (8L 8UW 8Y))
AND
(" (8L 8X 82))
?)
(GOAL GDALCLASS
(AND (8L $W sY)
(8L 8X 871
BACKTRACK] )

. The rule INEQTIMESDIVIDE is similar to EQTIMESDIVIDE except
that it must check that the denominator is nonnegative before multiplying

cut:

TNEQTIMESDIVIDE =(LAIMBOA {«F W (TINMES (DOIVIDES «X «Y}
~Z}}
[PROG {DECLARE)
{GOAL 8DEOUCE (LT 8 8Y))
{COAL SINEQUALITIES
{SF (TIMES 8Y S
(TIMES §X 8871
BACKTRALK])

This rule says that teo prove w < (x/y)*z, say, in the case

that 0 < ¥y, try to prove wky <« x*z,

b. Numerical Demons

. When x » ¥ 1s asserted, assert that y < x:
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(LHEN EXF {GTO <X =Y)
INDICATOR MOUEEVALUE TR (ASSERT (LTQ 8Y $X)
WRT SVERICON]
These demons make their assertions with respect to the current context,

VERICON,

L] Whenever x+y < x+2z is asserted, we want to conclude that y < z:

(WHEM EXF (LTQ {PLUS =X <Y)
(FLUS X +Z))
INDICATOR MODELVALLUE THEN
{ASSERT (LTQ 8Y $§Z)
WRT SVERICON)

] Whenever w-x <€ y is asserted, assert w £ x+y, simplifying the

right side. if possible:

{WHEN EXP (LT t5UBTRACT el «X)
=Y)
INGICATOR NMOOELVALUE THEN
{PROG (DECLARE RTSIOE)
(SETQ ~RTSICE S
($TRYALL $PLUSRULES
{* {PLUS 8Y 8X]
(ASSERT (LTQ $W 8RTSIDE)
WRT $VERICON]

. Whenever (w-x)+X < y is asserted, then assert w g y:

“(WHEN EXP (LTQ (PLUS {SUBTRACT «W «X)
+X)
Y]

INOICATOR MODELVALUE THEN
(ASSERT (LTO $W 8Y)
WRT $VERICON]

Certain demons are intended exclusively for the integer domain.

L X<y IDx+l € y;

(WHEN EXP (LT <X «Y)
INDICATOR MMODELVALUE THEN
{ASSERT (LTQ {PLUS $X 1)
Byl
WRT $VERICONI]

L x>y oy+tl = x:

(LHEM EXP {(GT «X Y}
INDICATOR MGCELVALUE THEN
{ASSERT (LTQ (PLUS 8Y 1}
$x?
WRT 8$VERICION)
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Whenever w-x < y is denied, deny w < y+x-1, simplifying if possible:

(WHEN EXF (LT {SUBTRACT «W «X)
Y]

INDICATOR MODELVALUE PUTS FALSE THEN
{FROG (DECLARE RTSIDE)

(SETQ
~RTSIUE
{($TRYALL $PLUSRULES
(* (FLUS 8Y 8X
{(MINUS 1]

(DENY {LTQ $ll SRTSIDE)
WRT SVERICON]

c. Numerical Simplification

Much of the knowledge the system has about numbers is embedded

in the simplifier. For efficiency, these rules have been arranged hier-

archically. For example, only one rule, PLUSOP, in TOPRULES deals with

SUmS .

FLUSUR= (LANEDA  (FAND «Y (PLUS «eX)}
(8TRYALLFAIL YFLUSRLILES #Y})
However,

this one rule coordinates a multitude of other rules. All the

rules that operate on plus expressions are in the goal class PLUSRULES.

Bl USRULES= (TURLE PLUSENFTY FLUSSINGLE PLUSZERD PLUSPLUS

FLUSHINUS PLUSDIFFERENCE PLUSCOMBINE
FPLUSKNUMBER) )

The strategy PLUSOP uses is to apply all the PLUSRULES to its argument

until no further simplification is possible. (The function TRYALLFAIL,

that expresses this strategy, is described among the utility functions.)

If PLUSOP can find no simplification at all, it fails,

Most of the PLUSRULES are quite simple.

[ ] The sum of the empty bag is O:
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FLIGSERPTY =[LANBDA (PLUS)
al)

] The sum of a bag of one element is that element itself:

PLUSSTMNGLE =[LANBDA {FLUS «X)
8X11)

(i.e., +x = x)

] x+0 = +x

PLUSZERC=(LAMBDA (PLUS ««X 0)
{* (PLUS 88X]

Note that this rule impliecitly says

0+x = +x
x+0+y = xX+y

X+y+0+z = x+y+z '

and so forth because PLUS takes a bag as its argument.

+ P R + + .. = + + ...+ + + ...
¢ (Geprxyte. 4y, 4y, ) = (xprx, Y19 )

PLUSPLUS=(LAMBDA {PLUS (PLUS ««X)
Y
{" (PLUS 88X 18Y]

o x+(=X)+y = +¥

PLUSMINUS=(LAMBDA (PLUS «X (MINUS «X)
=)
{* (PLUS 88Y]

. x+(y=-2)+w = x+y+w+(-2)
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FPLUSOTFFERENCE =(LAMBDA (PLUS <X (SUBTRACT «Y «Z}
)
{8TRY (TUFLE PLUSMIMUS)
{* (PLUS 8Y 8X 8l (MINUS $2)

Note that PLUSDIFFERENCE recommends that PLUSMINUS be attempted immediately

afterward. This is merely advice; if PLUSMINUS does net apply, nothing
is lost.

(TRY is described 1in the section on utility functions.)

. X+X+y = 2%¥X+y

FLUSCOMBIME=(LAMBDA (PLUS «X ¥ «e¥)

($TRYSUD 8TIMESRULES ON

(* (TIMES 2 8X))
N

(* (PLUS (TIMES 2 8X)

Note that PLUSCOMBINE recommends that the 2%x term be simplified if

possible.

. If two elements of a plus expression are syntactically numbers)

PLUSNUMBER will add them up:

28Y]
PLUSNUMBER=[LAMBDA (PLUS «X Y «eZ)

(PROG (DECLARE SLut1)
{8INSIST (EQUAL (STYPE 8X)

MUMBER])
($INSIST (EQUAL (STYPE 8Y}

NUMBERY)
{SETO «~SUM (PLUS 8X 8Y))

(FETUREN (PLUS 85UM §8Z11})
BACKTRACK] )

) The rule TIMESOP is strategically similar to PLUSOP:

TTIMESOP {LAMBDA (PAND <Y (TINES <))
{STRYALLFAIL STINMESRULES 8Y1)

It will apply all the TIMESRULES to the expression in question

TIMESRULES
is
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TINESRULES = _
(TUELE TIHESEMPTY TINESSINGLE TINESZERO TIMESONE TIMESPLUS
TIMESTIMES CANCEL GORULE TIMESEXP TiMESDIVIDEONE))

L] The product of the empty bag is 1:

TIMESENPTY =[LAMBDOA (TIMES)
11}

L] The product of a bag of one element is that element itself:

TIMESSIMGLE =[LAMBDA (TIRES «X)
8X1)

. O*y

1]
o

TIMESZERU=(LAMBDA (TIMES @ «-Y)
a1}

] 1*x = x

TIMESUME=(LAMBDA (TIMES 1 ««X)
(" (TIMES 88X]

Recall that these rules also imply

x*l*y = x*y
x*0*y*z = 0 s
and so forth.
L (x+y) *z = x*z+(+y)*z (distribution law):

TIHESPLUS=(LAMBDA
(TIMES (PLUS X «=Y)
w7}

(8TRY BPLUSRULES ($TRYSUB SFLUSRULES ON (' (PLUS 88Y})
IN
(" (PLUS {(TIMES 8X $827)

(TIMES {PLUS 88Y)
887)

(Some simplification ig attempted immediately on y and on x*z + y*z.

TRYSUB is explained in the section on utility functions.)
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kx kK, ., Yhky * cas = Hy k| ky cky ok
. ((x1 %, ) Y Y, ) (xl x, Y *Y, )

TINESTINMES={LAHBOA (TIIES (THIRS ~=X)
I—O—"[' ]

(" (TIKES 8&% ##Y)
. x*(1/y)*z = (x/y)*z

TINESDIVIGEONE= (LAMBDA (TINMES <X (DIVIDES | «Y)
~«Z)
{" (TINES (DVIDES 8X &Y)
$87)

e x*(j/x)*z = y*z

CAMCEL =(LLAMBDA (TIMES =X (DIVIDES +¥ «X)
7]
00 (TIMES 8Y 8821

2
. x¥kx¥y = x * y

SURULE=(LANRDA (TIMES «X X ee¥)
(8TRY (TUFLE TINESSIMNGLE)
(" (TINES (EXF 8X 2}
ggy]

n n+1
. x*x ¥y = x *y

TIMESEXF =(LAMBDA (TINMES X (EXP «X +«N]

=Y}
(8TRYSUB S$FLUSRLILES ON (" {FLUS 8N 11}
IN
(" (TIMES (EXP 8X (PLUS $N 1))

$8Y]

L To the reader who has gotten this far, MINUSOP will be self-

explanatory:

MINUSOP=(LAMBDA (MINUS «X)
(GDAL {TLFLE MINUSZERD MINUSMINUS MINUSPLUS)
(MINUS §X] '
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Note the MINUSOP, unlike PLUSOP and TIMESOP, does not apply all
the rules to the expression, but will return the value of the first rule

that does not fail,

[ J -0 =0
MINUSZERD=(LAMBDA (MIHUS 8)
8]
[ -(—x) = X
MINUSHINUS=[LANBDA {MINUS (MINUS «X))
8]
. -(x+y) = (-x)+(-y)

MINUSPLUS= (LAMBDA (MINUS (PLUS «X «<Y})
{$TRY SFLUSRULES (PLUS (MINUS $X) .
(MINUS {PLUS 88Y)

At present there are only two subtraction rules, and so we do

not combine them into one operator:
L] x-y = x+{(-y)

SURPLUS =(LAMBDA {(SUBTRACT X «Y)
($TRY $PLUSRULES (* (PLUS 8X (MINUS 8Y]

. If x and y are both numbers and not variables, SUBNUM actually

evaluates x-y:

SUBNUM=(LANRBDA {SUBTRACT =X «V}
(PROG (DECLARE) .
[§INSIST {ANC {EQUAL (STYPE 8X NUMBER})
(EQUAL (STYPE 8Y)
NUMBER) ) )
{(RETURMN (= (SUBTRACT 8X 4Y}

The "=" sign forces the system to evaluate what it would otherwise merely

instantiate. INSIST is another utility function.
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Two more rules about exponentiation are given below.

¢ L¥PZERN=[LAMBOA (EXP «X 8)
11}

FXFEXP= (LAMBDA (EXP (EXF <X <Y
«Z)
{8TRY5SUB STINESRULES ON (* (TIMES 8v 8Z))
IN

{* (EXP $X (TIMES 8y $Z]

Note that EXPEXP recommends that the TIMESRULES be applied to

the product y*z; this is heuristic advice that could have been omitted.

™ {(GCD x x) = x

[.CLEQ A LAMBDA {GCO =k Y}
{PROG (DECLARE)
{GOAL SDEDUCE (EQ <X <Y))
{RETLIFM £iX]

The GCD is the greatest common divisor,

6. Reasoning About Arrays

Most of the knowledge about arrays embedded in the system is expressed

as simplification rules.

° (ACCESS (CHANGE A I T) 1) =T

I # J o (ACCESS (CHANGE A I T) J) = (ACCESS A J):

ACCH=(LAMEOA (ACCESS (CHANCE «A 1 «T)}
=J}
(PROG (DECLARE}
: (ATTENPT (GOAL 4$DEDUCE (EQ 81 8J))

THEM
(RETURM $T))

(GOAL sDEDUCE (MEQ §T 8J))

{RETLIEM {ACCESS $A 8]
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(MAXA A I J+1) = A[J+1]

On the other hand, if

(MAXA A I J) > A[J+1]

then
(MAXA A I J+1) = (MAXA A I J) ;
HAKFLLS = LANBOA
(MAYXA A 1 (PLUS «J 11)
{FROG (DECLARE)
[ATTEMPT (GOAL SOEDUCE (LTQ (HAXA SA &1 841
(ACCESS A (PLUS 8J 1]
THEN
{RETURN (ACCEZS GA {FLUS 8J 1)
(GOAL BDEDUCE (LT [ACCESS A {PLUS 8J 1))
(MAYA A ST 80 ))
(RETURM (MAXA SA 81 4.1
- Recall that (BAGA A I J) is the bag [Ari], A[i+1], e A[j]]. Be-

cause of the crucial part this function plays in assertions about sort-

like programs, we have many rules for it.

HAGARLLES = .
(TUFLE DAGAPLUS BAGAENMPTY BAGAI1 ARGSIMP BACH BAGEX BAGEX]
RAGAITHUS BAGALOWERFLUS BAGEXCOMPLICATED) )

° These rules are controlled by the rule BAGAOP, one of the TOPRULES:

HACADP=(LAMBDA (PAND <Y (BAGA =eX))
{8TAYALLFAIL SBAGAPULES 8Y1)

Thus, the BAGARULES will be tried whenever we are simplifying an expres-

sion of the form (BAGA A I J).
. If I ¢ J+1, then (BAGA A I J+1) = (BAG A[J+1] (STRIP(BAGA A I J))):

PAGAPLUS=(LAHBOA (BAGA ~A 1 (PLUS 1 «J))
(PROG (DECLARE)
(GOAL SDEDUCE (LTQ &I (PLUS 1 8J}))
(RETURN (BAG (ACEESS 8A {PLUS 8J 1))
(STRIP (GAGA %A 31 8J]
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ACCH is one of the TOPRULES, as are the rules below, ACCEX, MAXONE, MAX,

and MAXPLUS.

[ (EXCHANGE A I J) is a higher level function whose output is the
array A with the values of A[I] and A[J] exchanged. The value of
(ACCESS (EXCHANGE A I J) K) depends on whether or not K equals I or J,
i.e., whether the element here accessed was affected by the exchange.
If K = I, the value is A[J]. If K = J, the value is A[I]. If K is
neither I nor J, the value is the original value of A[K), since that lo-
cation has not been affected by the exchange, The rule fails if it can-
not be determined that K= I or K=J. This information is embodied in
the rule ACCEX:

ACCEX=(LAMNBDA (ACCESS {E¥CHANDE A ] wJ)

{PROG (DECLARE)

(ATTERPT (GOAL $0EDUCE (EQ 8K 81))
THE®

(RETURN (ACCESS 8A 8J)))
{ATTEMPT (GOAL SDEDUCE (EQ 8K $J))
THEN

(RETURN {ACCESS 8A 81)3))
(GOAL $CEDUCE (AND (MEQ $K $1)

{NEQ 8K 8J)1}
(RETURM (ACCESS $A $K]

. The maximum of an array, MAXA, is a function of three arguments:

the array, the lower bound, and the upper bound.

(MAXA A I J) (MAX Af1], AfI+17, ..., A[JD]

“A[I7]:

(MAXA A I I)

Il

NAYONES (LAMBDA (MAXA <A « =)
{PROG (DECLARE)
(GOAL $CECUCE (EQ 81 8J))
(RETURN (ACCESS 81
. If (MAXA A I J) =< A[J+1] ,

then
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If I < J, (BAGA A J I) is the empty bag:

BALAETPTY=S(LATROA (BAGA <A ol i)

(PROG (CEL LARE)
(Nl $DECUCE (LT 81 8J))
{RETLH {BAG]

(BAGA A I I) is [A[I1]:

WAGALT= (LAIBDA (BAGA <A ol «J)

LA ] (PROG (DECLARE)
(GOAL 4OEOUCE {(EQ 8T $.0)
{RETUSH {BAG (ACCESS 8A $1)

If I <J, then (BAGA A I J) = (BAG (STRIP (BAGA A I J-1)) A[J]):

BAGAMTHUS={LANBOA
(BAGA <A =] «J)
{FROG  (BECLARE)
(BINSIST (EQUAL (STYFE 8J)
[DENTY)
(GOAL SDEDUCE (LTQ %1 $.0))

(RETURN (BAG (ACCESS A #J)
{STRIP (GAGA $A 81 (SUBTRACT 8J 1]

Since this rule would apply so often, it is restricted by forcing J

to be an identifier rather than a complex expression.

- If L £ M, then

(BAGA A L M) = (BAG A[L] (STRIP (BAGA A L+1 M))}

BAGALOHERFLUS=
{LAMBDA {BAGA <ARMANE <L «M)
{PRUG (DECLARE F LQUER LIFFLE LD
(EXTSTS (F =V (STRIF {BAGA SARNAME ~LCOWER
~UPPER]})
weld))
(GOAL $DECUCE (EQ $LOLER (PLUS 1 8L)))

{RETURN (BAG (ACCESS SARNAME SL)
(STRIF (BAGA BARNAME (PLUS 1 8L}

#M]

This rule tries to determine if its application is desirable by

checking in the model for any relationship involving an array segment with
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lower bound equal to L+1l; if no such relationship exists, it is doubtful

that the proposed simplification will lead to a proof.
. If I «J < K, then

(BAGA (CHANGE A J T) I K) =

(BAG T (STRIP (BAGA A I K))) ~ (BAG A[J])
On the other hand, if J < I or XK < J,
(BAGA (CHANGE A J T) I K) = (BAGA A I K)

(The notation ~ means the difference between two bags.) In other words,
making an assignment to an array element whose index is outside the
bounds of a segment does not affect the segment. However, if the index
is within bounds of the segment, then the corresponding bag will lose

the old value of the array element but gains the new value:

BALH =
{LAMED
(BASA (CHAMGE «A «J «Ti
<] =K)
(FRLG
(DETLARE)
[ATTENMPT
(G0Al. SDEDUCE (LTQ 81 8J 8K)}
THER
(RETURM
(=
{8TEY
$DIFFRULES
{($TRYSUB
{TUPLE ACCH ACCEX)
oM
(* (ACCESS sA $.J))
IN
(8TRYSUB SBAGARULES ON (° {BAGA SA 81 8K))
iN

(" (DIFFERENCE (BAG 8T
(STRIF (BAGA 8A 81 8K))}
{BAG (ACCESS $A 8J]

(GOAL SDEDUCE (OR (LT 8J 81)
(LT 8K 84101

(RETURN (BAGA SA 81 8KI

8z



The rule BACH contains many recommendations about possible future simpli-
ficaticons. These recommendations are included to promote efficiency;
the simplifier would eventually try the recommended rules even if the
advice were omitted. The advice-giving functions TRY and TRYSUB are de-

scribed in the section on utility functions,

° As mentioned above, (EXCHANGE A I J) is the array A with the values
of AFI] and A[J] interchanged. If I and J are either both inside or
both outside an array segment, then the exchange operation has no affect

on the bag corresponding to that segment:

BALEX (LAMBDA (BAGA {EXUHANGE <A «] «J)
L )
(FROG {DECL ARE)
(GOAL SOEDUCE (LTQ 81 $0))
(ATTEMRT
(COAL SCEOUCE
{OR (AND (LTQ 8L $1)

{(LTQ $.J $M1))
(LT 8 &)
{LT &1 $1)
{AND (LT 81 $L)
(LT 8M 8]
THEM
(RETLRN (BAGA 8A L 8M))
ELSE
{FAILI
For simplicity, BAGEX requires that I < J.
° If elements A[I] and A[J] are exchanged, and if J is in the array

segment and I is not, or if I is in the segment and J is not, then the
corresponding bag is indeed affected by the exchange operation. For
instance, in the case in which J is in the segment and I is not, if the
segment is bounded by L and M, the new bag is

(BAG (STRIP (BAGA A L J-1)

ALT]
(STRIP (BAGA A J+1 M)))
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BAGLH]L =
{LalEDA
(BAGA {(EXCHANGE «A «I <J}
L M
(PROG (DECLARE)
(GDAL $DERUCE (LTO %1 $J41)
(ATTENPT (GOAL SDEDUCE (AND (LT 8@ &)

(LT $L 8.0
(LTQ $J M)
THEN
(RETURN (BAG (STRIP (BAGA 8A $L (SUBTRACT
$J 1)1)
(ACCESS 8A 81)
(STRIP (BAGA A (PLUS 1 $J)
’ 81
(ATTEMPT (GOAL 8DEOUCE (AND (LT M 8.0
(LTO 8L 81)
{LTO 81 sMH))
THEN
[RETURN (BAG (STRIP (BAGA $A $L (SUBTRACT
8l 1)})
(ACCESS A 80
(STRIF (BAGA SA (PLUS 1 1)
i)
ELSE
(FAILI]

BAGEXCOMPLICATED handles the case in which it can be determined

one of the exchanged elements is within or outside the array seg-

but the location of the other array element is uncertain. The

result is then a conditional expression. For example, if J is known to

be outside the segment but I is only known to be greater thanor equal to

the lower 1limit L, the result is

(IF M <« I THEN (BAGA A L M) .
ELSE (BAG (STRIP (BAGA A L I~1))
Al3)
(STRIP (BAGA A I+1 M))))
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BALCXCONMPLICATED =

(LATELA
{BAGA (EFCHANGE A o1 =}
<L i)
(FRUG (BETTARE)
(COAL $PEQDUCE (LTO 81 5.3
[ATTENET (LGAL SDEDUCE (AND (LT 8L 81)
{(LTO 81 $.0))
THEH
(RETURM (IFTHEHELSE
(LT 81 §1)
(BAGA $A SL &)
{BAG (STRIF' (BAGA $A SL (SUBTRACT 81 1))}
{ACCESS A $)
{STRIP (BAGA 8A (FLUS 1 81
8M)
(ATTEMPT (GOAL $OEDUCE (AND (LTQ $J $M)
{LTO 8L 81 ))
THEN
[RETURN {IFTHEMELSE
(LTQ L 81)
{BAGA 8A SL $M)
{BAG (STRIF {(BAGA #A SL (SUBTRACT $J 1))
(ACCESS SA &N
(STRIP {BAGA $A (FLUS 1 8J)
8]
ELSE
{FAIL]

BAGEXCOMPLICATED comes after BAGEX and BAGEX1 in the goal class BAGARULES
because we prefer the definite answer they provide to the conditional ex-

pression returned by BAGEXCOMPLICATED.

All the rules in this section have been simplification rules. There
also are two inequalities rules that pertain to arrays, INEQSTRIPTRAN and

INEQSTRIPSTRIP,

L To prove that every element in an array segment is less than (or less
than or equal to) some quantity C, find an array segment that properly con-
tains the given segment such that every element in the larger segment is

less than some element D that is, in turn, less than or equal to C:
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twoe a

INEQSTRIPTRAN =
{LAMBDA (+F (E{HIP (BAGA ~ARNAME «L «M1}

(PROG (DECLARE LOWER UFPER 0)
(EXISTS (8F (STRIP (BAGA SARNAME «LOWER «UPPER)}
<01}
(GOAL SDEOUCE (AND (LTQ SLOWER sL)
{LTQ &M BUPPER}
(LTQ 40 8C]

To prove some ordering relation < or <, between all the elements of

rray segments, Sl and Sz, find relations of the same sense involving

Sl’and C, and involving'D and Szﬂ Then show that Sl’and Sz’contain S1

and 82 respectively, and that C is less than or equal to D.
INEQSTRIFSTRIP=
{LAMBOA (~F (STRIP (BAGA <A «] -1}
(STRIP (BAGA «A <K -L11)
{PROG (DECLARE LOWER1 WPPER1 LOWERZ UPPERZ C 0]
(ATTEMPT (EXISTS (8F (STRIP (BAGA 8A «~LDOWER1
+UPPER1))
+C)]
[EXISTS (8F «D
{STRIP (BAGA 8A «L_DWERZ
+~UPPERZ]
(GOAL SOEQUCE (AND {LTQ BSLDWERL 81)
{(LTQ 8J 8SUPPERL]
{LTO SLOWERZ 8K)
(LTO 8L SUPPERZ)
(LTQ 8C 80)))
ELSE
[FAIL]
7. Reasoning About Bags

rules

We have accumulated a number of rules about bags. Many of these

have set-theoretic counterparts, which could have been included,

but we have needed only bags in our proofs.

bags,

We use the QA4 function DIFFERENCE to mean the difference between

rn "

written informally as '~

(BAG x v}~ (BAG x) = (BAG v)
NIFFXX=[LAMBDA (DIFFERENCE (BAG «X «+«Y)

(BAG «~X1)
{BAG 88Y]}
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™ cons(X,y ~ z) = cons{x,y) ~ 2:

CGHEDIFFE (LANGOA=(CONS « ¥ (DIFFENENLE Y weZ))
¢ ABIFFERENCE ICOINS 38X 8Y)
1471

. (X ~ V) ~Z =X A"y ~2

GIFCIF=(LAIDDA (DIFFCERENCE {DIFFERENCE <X «+¥)
7}
(* (DIFFERENCE X #i8Y #8Z1

. eons(x,¥) ~ (BAG x) ~ U = X~ U

[IFFCONS=(LAMBDA (DIFFEREMCE (CUOMS X V)
(BALG «X)
e[}
{§TRY (TUPLE DIFFONE)
{' (DIFFEREMNCE 8Y 88U

] {(DIFFERENCE x) is taken to be x itself:

(IFFONE= [LAMROA (BIFFEREMNCE «X)
8x1)

™ (BAG (strip x)) = x:

BAGSTRIP=[LAMBOA (BAG (STRIP «X})
8X1)

8. Reasoning About Substitutions

The rules in this section were added to prove assertions about the

pattern matcher and the unification algorithm.

] An atom is either a variable or a constant;

—var(x) A -—const(x) o — Atom{x)
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HOTATOM= (LAMBDA  (MOT (ATOM =X})
{(FROG (DECLARE)

(EXTSTS MOT (VAR 8X)))

{EXISTS (HOT (CONST 8X)

. If an expression is made of constants, so is the car and the cdr of
the expression:

COMSTCART(LANEEA (CONSTEXP (CAR X))
{(EXTSTS (CONSTERP 8X)

EONSTCOR= (LAMBDA (CONSTEXP (COR «X))
{EXISTS (CONSTEXP #X]

NOTATOM, CONSTCAR, and CONSTCDR are DEDUCE rules.

) The empty substitution does not change the expression:

SLESTEMPTY={LANBOA (VARSUBST EMFIY «X)
$X1)

® No substitution changes an expression made up entirely of constants:
SUBSTCONST=(LAMBDA (VARSUBST «5 «Yi

{PROG (DECLARE)
(GOAL $OEDUCE {CONSTEXP 8Y))

8v1)

SUBSTEMPTY and SUBSTCONST are simplification rules.

e To prove
varsubst(s, car(x)) = car(y) .
prove
varsubst(s,x) = y
SUBSTCAR={LAMBOA (EQ (VARSUBST ~S51 [CAR «X))
(CAR «~Y})

(GOAL SEQRULES (EQ {VARSUBST $S1 8X)
8Y]

. Similarly, to prove
varsubst(s, cdr(x)) = cdr(y) )
prove

varsubst(s,x) = y
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SUHRATODR= fLANROA (EQ {YARSUBST «51 ICOR <X}}

(COR <Y}
{GOAL BEQNULES (EN (VARSUBST 851 8X)
8Y]
® To prove
varsubst(s, x) = y s

where x and y are nonatomig, prove
varsubst(s, car(x)) = car(y)

and

varsubst(s, cdr(x)) edr(y)

SUBSTCONS=(LAMBDA (EQ (iﬂRSUBST «31 «X)

(FROG (DECLARE]
(GOAL 8DEQUCE (NOT (ATOH $X)))
{GOAL SDEDUCE (NOT (ATOM 8$Y)))

(GOAL (= (BREMOVE EQSUBST FROM
SECRULES))
{EQ {VARSUBST 851 (CAR 8X})
(CAR Bv)))
(GOAL (= (SAREZNOVE EQSIIBST FROM

SECRULES) )
(EQ (VARSUBST 851 (COR 8X))
(COR &v]

- SUBSTCAR, SUBSTCDR and SUBSTCONS are equality rules. They are

clustered together in a goal class:
FOSUBISTRULES={TUFLE SUBSTCAK SURSTCDR SUBSTCARCDR SUBSTCONS) )

(] EQSUBSTRULES is called from EQSUBST, an EQRULE.

FrSURST= (LAMBOA (FAND <Y {EQ (VARSLIBST S «X)
Z1)
{GOAL SEQSURSTRULES 8Y])

Note. that SUBSTCONS removes EQSUBST from the EQRULES., This prevents

the system from looping by applying SUBSTCONS followed by SUBSTCAR.

® To prove
varsubst(s,u) = varsubst(s,v) .

where u and v are nonatomic, prove

varsubst(s, car(u)) = varsubst (s, car(v))
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and

varsubst(s,cdr(u)) = varsubst(s, cdr(v))

SUBSTCARCOR=(LAMBDA {EQ (VARSUBST S ~U)
{VARGUBST S ~V))
{PROG (DECLARE) ,
(GOAL SOCDUCE {NOT (ATOM 8U) 1)
(GOAL SDECICE (NOT (ATOM 8v)))
(GQAL H$EQRLILES
(EQ {VARSUBST 8S (CAR 8U})
{(YARSUBST 85 (CAR 8V] B
(COAL SEDRULES
(EQ (VARSUBST $S (COR 8U})
(VARSUBST 85 {(CDR 8Vl

Substitutions are represented as lists of dotted pairs.

e If v is a variable,

varsubst (({vey)), v) =y

SUBSTLIST=[LAMBOA (VARSUDST (LIST (CONS <V «Y))
Y}
(PROG {OECLARE)
(EXISTS (VAR $V))

BYl)
. The composition operator has the property:
varsubst{(compose(sl, s52), x) = varsubst(sl, varsubst(s2, x))

SURSTCOMPDSE =(LAMBDA {VARSUBST (COMPOSE 51 <52)
X
{S§TRY SSUBSTRULES
(* (VARSUBST $51 (VARSUBST 852 $X1
. These simplification rules are members of the goal class

SLESTRULES={TUPLE SUBSTENMRTY SUBSTLIST SUBSTCOMPOSE SUBSTCONST)
)

which is called by SUBSTOP, a member of TOPRULES:

SUBSTOP=[LANBDA (PAND (VARSUBST «+X)
~Y)
(GDAL SSUBSTRULES 8Y1)
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2. Utility Functions

] TRY is like a GOAL statement that will not fail if none of the goal

class apply but instead returns its argument.

PRY={LADRDA (TURLE ~GOALCLASS =LIIA 1)
(ATTEMPT (GOAL SGOALCLASS $GOALL)
ELGE $GOAL LYY

It evaluates (GOAL $GOALCLASS $GOALl), but, if failure results, it

returns GOALL.

L] TRYALL will try a goal class on an expression. If any member of the
goal class applies, it will apply the same goal class to the resulting
expression, and so on, until no rules applies. TRYALL returns the last
expression it has derived, which may be the same as the first expression.
TRYALL will not fail:

TRYALL ={LAIMBDA (TUPLE ~GOALCLASS1 «~GOALL)
{PROG (DECLARE)

TOP
(ATTEMFT (SETQ ~GCAL1 (GOAL 8GOALCLASSI
SGOALL})
THEN
(GO T0P})

(RETURM 8GOAL11
L TRYALLFATIL is like TRYALL, except it will fail if none of the goazal

class apply to the argument.

TRYALLFAIL={LAMBDA (TUPLE ~COALCLASSL «GOALL)
($TRYALL SGOALCLASS1 (GOAL 8GOALCLASSI
8G0ALL]
* TRYSUB applies a goal class to a specially designated subexpression

of the given expression:

TRYSUD =(LAMBDA (TUPLE ~GOALCLASS (N -SUB [N ~EXP)
(SUBST SEXP (TUFLE SSUB (STRYALL $GOALCLASS
85UB]

L) INSIST fails if its argument is FALSE.

INSTSTTLAMBDA <X {1F 8% ELSE {(FAIL]

. REMOVE removes a designated item from a tuple.

91



REMOVE= [LAMBOA {TUPLE <X FROM «Y)
{ (QUOTE [LANBOA (TUPLE «elU 8X <&V)
(TUPLE 58U #8V])
8y))

- ASK queries the user:

ASK=(LANMBDA <X (IF (LISP ASK 8X)
ELSE
{FAIL]

It types two expressions, the first a QA4 expression ($Y) and the
second an atom($X; e.g., PROVE? or SIMPLIFY?). If the user types YES,
TRUE, OK, Y, or T, say, ASK returns TRUE. Otherwise ASK fails. ASK

uses a LISP function of the same name.
. SHORTEST computes the ''smallest" element of a set, bag, or tuple:

SHORTEST =
[LAMBOA
<X
{FROG (DECLARE CEST BESTCOUNT TEMMCOUNT)
{SETO ~BESTCOUNT Zg6e)
[MAFC $X {QUOTE (LAMBDA
Y
(IF (OR (LT (SETO ~TEMPCOUNT
_ {LISP QA4COUNT 8Y1))
SBESTCQUNTY
(EQUAL (STYFE 8Y)
NUMBER})
THEN
{SETl «BEST 8Y)
{SETQ «BESTCOUNT S$TEMPCOUNT]
SBESTI)

The size of an expression is roughly the number of atoms in the
expression. It is computed by a LISP function, QA4COUNT. Numbers are

assumed to be "'smaller” than identifiers.

Table A-1 gives an index of functions and goal classes.
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Table A-1

INDEX OF FUNCTIONS AND GOAL CLASSES

NAME PAGE NAME PAGE
ACCEX 80 EQSUBST 89
ACCH 78 EQSUBSTRULES 89
ANDSPLIT 59 EQTIMESDIVIDE 69
ARGSIMP 67 EXPEXP 78
ASK 92 EXPZERO 78
BACH 82 FAILINTODOWNRULES 68
BAGAEMPTY 81 FIFTHENELSE 68
BAGAII 81 FSUBTRACT1 70
BAGALOWERPLUS 81 FSUBTRACT2 70
BAGAMINUS 81 GCDEQ 78
BAGAOP . 79 GTQLTQ 62
BAGAPLUS 79 HASSIMP 67
BAGARULES 79 INEQIFTHENELSE 64
BAGEX 83 INEQLEIB 63
BAGEX1 84 INEQSTRIPBAG 64
BAGEXCOMPLICATED 85 INEQSTRIPSTRIP 86
BAGSIMP 67 INEQSTRIPTRAN 86
BAGSTRIP 87 INEQTIMESD IVIDE 70
CANCEL 76 INEQUALITIES* 62
CONSDIFF 87 INSIST 91
CONSTCAR 88 LEIBB 61
CONSTCDR 88 LEIBF 61
DEDUCE* 65 LEIBS 61
DIFDIF 87 LEIBT 61
DIFFCONS 87 LTPLUS 69
DIFFONE 87 LTQMANY 62
DIFFXX 86 LTQPLUS 69
DOWNRULES* 67 MAXONE 80
EQINE QMONOTONE 70 MAXPLUS 79
EQNUMB 68 MINUSMINUS 77
EQRULES* 59 MINUSOP " 76
EQSIMP 61 MINUSPLUS 77

*
Goal class.
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Table A-1 (Concluded)

INDEX OF FUNCTIONS AND GOAL CLASSES

NAME PAGE  NAME PAGE
MINUSZERO 77 SUBSTRULES 90 )
NOTATOM 88 TIMESDIVIDEONE 76
ORSPLIT 60 TIMESEMPTY 75
ORSPLITMANY 60 TIMESEXP 76
PLUSCOMBINE 74 TIMESONE 75
PLUSDIFFERENCE 74 TIMESOP 74
PLUSEMPTY 73 TIMESPLUS 75
PLUSMINUS 73 TIMESRULES* 75
PLUSNUMBER 74 TIMESS INGLE 75
PLUSOP 72 TIMESTIMES 76
PLUSPLUS 73 TIMESZERO 75
PLUSRULES 72 TOPRULES* 66
PLUSSINGLE 73 TRY 91
PLUSZERO 73 TRYALL 91
PROOFLEIB 62 TRYALLFAIL 91
PROOFSIMP 63 TRYSUB 91
PROOFSWITCH 59 TUPS IMP 67
PROVE* 57

RELCHECK 60

REMOVE 92

SETSIMP 67

SHORTEST 92

SIMPONE 66

SQRULE 76

SUBNUM 77

SUBPLUS 77

SUBSTCAR 88

SUBSTCARCDR 90

SUBSTCDR 89

SUBSTCOMPOSE 90

SUBSTCONS 89

SUBSTCONST 88

SUBSTEMPTY 88

SUBSTLIST 90

SUBSTOP 90
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Appendix B

TRACES OF SOLUTIONS

1. The Maximum of an Array (1)

A complete trace of a proof performed by our system is presented he-
low. The verification condition to be proved is derived from the program
to compute the maximal element of an array. Although a proof is contained
above in the body of the text, following the trace tells us exactly what
rules were applied in the proof. Furthermore, we can see exactly what
false starts were made by the system and what user interaction was re-

gquired to keep the program on the right track.

This particular verification condition was derived from the loop path

of the program.., The hypotheses are

1 {CONTEXT (1 8} 1 8]

2 (ASSERT (EQ MAX (ACCESS A LOC)) WRT S8VERICON)

3 TRLE

& (ASSERT (LTQ (STRIP (BAGA A B [}) MAX) WRT SVERICON]
5 TRUE

& (ASSERT (LTQ 8 LOC) WRT $VERICON)

7 TRUE

& (ASSERT (LTO LOC [) WRT SVERICON)

9 TRUE

18 {ASSERT (LTQ 1 N} WRT SVERICON)

11 TRUE

12 {DENY (LT N (PLUS 1 I}) WRT SVERICON)

13 FLASE

14 (DERY (LT MAX (ACCESS A (PLUS 1 i}}) WRT SVERICON)
15 FLASE

The word "Flase' is a misspelling of "'False."

Since the hypotheses for the different verification conditions of a
program may contradict each other, each proof is done in a separate con-

text. The name of that context is VERICON. That is the meaning of the
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phrase "WRT $VERICON, " which follows our assertions and goal. (For this
proof VERICON is ((10) 10).,) Assertions made with respect to one VERICON

will not affect problems solved with respect to another.

16 (GOAL SPROVE ILTQ (STRIP (BAGA A 8 (FLUS 1 1))} MAX} WRT SVERICON)
17  LANMGDA PROOFSWITCH (LTQ (STRIP (BAGA A 8 (PLUS 1 11])) MAX)

When a traced function is applied to an argument, the trace says
LAMBDA (function name) (argument}

Some of the utility functions are not traced.

18 (GOAL SIMEQUALITIES (8F SX))

19 LAMBOA RELCHECK {LTO (STRIP (BAGA A & (PLUS 1 1)}) MAX)
28 LAMBDA PRUOFSIMP (LTQ (STRIP (BAGA A @ [PLUS 1 1))) MAX)
21 LAMBDA ARGSIMP (LTQ (STRIP (BAGA A @ (PLUS 1 1))1 MAX)
22 LAMBDA SIMPONE (TUPLE (STRIP (BAGA A 8 (PLUS 1 I1}) MAX)
(TUPLE (STRIP (BAGA A B (FLUS 1 11)) MAX)
SIfPLIFY?
i Y
The system asked us whether we wanted it to simplify
(TUPLE (STRIP (BAGA A O (PLUS 1 I))) MAX)
We said yes.
23 (GOAL. $TOPRULES 8GOAL1)
24 LAMBDA HASSIMP (TUPLE (STRIF (BAGA A @ (PLUS 1 [})) HMAX)
25 (FAIL)
26 LAMBDA EONUMB (TUPLE {STRIP (BAGA A & (PLUS 1 [})) MAX)
27 {FAIL)
28 {GOAL SDDWNRULES SGOAL1)
23 LAMBDA TUPSIHMP (TUPLE (STRIP (BAGA A O [PLUS 1 111} MAX)
38 LAMBDA SIMPONE (STRIP (BAGA A 8 (PLUS 1 11))
(STRIP (BAGA A 8 (PLUS 1 [)))
SIMPLIFY?
HA g
31 (GOAL $TOPRULES 8GOALL)
22 LAMBDA HASSIMP (STRIP {BAGA A & (PLUS 1 11})
33 {FAIL)
34 LAMBDA EQNUMB {STRIP {(BAGA A @ (PLUS 1 I}1)
35 (FAIL)
36 (GOAL 8DOWNRULES 8#GDALL)
3 - LAMBOA ARGSIMP (STRIP (BAGA A B (PLUS 1 1}1}})

LAMBDA S1MPONE (BAGA. A @ (PLUS 1 1))

(BAGA Ag (PLUS L I
SIMPLIFY?
1Y
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We have given the system permission to simplify (BAGA A 0 (PLUS 1 I)).

=3 (GOAL. 8TOPRLILES #COALD)

48 LAMBDA HASSIMP (BAGA A 8 (PLUS L [))

41 (FATL)

4z LAMBOA BAGAOF (BACA A @ (FLUS 1 1))

43 (GOAL 8GOALCLASS] SGLALL)

hé LAMBOA BAGAPLUS {BAGA A B (PLUS 1 1))
4% (GOAL SDEQUCE (LTQ 81 (FLUS 1 8J}})

The system tries to prove that 0 < (PLUS 1 I)).

4B LAMROA RELCHECK (LTQ 8 (PLUS | [))

Qé LAMBDA LTOFLUS (LTQ @ (PLUS 1 1)}

?; (GOAL SDEDUCE (AND (LTQ 81 $.) (LTQ @ 8K)} )
4 LAMBOA RELCHECK (AND (LTQ @ 1) (LTQ @ 1))

It breaks down the goal to 0 < I and 0 < 1.

=17 LAMBDA ANDSPLIT (AND (LTQ © 1) (LTQ 8 1))
&l {GOAL BGDALCLASS 8X)

£E2 LAMBDA RELCHECK (LTQ 8 1)

&3 RELCHECK = TRUE ,

When a function returns a value, the trace says
{function name) = (value)

In this case, the system knew that 0 < 1 by performing the corresponding

LISP evaluation.

Lb (GDAL 8GOALCLASS $Y)
kb LAMBDA RELCHECK {LTQ @ 1)
56 RELCHECK = TRUE

The 0 ¢« I follows from hypothesis 8 and 9.

57 ANDSPLIT = TRUE

=4 LTGPLUS = TRUE

ok BAGAPLUS = {BAG {ACCESS A (PLUS 1 1)) (STRIP
(BAGA A B 1))

The system has succeeded in simplifying

(BAGA A O (PLUS 1 1))

to

(BAG (ACCESS A (PLUS 1 I)) (STRIP (BAGA A 0 I)))
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608 {GOAL 8GOALCLASSL 8GRALL)

6l BAGAOP = (BAG [(ACCESS A (FLUS 1 I}) (STRIP (BAGA
AB 1))
62 SIMPONE = (BAG (ACCESS A (PLUS 1 I}} (STRIP (BAGA
AB DN

3 ARGSINP = (STRIF (BAG (ACCESS A (PLUS 1 1)) (STRIP
(BaGA A B 111
B {GOAL BGOALCLASS 8GOALLY}
6% LAMBDA HASSIMP (STRIFP (BAG ({ACCESS A (PLUS 1 1))
(STRIP (BAGA A B 1)]1})
AN {FAIL)
G7 LAMBDA EQNUMB (STRIP (BAG (ACCESS A {(PLUS 1 1)) (STRIP
{BAGA A @ 1]1))]
63 (FAIL)
63 SIMPONE = (STRIP (BAG (ACCESS A (PLUS 1 I)) (STRIP
(BAGA A B 11)))
’a TUPSIMP = (TUFLE (STRIP (BAG (ACCESS A {PLUS 1 [}} (STRIP
(BAGA A @ 1))1)) MAX)
71 {GOAL $GOALCLASS 8GOALL)
72 LAMBDA HASSIMP (TUPLE (STRIP (BAG (ACCESS A (PLUS 1 I
(STRIP (BAGA A. B [}}}} MAX)
73 {FAIL)
74 LAMBDA EQNUMB {TUPLE (STRIP (BAG (ACCESS A (PLUS 1 1))
(STRIP (BAGA A B 1)))) MAX}
75 (FAIL)
76 SIMRONE = (TUPLE (STRIP (BAG {ACCESS A (PLUS 1 1)) (STRIP
(BAGA A B 1)11)) HAX)
77 ARGSIIMP = (LTQ (STRIP (BAG (ACCESS A {PLUS 1 [)} (STRIP (BAGA

A @ [}11)) NAXD

The problem now is to prove

(STRIP (BAG (ACCESS A (PLUS 1 I)) (STRIP (BAGA A 0 I})))) < MAX

78 (GOAL 8GOALCLASS1 8X)

79 LAMBDA RELCHECK (LTQ (STRIP (BAG (ACCESS A (PLUS 1 1}) (STRIP
{BAGA A B 11)1}} MAX)

&a RELCHECK = TRUE

But since the system already knows

(ACCESS A (PLUS 1 I)) < MAX from (14),

and

(STRIP (BAGA A 0 I)) < MAX from (4) ,

the proof is complete:

81 PROOFSIMP = TRUE
82 (ASSERT {SF 8X}}
3 PROCFSWITCH = {LTQ (STRIP (BAGA A 8 (PLUS 1 1)) MAX)

24 (LTQ (STRIP (BAGA A B (PLUS 1 1))} MAX)
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The Maximum of an Array (2)

The following is the trace of the proof for another verification con-
dition for the program that computes the maximal element of an array.

This verification condition is derived from the halt path of the program.

I (COMTEMT (1 g) 1 @)
2 (ASSLRT (EQ NAX (ACCESS A LGC)) WRT SVERICON)

3 TRUE ‘

4 (ASSERT (LTQ (STRIP (BAGA A @ 1)) NMAX) LRT $VERICON)
5 TR

B (ASSERT (LTQ 8 LOC) WRT SYERICON)

7

8

g

TRULE
(ACSERT (LTQ LOC 1) WRT SYERICON)
TR
18 (ASTERT (LTQ 1 M) LRT $VERICON)
11 TRLE

2 (ASCERT (LT N (PLUS 1 [}) WRT S#VERICOM)

There is a demon that knows that in the integer domain,

X<y ox+l 2 ¥

This demon is responsible for the assertion

13 (ASEERT (LTO (PLUS 1 8X) #Y) LRT SVERICON)

The system now knows N+1 < I+l1. This assertion wakes up another demon:

14 (ASSERT (LTQ oY BZ) WRT SVERICGON)
15 TRUC

The system now knows that N £ I. Since I £ N has just been asserted (5),
the mechanism for storing ordering relations silently tells the system

that I = N.
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The system proceeds with the proof:

16 (nusl SPRCOVE (LTG (STRIF (BAGA A 0 M) (ACCESS A LOCY) WRT SYERICON)
17 LAHRDA FROOFSWITCH (LTO (STRIP (BAGA A B N))} {ACCESS A LOC))
1= {GOAL STHEQUAL TTIES (SF X))

14 LANKDA RELCHECK (LTO (STRIF (BAGA A @ N)) (ACCESS A LOC))

oA LANCDA PRODESTHP (LT (STRIP (BAGA A 8 N)) (ACCESS A LOC)}

21 PANRDA ARGHIME (LTQ (STRIF (BAGA A O NJ) (ACCESS A LOC))

e LAHEDA STHPOMNE (TUFLE (STRIF (BAGA A 8 N}) (ACCESS A LOC))

T?UPLE {STRIP (BAGA A 8 NPY (ACCESS A LBO))

SINFLIEY?

Il

I (FAlL?

A (FAlL}

_n LANGDA PROOEFLCIEB (LTQ (STRIP (BAGA A 8 N)) {ACCESS A LOCH)
o6 (EXIETS (6F «Y}}

The system searches the data base for an assertion of the form (LTQ ~Y),
i.e., the gross form of the goal we are trying to prove. It finds one
lassertion (2)7] and asks us if it should try to prove that the argument

of the assertion it has found is equal to the argument of the goal:

(F (THPLE (STRIFP (BAGA A O MJ) (ACCESS A LOC)) (TUPLE (STRIP {BAGA
AD 11 A}
FROVE?

We say yes, and the proof proceeds.

HNY

-7 {COAL $ECQRULES (EQ 8X 8Y))

e LAMRDA RELLCHECK {(EQ (TUPLE (STRIP (BAGA A 8 N})} (ACCESS A
LOC)Y (TUPLE (STRIF (BAGA A @ 1)} MAX})

- RELCHFCK = TRUE

28 eRUOriLID = TRUC
21 (ASSTRT (SF 8X))
S BRULFSWITCH = (LTO (STRIP (BAGA A @ N)) (ACCESS A LOC))

23 (LTQ (STRIP {BAGA A B N3} (ACCESS A LOC))

=

The two tuples were found to be equal because N = I (from 10 and 14),

and MAX = A[LOC]. The proof is complete.
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2.

The Wensley Division Algorithm

The following is the complete trace of the proof included in the body

of the text:

1L WOHTEAT (1 @) 1 &)

; {QEEFRT (0 a4 (TINES QQ YY)) LRT $VERICCM)

i E#ESERT {EQ (TINES 2 BB) (TIMES 0Q QD)) WRT SVERICON)

E [AﬁEERI (LT PF(PLUS (TINES NQ YY) (TIMES QQ CD))} WRT SVERICON}
é IE%EFHT (LTO (TINES OO YY} PP} WRT $VERICON)

fB {REEERT (LT PP (PLUS AA BB)) WRT $VERICON)

11 TR
12O LENY LT (DIVIOES 0Q 2) EE) WRT $VERICON)
12 TALGE

The goal is to prove PP < Q@*YY + QQ*(DD/2):

La (COAL $PRUVE (LT PP (PLUS (TIMES UQ vY) (TIMES QO (DIVIOES DD 210 h)
WRT #VERTCOM) . o
1% LAIRDA PRODESWITCH (LT PP (PLUS (TIMES QQ YY) (TIMES QQ (DIVIDES

pe 2y

16 (GOAL. $INEOUALITIES (8F 8X))

b7 LAMBRA RELCHECK (LT PP (PLUS (TIMES 0NQ YY) (TIMES QQ (DIVIDES
oo CHih)

iz LANBDA PROOFSIMP (LT PP (FLUS (TIMES Q2 YY) (TI#MES 0QQ (DIVIDES
op 1y

1 LAMBOA ARGSIMP (LT PP (PLUS (TIMES 0O YY)} (TIMES QQ (DIVIDES
0o T

N LAMBDA SIMFONE (TUPLE PP (PLUS (TIMES 0Q YY) (TIMES QQ
(UIvIDES DO 21

-1 LAMOBOCA ASK {TUPLE (TUPLE PP (FLUS. (TIMES QO YY)} (TIMES

O MNIVICES 1D 22y SINPLIFY?)

(TUFLE &P (PLUS (TIMES Q4 YY) (TIMES QO (QIVIDES OD 2311
SIOP iy ?

0

22 {(FAIL)

23 (FAIL)

=4 LANMBOA FRODFLEDIB (LT PP (PLUS (TIMES 0O YY) {(TIMES 0OQ (DIVIDES
0o 2

=5 (EXISTS ($F <Y))

ZG LANHRDA ASK (TUFLE (EQ (TUFLE PP (FLUS (TIMES QO YY) (TIMES

0 (NIVIDES DD 230y (TUPLE PP (PLUS (TIMES 0OQ YY) (TIMES Q4 DO)}))
FREOVIE?) )
(L0 (TURLE &P (PLUS (TIMES QQ vY) (TIMES QQ (DIVIDES 0D 2))1}} (TUPLE
PPOPLUS (TIMES 0QQ YY) (TIHES QQ DO11))

FROVF?

I
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After

o7 (FAIL)

NG LAaNEDA ASK (TUPLE (EQ (TUFLE PP (PLUS (TIMES QQ YY) (TIMES

OO0 (OIVIOES D 2111y (TUPLE PP (FLUS AA BRBY)) PROVE?)

(EQ (TURPLL PP (PLUS (TINES QQ YY) (TINES OQ (DIVIDES 0D 231131 (TUPLE
FE UL AA BB

FROVE?

s Hi1

= (FATL)

=0 LANCODA THEQLEIB (LT PP {PLUS (TIMES 20 Yy} (TIMES QQ (DIVIDES
e 2y n

=) (Fsl%1% {8L 1TUFLE <~LOWER =UFFER}))

o LABLDA ASK (TUPLE FPROVE (LTQ PP FP} AND (LTO (PLUS (TIMES

OF vy (TiNES 0g DoY)y WPLUS (TIBES 0Q yy)y (TIMES QO (DiVIDES 0D 2111))
7}

Frane

(Lin P FF)

AR

(LT LS (TINES QO vy} (TIMES 0O 0D)) (PLUS (TIMES QQ YY) (TIMES
no nviIiDeEs ooy

-

several false starts the system reaches using hypothesis (10), it

generates two subgoals: PP < PP and AA + BB < QQ*YY + QQ*(DD/2). We

give our approval of this tactic:

I
W (FAll)
24 LAMPDA ASK (TUPLE PROVE (LTQ FP FP) AND {LTQ (PLUS AA BB)

(F1LUS (TINES 19 v¥) (TIMES OQ (DIVIDES 0D 2)))) ?)

PRy

(LT PP PP .

AR

(LI (FLLS AA BB) (PLUS (TIMES QQ YY) (TIMES QO (DIVIDES 0D 211}
?

+YES

oL ASK = TRUE

[eope

It proves the first subgoal immediately.

36 {C0AL $IMEQUALITIES (AND (LTO 8X SLOWER) (LTQ SUPPER $Y}})
a7 LAME0A AMDSFLIT (AND (LTQ PP PP) (LTA (PLUS AA BB} (PLUS
(TIMES 0 ¥y) (TINES Q0 {(DIVIDES DD 2)))1})

) {GCALL BEOALCLASS 8X)

a4 LANBOA RELCHECK (LTQ FP FP)

48 RELCHECK = TRUC

41 {(GOALL SHOALLCLASS (AND 88vY1})

6z LAMBOA ANDSFLIT (AND (LTQ (PLUS AA 8B) {(PLUS (TIMES QQ
YY) (TINES Q {DIVIDES 0D 2)) 1))

43 (GOAL SGOALCLASS 8X)

G4 LANMBROA RELCHECK (LTQ (PLUS AA BB} (PLUS (TIMES QQ YY)
(TINES (0 (DIVIDES OO 21 ))

ah LANEDA TMEOSOMOTONE (LTQ (FLUS AA BB) {PLUS (TIMES qQ
b {TIMES AQ (DIVIDES 00 21)))

Al LAREDA ASK {TUFLE ((LTO AA (TIMES QQ (DIVIDES DD 2)})

(LT BB TS 0l Yyyl)y FROVE?)

COLTO A TTINHES 00 (DIVIDES DD 2))) (LTQ 8B (TIMES QO YY)))
A

s
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a7 {FAIL)

a4 LANMBDA INEOMONOGTONE (LTQ (FLUS AA BB) (PLUS (TIMES QQ

Yyl o (TINLG i (GIVIOES 110 7))

4t LAMEDA ASK (TUPLE ((LTQ AA (TN ]
O IVITES 10 71011 PROVE?) IMES QQ YY)) (LTQ BB (TIMES

CILTH AA (TIHES 1R yy)) (LT
RV 5 Q BB {TIMES OQ (DIVIDES 0D 21)))

It divides the second subgoal into two subsubgoals: AA £ QQ*YY and

BB <« QQ*(DD/2):

s YES

&0 ASK = TRUE

gl {GOAL SGDALCLASS (AND (8F (TUPLE Sl 8Y)) (8F (TUPLE &Xx
7]}1)

LAMBOA AMDSPLIT (AND (LTQ AA (TIMES QQ YY)} (LTO BB
(T[HE: Qa0 {DIVIOES DD 2 )

= {GOAL BGOALCLASS 8X)
54 LAMBOA RELCHECK (LTQ AA (TIMES QQ YY)
] RELCHECK = TRUE

The first subsubgoal follows from hypothesis (2).

L& {GOAL 8GOALCLASS (AND 88Y))

"? LAMBOA ANDSPLIT (AND (LTO BB (TIMES 0Q (DIYIDES 0D
SH '

L" {GOAL. SGOALCLASS 8X)

59 LANMGOA RELCHREZK (LTO BB (TIMES 0Q (DIYIDES DD 23 Y)

Fa LAMBDA THEQTINESDIVIOE (LT BB (TIMES QQ (DIYIDES

ML !

1 (GDAL $DEDUCE (LT 8 8y

26 LANBOA RELCHECK (LT © 2)

03 RELLIECK = TRUEL

[y {GOAL SINEQUALITIES (8F (TUPLE (TIMES 8y 8W) (TIMES

4 38210 ))

Lo LAMBOA RELCHECK (LTQ (TEMES 2 BB} {TIMES QQ 0D))

EE RELLCHRCK = TRUE

Checking that 2 > 0, the system multiplied out the second subgoal into

2%¥BB < QQ*DD. This follows from assertion (4). The proof is complete:

L7 IHEQTINESDIVIQE = TRUE
ca (GOAL SGOALCLASS (AND $8Y))
573 AMBSPLIT = (AND)

78 ANDSPLIT = (AHD)

71 IHEQMONDTONE = (AND)

T {(:0AL SGOALCLASS (AND 88Y))

75 ANDSPLIT = (ANO)

74 AMOSPLET = (AND)

75 INECH EIB = (AND)

G (ASTERT (SF $X1)

77 (RETIRM {8F $X1)

75 PROUFSMHITCH = (LT PP (PLUS (TIMES QQ vy) (TIMES QQ (DIVIDES DO
RRE

749 (LT P (FLUS (TIMES QQ YY) (TIMES OQ (DIVIDES DC 2))))
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3. The Pattern Matcher

As an abbreviation, let

ml = match(car(pat), car(arg))
and
m2 = match(yarsubst(ml, cdr(pat}), cdr(arg))
The hypotheses are that
varsubst(ml, car{pat)) = car(arg) :
or in unabbreviated form,

1 (ASSERT (EQ {VARSUBST (MATCH (CAR FAT} (AR ARG!) (CAR PAT)}) (CAR

ARG
2 TRUC

and that

varsubst(m2, varsubst(ml, cdr(pat))) = cdr(arg)

3 (ASSERT (EQ (VARSUBST (MATCH (VARSUBST (MATCH (CAR PAT) (CAR ARG))
{COR FAT)) (COR ARG) Y (VARSURST (MATCH (CAR PATH (CAR ARG!) (COR PAT))}

(COR ARGHT)
4  TRUE

The other hypotheses are

& (ASTERT (CONSTEXP ARGH)

& TRUE

7 [ARZERT (NOT {CONST FATI)
& TRUC

o9 (ASSERT (NMOT (ATOM ARG)))
18 TRLUE

11 (ASSERT (NOT (VAR PAT)})
JZ TRUE

The goal is to prove
varsubst(compose(m2, ml), pat) = arg

12 (GDAL SFROVE (EQ (VARSUBST (COMFOSE (HMATCH (VARSUBST (MATCH iCAR
FAT} (CAR ANCHY (CRR FAT)) (CDR &RGYY {ITATCH (CAR PAT) (CAR ARG)))

FAT) ARGY)
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The proof begins:

14 LAMCDA PROCFSUITCH (EQ (VARSUGBST. {(COPFT.E (MATCH (VARSUBST (MATCH
{CAR PATY {CAR ARG)Y (CDR FATY) (COR ARG)Y {MATCH (CAR PAT) (CAR ARG)))

Fal) ARG
15 {GOAL FEORULES (8F $X))
16 LANEOA RELCHECK (EQ (VARSUBST {CONMFOZE (MATCH (VARSUBST (MATCH

éEAH FAT) (CAR ARG)) (CDOR PAT)) (CDR ARG)) (MATCH {(CAR PAT) (CAR ARG)))
'AT) ARG

17 LANROIA EOSUBST (EQ (VARSUBST (COMPOSE (MATCH (VARSUBST (MATCH
{CAR PAT) (CAR ARG)) (COR FAT)} (CDR ARG)) (MATCH (CAR PATY (CAR ARGC}))
FAT} ARG) '

1a (GOAL SEQSUBSTRULES 8Y)

13 LANGEDA SUBSTCONS (EQ (VARSUBST (COMPOSE (MATCH (VARSURST
(MATCH (CAR FAT) (CAR ARG)) (COR PAT)}) (CDR ARGH) (MATCH {CAR PAT)

{CAR ARG} YY) FAT) ARG)

=B (COAL SDEDUCE (NOT (ATOM $X)))

-1 LANROA RELOHECK (NOT (ATOM PAT))

v LAMGOA MOTATON (NOT (ATOM PAT))

23 (EXISTS (NOT (VAR $X)))

24 (EXISTS (NOT {CONST 8$X11})

=5 MNOTATOM = {NQOT (CONST PATH)

2 (COAL SDEDUCE (MOT (ATOM 8Y)))

o7 (GOAL (= [SRENOVE (TUPLE EQSUBST FROM SEORULES)H)) (EQ (VARSUBST

#31 (CAR $X}) (CAR $Y)}))

Reasoning that pat is not an atom since it is neither a variable nor a

constant, the system breaks the goal intc tweo subgoals:
varsubst (compose(m2, ml), car(pat)) = car(arg)
and
varsubst (compeose(m2, ml), ecdr(pat)) = cdr(arg)
It begins work on the first of these:

w8 [ AMEOA RELCHECK (EQ (CAR ARG) (VARSUBST (COMPOSE (MATCH
(VARSURST (1A1CH (CAR PAT) (CAR ARG)) (COR FAT)) (CDR ARG)) (MATCH
(CAR PAT) (CAR ARG))) (CAR PAT)))
e LANROA EQSIIP {EQ (CAR ARG) (VARSUBST (COMPOSE (MATCH (
VARSLT (MATCH (CAR PAT) (CAR ARG)) (COR PAT): {CDR ARG)) (MATCH
(CAR FPAT) [(CAR ARG))) (CAR PAT)))

o] LANBDA SIMPONE (VARSUBST (COHPOSE (MATCH (YARSUBST (MATCH
{CAR PAT) (CAR ARG)) {(CDR PAT)) (CDR ARG} (RATCH (CAR PAT} (CAR ARG)))
(CAR FAT))

(VARSUBST (COMFOSE (MATCH (VARSUBST (MATCH (CAR PAT) (CAR ARG)) (COR
PAT)) (COR ARG)) {MATCRH (CAR PAT) {CAR ARGJ})} (CAR PAT))
SIMFLIFY?

We give the system our permission to simplify the left side of the first
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subgoal,

varsubst (compose(m2, ml), car(pat))

31 {GOAL STOPRULES SGOALL)

a2 LANBOA HASSTHP (VARSUBST (CONFOSE (MATCH (VARSUBST
(MATCH {EAR FAT) [(CAR ARG} (COR PAT}) {CDOR ARG)) {MATCH (CAR PAT)
(CAR AHG1)) (CAR PAT))

33 (FAIL)

24 LAMBOA SUBSTOP (VYARSUBST (COMPOSE (MATCH (VARSUBST
{(MATCH (CAR PAT) (CAR ARG}) (COR PATY) {COR ARG)} (MATCH (CAR PAT}
{CAR ARG))) (CAR PAT))

a {GOAL 8SUBSTRULES 8Y)

ik LANMBDA SUBSTCOMFOSE (VARSUBST (COMPOSE (MATCH (VARSUBST
IMATCH (CAR PAT) (CAR ARG)})} (COR PAT)) (CDR ARG)) ({MATCH {CAR PAT)
{CAR ARG)) ) (CAR PATYH)

37 (GOAL SGOALCLASS 8GOALLY

33 LAMBOA SUBSTCONST (VARSUBST (MATCH (VARSUBST (MATCH
{CAR FAT) (CAR ARG}} (CDR PAT)Y (COR ARG)) (VARSUBST (MATCH {CAR PAT)
{CAH ARG)) {CAR PAT)))

A (GOAL SOEDUCE (COMSTEXF $Y))

40 LANMBDA RELCHECK (CONSTEXP {VARSUBST {MATCH (CAR
FATY {CAR ARG) ) (CAR PATY))

41 SUBSTCOMPOSE = (YARSUBST (MATCH (VARSUBST (MATCH

{CAR [FAT) (LAR ARG)) (COR PAT)) (COR ARG)) - [VARSUBST (MATCH [CAR PAT)
(CAR ARGYY {CAR PATHE)

47 SURSTOR = (VARSUBST (MATCH (VARSUBST (MATCH (CAR PAT)
(CAR ARG)) (COR PAT)) (COR ARG)H) (VARSUBST (MATCH (CAR PAT} (CAR ARG))
(CAR PATI))

) {(RETURN 8SIMPGOAL}

%4 SITPCONE = (VARSUBST (MATCH (VARSUBST ({MATCH (CAR PAT)
{CAR ARG}) (CDR PAT)}) (COR ARG)) (VARSUBST (MATCH (CAR PAT) (CAR ARG))
{[LAR FAT)))

The system has succeeded in simplifying the left half of the goal into
varsubst(m2, varsubst(ml, car(pat)))

It now tries to prove this new expression equal to car(arg):

454, {GUAL. BEAORULES (EQ $X $Y))

dis LAIMBDA RELCHECK f(EQ (CAR ARG) (VARSUBST (MATCH (VARSUBST
(MATCH (CAR [FAT) (CAR.ARG)) (COR PAT)) (CDR ARG)) (VARSUBST (MATCH
(CAR PAT) (CAR ARG)) {CAR FATI)})

47 LAMEDA EOSIBST (EQ (CAR ARG) (VARSLUBST (MATCH (VARSUBST
{(IMATCH (CAR FAT) (CAR ARG}} (COR PAT}) (CDR ARG} (VARSUBST [(MATCH
{(CAR ['aT) (CAR ARG)) (CAR FATI))) : .

484 (GOAL SEGENBSTRULES 8Y)

43 LAMBDA SUBSTCOMS (EQ (CAR ARG) (VARSUBST (MATCH (VARSUBST
(MATCH (CAR PAT) (CAR ARG (COR PATY) (CDOR ARG} (VARSUBST (MATCH
{ICAR PATY (AR ARGY) {CAR PAT))H)

Le {GOAL SDECUCE (NDT (ATOM $)X1))
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5l LAIERDA RKELLMECK (MOT (ATCIY (VARSLIDST (MATCH (CAR
FAT) (CAR ARGY)Y (CAR FATIN))

o2 LANCOA NOTATOI (NOT {ATON (VARSUDBST (MATCH (CAR PAT)
(CAR ARG)) {CAR FAT)Y)))

L3 (EXISTE (IOT (VAR #X1))

G4 LANMRGOA EQGINMP {EO0 (CAR ARG) (VARSUBST {MATCH (VARSUBST
(IATCH (CAR FAT] (CAR ARGYY {CDR FATH) (LOR ARG)Y) (VARSUBST (MATCH
(CAR PATY (CAR ARGYY (CAR FATIIH)

L& LANBDA SIHPOHE (VARSUBST (FIATCH (VARSUBST {MATCH (CAR
FAT) (CAR ARG)Y (COR FAT)) {COR ARGI} (VARSIEST {HATCH (CAR PAT) (CAR
ARGIY (CAR FAT)))

{VARSUGAT (MATCH (VARSUBST (MATCH (CAH PAT) {CAR ARG} (CDR PAT))
{(COR ARG)) (VARSUBST (MATCH (CAR PAT) {CAK ARG)) (CAR PAT})!}
SINPLTEY?

The system asks permission to simplify
varsubst(ml, varsubst(m2, car{pat)))

further. Permission is granted:

rY
Le {GDAL STOPRULLES SGOALL}
Y7 LAMBOA HASSIMP (VARSUBST (MATCH (VARSUBST (MATCH

(CAR PAT) (CAH AHGY) (COR PATH) (COR ARG}) (VARSUBST (MATCH {(CAR PAT)
(CARY ARGY)Y (CAR PAT)))

va (FATL)

LN LANEOA SURSTOR (VARSUBST (HMATCH (YARSUBST (MATCH

{LAR PAT) (CAR ARGY} (CDR FAT)) {COR ARG} (VARSUBST (MATCH (CAR PAT)
(CAR ARG) ) (CAR PAT) ) :

) {GDAL. 8SLBSTRULES $Y) .

Gl " LAMBOA SUBSTCONST (VARSURST (MATCH (VARSUBST (MATCH
(CAR FPAT) (CAR ARG)) (COR FATH} {(COR ARG}) ({VARSUBST I(MATCH (CAR PAT)
(CAR ARG)) {CAR PAT}))

B2 (GOAL SOEOUCE {CONSTEXF $Y})

63 LAMBOA RELCHECK (CONSTEXP (VARSUBST (MATCH (CAR
FAT) (CAR ARG))  (CAR PATY))

G4 LAIROA EQNUMB (VARSLIBST (MATCH (VARSUBST (MATCH (CAR

FAT) (CAR ARG)) (COH PATY) (COR ARG)) (VARSUBST {MATCH {CAR PAT) (CAR
ARGYY {CAR PATY))

&5 (FATLI '
2 (GOAL SDOWMRULES SGOALL)
&7 LANBOA ARGSIMP (VARSUBST (MATCH (VARSUBST (MATCH

(CAR PAT) (CAR ARG)) (COR PAT)) (COR ARG)) (VARSUBST (MATCH (CAR PAT}
{CAR ARG)) (CAR PAT)))

k& LAMBDA SIMPONE (TUPLE (MATCH (VARSUBST (MATCH (CAR
PAT} {CAR ARG)} (CDR PAT)) (COR ARG))} (VARSUBST (MATCH (CAR PAT) (CAR
ARGYY (CAR PAT)Y)

(TUPLE (MATCH (VARSUBST (MATCH (CAR PAT) (CAR ARG}} (COR PAT)) (CDR
ARG)) (VARSUBST (MATCH (CAR PAT} {(CAR ARG)) (CAR PAT)))

SIMPLIFY?

Y

G9 {GOAL STOFRULES SGDALL}

78 LAMBDA HASSIMP (TUFLE {MATCH (VARSUBST (MATCH

(CAR PAT} (CAR ARG)) {COR PAT}) (CDR ARG)) (VARSUBST (MATCH (CAR PAT)
{CAR ARG)) {CAR PAT)})
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71 (FAIL)

72 LAMBDA EQMUMB (TUFLE (MATCH {(VARSUBST (MATCH
(CAR PAT) {(CAR ARG)) (CDR PATH) (CDR ARG}! (VARSUBST (MATCH (CAR PAT)
{CAR ARG)) (CAR FATI))

73 {FAIL)
74 (GOAL SDOLINRLILES SC0aLD)
75 LAMBOA TUPSIHIF (TUFLE (MATCH (VARSUBST (MATCH

(CAF TATY (CAR ARG)) (COR FAT)) (COR ARG)) (VARSUABST (MATCH (CAR PAT}
{(CAR ARGYY (CAR PATI))

76 LAMBOA SIHMPDNE (MATCH (VARSUBST (MATCH (CAR
FAT) (CAR ARG)) (CDR PAT)} (COR ARG))

{(HIATCH (VARSUBST (MATCH (CAR FAT) (CAR ARG)) (COR PAT}} (COR ARG)}
SHIPLIFY?

:N

27 {FAIL)

73 LAMBDA TUPSIHP (TUFLE (MATCH {VARSUBST (MATCH
{CAR FAT) {CAR ARG)) (COR FAT)) (CDR ARG)) (VARSUBST (MATCH (CAR PAT)

(CAR ARG)) (CAR FAT)))

73 LAMBOA SIMFONE (VARSUBST (MATCH (CAR PAT} (CAR
ARG) ) (CAR FPAT}H)

{YARSLUBST {MATCH (CAR FPAT} (CAR ARG)} (CAR PAT))

SIMPLIFY?

The system wants to simplify varsubst(ml, car(pat)), a subexpression of

our goal. We give our blessings:

tY

&g (GOAL 8$TGPRULES $GDALL)

Al LAMBOA HASSINP . (VARSUBST {MATCH (CAR PAT}
(CAH ARG}) (CAR PAT)) '

R ' {FATL)

&3 LAMBOA SUBSTOR (VARSUBST (MATCH (CAR PAT]
(CAR ARG)) {CAR FAT))

&4 ‘ (GDAL SSUBSTRULES 8Y)

&5 LAMBDA SUBSTCONST (VARSUBST (MATCH {CAR
FAT) (CAR ARG)) (CAR PAT)}

a6 (GOAL SOEDUCE (CONSTEXF 8Y))

7 LAMBOA RELUHECK ({(CONSTEXF (CAR PAT))
A LAMBDA COMSTCAR (CONSTEXP (CAR PAT})
&l : ) {EX1STS (CONSTEXP #X3)

Y| LAMBDA EQNUNMB (VARSUBST (MATCH (CAR PAT)
(CAR ARGI) (CAR PAT))

ol (RETURN SBESTI

0z EGNUMB = {CAE ARG)

a3 (RETURN S$STMFGOAL)

34 SIMPONE = (CAR ARG)

The subexpression varsubst(ml, car(pat)) is known to be equal to car(arg)
by hypothesis (1). The rule EQNUMB has found this simplification., Work

continues on simplifying the entire left—~hand side.
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%

TUPSTHP = (TUPLE (MATCH (VARSLIDGT (MATCH (CAR

bﬁL} (UAR ARGYY (CDR FATY) (LDR ARGHY (CAR ARG) L

i
v
(AR [HAT)
S
e10y
(AR PATH

(GOAL BLOALCLALS BGUALLY
LATEOA HASSIHE (TURLE NATCH (VARSUBST (MATCH

{CAR ALGTY (CUR PATY) (CDR ARG) ) (DAR ARGH)

(FAIL)
LAMEDA FONUME (TURLE (HATEH {VARSUBST (MATCH

{CAR ARC)) (COR FATY) {CDR ARG)) (CAR ARG))

1om : (FAILY}

Im (RETIHRN SE{MPLOAL)

1l SINFONE = {TUPLE (MATCH (VARSLIBST (MATCH (CAR PAT)
{(CAR ARGY) (CDR PATYY (CDR ARG)Y {CAR ARGY)

1832 ARG5S = (VARGUHST {MATCH (VARSLBST (MATCH (CAR

FATY (CAR ARG)) (CDR PAT)) (COR ARG)) (CAR ARG)) .

The expression being simplified is now varsubst(m2, car(arg)):

104 (GDAL, BGOALCLASS $GDALL)

105 LAUBRA HADSIMP (VARSUBST {MATCH (VARSUBST (MATCH
{CAR PAT) (CAR ARG)} (CDR PAT)) (CDR ARG}) (CAR ARG))

1o (FAIL)

197 LAMBDA SUESTOP (VARSUBST (MATCH (VARSUBST (MATCH
{LAR PAT) (CAR ARCG)}) (COR FAT}) (CDR ARG)) tCAR ARG))

[ {GOAL 8SUBSTRULES 8Y)

1l LAMEDA SUBSTCONST (VARSUBST (MATCH (VARSUBST (MATCH
(CAR PAT) (CAR ARG)) (COR f'AT)) (COR ARG)) {CAR ARG)}

Ha (GOAL SOE(LCE (CONSTEXF §Y))

1l LATIEDA RELCHECK (CONSTEXP (CAR ARG))

e ) LAMBCA CONSTCAR (COMSTEXP (CAR ARG))

113 (EXIST1S {CONSTERR §X))

lla COMSTCAR = (CONSTEXP ARG)

LG SUBSTCOMST = (CAR ARG)

116 SUBSTOR = (CAR ARG)

1i7 (RETLIRM $SIMPGDAL)

11a SIFONE = (CAR ARG}

Since arg consists entirely of constants, so does car(arg). There-
fore, substitutions have no effect on car(arg), and the left-hand side
of our subgoal reduces to car(arg) itself, which is precisely the same

as the right-hand side.

l£3 (GOAL SEQRULES (EQ $X $Y))

lfD LAMEDA BELCHECK (EQ (CAR ARG))
lﬁl RELCHECK = TRLUE

ljh EQDHIP = TRUE

133 EQUSItP = TRUE

We have yet to prove the second subgoal:

varsubst (compose(m2, ml), cdr(pat)) = cdr(arg)
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124 (LDAL (= {($RENOVE (TUPLE EQSUBST FROM 8SECORULESY)) (EQ {VARSUBST
$31 (COR #X)) (COR %Y)))

125 LANMRDA FELCHECK (EQ (COR ARG) (VARSUBST (CDHPOSE (MATCH
{(YARSUBST {MATCH (CAR FAT) (CAR ARG))} (CDR FAT)) (CDR ARG)) {(MATCH
{CAR PAT) (CAR ARGYY) (CDR PAT}))

126 LAMRDA EQSINMP (EQ (COR ARG) (VARSUBST (CDMFOSE (MATCH (
VARSIBST (MATCH (CAR PAT) (CAR ARG)) (COR PAT}) (COR ARG)) {MATCH

{CAR PAT) (CAR ARG1)Y) {(COR PAT)))

27 LAMBDA SIMPONE (VARSUBST (COMPOSE (MATCH (VARSUBST ({(MATCH
(CAR AT} (CAR ARG)) (CDR PATH] (CODR ARG)) (MATCH (CAR PATI (CAR ARGJ)))
(COR FPAT)) '

(VARSUBST (COMPOSE (MATCH (VARSUBST (MATCH (CAR PAT)} (CAR ARG)) (CDR
PAT)} (COR ARG)) (MATCH (CAR PATY {CAR ARGI1} (COR PAT))

SINPLIFY?

HA)

128 {GDAL %TOFRLILES 4GDALL)

127 LAMBDA HASSIMP (VARSUHST {(COMPOSE {(MATCH (VARSUBST

(HIATCH {(CAR PAT) {CAR ARG}} (COR PAT)) (COR ARG}) {MATCH (CAR PAT)
{CAR ARGJ}) I(CDR PAT)H)

120 (FAIL}

121 LAMEBDA SUBSTOP (VARSUBST (COMPDSE (MATCH (VARSUBST
(MATCH (CAR PAT) (CAR ARG}} (COR PAT)) (COR ARG} (MATCH (CAR PAT)
(CAR ARG))) (CDR FAT))

132 {GDAL 8SUBSTRULES $Y)

123 LAMBDA SUBSTCOMPOSE (VARSUBST (COMPOSE (MATCH (VYARSUBST
{IIATCH (CAR FAT) (CAR ARG)) (COR PAT)) (CDR ARG)) (MATCH (CAR PAT)
(AR ARG) ) (CDR PAT))

124 (GOAL SCOALCLASS SGOALLY

135 LANMBDA SUBSTCONST (VARSUBST (MATCH (YARSUBST (MATCH
{UAR FAT) (LAK ARG)) (COR FAT)) (COR ARGJ)) (VARSUHST (MATCH (CAR PAT)
{CARV ARG)Y) (COR PATI))

126 (GDAL SDEDUCE (CONSTEXF 8Y))

157 LAMBDA RELCHECK (CONSTEXP (VARSUBST (MATCH (CAR
rATY {CAR ARG} (COR FAT}H])

138 SUBSTCONMPOSE = {VARSUBST (MATCH (VARSUBST (MATCH

{CAR PAT) (CAR ARG))} (CDR PAT)} (CDR ARG)) (VARSUBST (MATCH (CAR PAT)
(CAR ARGY)Y (CER FATH))

L.20 SUBSTOP = {(VARSURST (MATCH (VARSUBST {MATCH (CAR PAT)
(CAR ARG)) (CDR PAT)) (CDR ARGH} (VARSUBST (MATCH {CAR PAT} (CAR ARG))
{COR PATIY)

lag (RETURN 8SIHPLDAL)

141 SIMFCHE = {VARSUGST (MATCH (VARSUBST (MATCH (CAR PAT)
{CAR ARG)) (COR PATYY (COR ARG)) (VARSUBST (MATCH (CAR PAT) (CAR ARG))
(IZOR PAT) })

The subgoal has been simplified to

varsubst(m2, varsubst(ml, cdr(pat))) = cdr(arg)
However, this is precisely our hypothesis (3).

142 (GUAL $EQRULES (EQ $X 8Y1)

143 ENSIMP = (EQ (VARSUBST (MATCH (VARSUBST (MATCH (CAR PAT)
{CAFL ARGY) (COR PATY) (CDR ARG)) (VARSURST (MHATCH (CAR PAT) (CAR ARG))
(roR PATINY (COR ARGH)
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oy ST - (ED (VARSUBST IHATCH 1VARSUBST (MATCH (CAR FAT)
(DAFD ATIR) 0 CC0iEs BATYY (CDR ARG) ) (VARZUERGT (NATCH {CAR FAT) {CAR ARG))
QLR CAT) v DR ALED
1ab Frichip=i 0 (B IYARSDBST (MATCH IVARSIIST (HATCH (CAR PAT) (CAR
ALY GG AT TC08 ARGYY (VARZUGGT {HATCH (CAR PAT) (CAR ARG}
(0L EATYVE (TR ARTY)
Tarc ==k Gl 50
147  (GTTORH (8F S50
lam  FREUFSUTTOH =~ (B {YARSUBST (COMFOSE (FATCH (VARSUBST (MATCH
{CAR FATY (CAR ARGY) (CDR FAT)) (CDR ARG)) (HMATCH (CAR PAT} {(CAR ARG)))
MATY ANGY
14t

(CO (YARSUDGST (COMPOSE (MATCH (VARSUBST (MATCH (CAR PAT) (CAR ARG))
(TR FAT))Y (COR ARGY)Y (MATCH (CAR PAT) (CAR ARG))) PAT) ARG)

The proof is complete.

4, FIND

Only a selection from the trace for the interesting verification
condition of FIND is presented here because of the length of the entire

trace. We will focus on the use of the case analysis during the proof.
The antecedent hypotheses for this condition are

1 <M< F ¢ NN
McI
Jd N
(STRIP (BAGA A I M-1)) < (STRIP (BAGA A M NN))
(STRIP (BAGA A 1 N)) < (STRIP (BAGA A N+1 KN))
(STRIP (BAGA A 1 I-1})) <R
R < (STRIP (BAGA A 1+J NN})
A[J) <R ‘
R < A[I]
I <J
J-1 < I+1

F < J-1

The theorem to be proved is
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{STRIP (BAGA (EXCHANGE A I J) 1 J=1))

< (STRIP (BAGA (EXCHANGE A I J) (J-1)+1 NN)
This goal is simplified to

(IF J=1 « I THEN (STRIP (BAGA A 1 J-1))

ELSE (STRIP (BAG (STRIP (BAGA A 1 I-1))
A[J] ‘
{STRIP (BAGA A I+1 J-1)))))

< (IF J < I THEN (BAGA A J NN)
ELSE (STRIP (BAG A[I]
(STRIP (BAGA A J+1 NN))

(STRIP (BAGA A J J=1)))))

L fEnal $1HEMIALTTIES (LT (IFTHEMEL=E (LT (SUBTRACT J 1) [} (STRIP
(BALA A1 (SURTRACT J 1Y)} (STRIP (BAG (STRIP (BAGA A 1 (SUBTRACT

1 11y (ACEESS A ) (STRIP (BAGA A (FLUS | 1) (SUBTRACT J 11)31))
CIRTHER LSE (LT 4 1) (STRIF (BAGA A .J NNJ) {STRIP (BAG (ACCESS A

[V ASTRIT BAGA A PLUS 1 JY WNYY (STREF (BAGA A J {SUBTRACT J L1111 h))

i, |LAMEDA FELCHECK (LTG (IFTHEMELSE (LT {SUBTRACT J 1) 1} (STRIP

{(Batn A L ISUBTRACT J 1))) (STRIP (BAG (STRiP (BAGA A 1 (SUBTRACT

I 1)) (ACCESS A J) (STRIP (BAGA A (PLUS 1 1) (SUBTRACT J 111))))

(TETHEM LSF (LTO 0 T) (STRIP (BAGA A J NM)) (STRIP (BAG (ACCESS A

IV (SIRIR (DAGA A (PLUS 1 J) HN}) (STRIP {BAGA A J {(SUBTRACT J 1)111)))

LAREDA THEQIFTHENELSE (LTQ (IFTHENELSZE (LT (SUBTRACT J 1} 1)

SIRTE (BAGA A L (SUBTRACT J 1) 1) (STRIF (BAG {STRiP (BAGA A 1 (SUBTRACT
LYB) (ACCESS A JY (STRIP (BAGA A (PLUS L 13 {SUBTRACT J 11)))))
FIHERNL=F (.70 0 1) (STRIP (BAGA A .J MN)) ISTRIF (BAG (ACCESS A

(SR (BAGA A (PLUS 1 ) NN)T (STRIP {BAGA A J (SUBTRACT J 12111

(ASSERT X LRT $VERICON)

{
|
Ll
I}
4

Since the left gside of the goal has an IF-THEN-ELSE form, it causes
the rule INEQIFTHENELSE to be applied. This rule sets VERICON to be =a

new lower context and asserts
J-1 < I
with respect to the new VERICON. This question triggers off a demon:

5 (AGSERT (LTO (PLUS 1 8X) 8Y) UWRT SVERTCUN)
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The new assertion is

(J-1)+1 < 1

The new assertion triggers off another demon, which makes still another

assertion with respect to VERICON:
C (ADOLDT LT0 SHOBYY WRT SVERICOHD

This new assertion is

J <1 .

(Later in the proof, another context will be established; J-1 < I will be

denied with respect to the new context.)

The THEN clause of the I?—THEN—ELSE expression must now be proved

less than or equal to the right side of the goal:
7 (nonl, $IMEOUALTTIES (SF (TUFLE $8UL &Y S$84Z)) WRT SVERICOM)

This goal is attempted with respect to the new context VERICON, In other

words, we are trying to prove

(STRIP (BAGA A 1 J-1))
< (IF J < I THEN (STRIP (BAGA A J NN))
ELSE (STRIP (BAG A[I]
(STRIP (BAGA A J+1 NN))

(STRIP (BAGA A J J=1)))))

with respect to the context in which J < I has been asserted:

2 { AI0A FELLMECK {LTQ (STRIF (BAGA A 1 (SUBTRACT J 1)1}
IFTHCL T (LT J 1) (STRIP (BAGA A J NMI) (STRIP (BAG (ACCESS A 1)
(STRTE (A A GFLLG 1 ) M) (STRIP (BAGA A J (SUBTRACT J 1)1))1))
9 LANGDA [HEQIFTHENELSE (LTO (STRIF (BAGA A 1 (SUBTRACT J 1}1)

}IFTHEHFLSF (LT J 1Y (STRIP {BAGA A J MMM} (STRIP (BAG {ACCESS A
1} (STHIE (EALA A (FLUS L . NN}) (STRIF (BAGA A J (SUBTRACT J 11))1}1}))

Since the right side of the inequality is still in IF-THEN-ELSE form, the

rule INEQIFTHENELSE applies again. A new context VERICON, even lower

than the last, is established, and the {redundant) statement
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Jd <1

is asserted with respect to the new context:
10 (ALLERT $ LIRT SVERICOND
A new goal is established with respect to the new context.

1l (LAl STUECQHALTTIES (8F (TUFLE 88UL 8Y $BU2)) WRT $VERICON)

The new goal is

{(STRIP (BAGA A 1 J-1)) ¢ (STRIP (BAGA A J NN))

1z Laii:0A FELCHECK (LTQ {(STRIiP {BAGA A 1 {SUBTRACT J 111) (STRIP

(GAGA A L H )

I3 LAPLA PROOGFSINP {LTQ (STRIP [BAGA A 1 (SUBTRACT J 111} (STRIP
{BALA A D))

14 LANMBDA ARGSTHRP (LTQ (STRIFP (BAGA A 1 (SUBTRACT J 1})) (STRIP
tHAGA A T TIM) T

1S LAMBDA SINMPONE (TUFLE (STRIF (BAGA A 1 (SUBTRACT J 1}1)

(STRIF BAA A LD N
The simplifier is invoked. We will omit some steps from the trace here
and mention only that the rule BAGALOWERPLUS playéd an important part in

the simplification of the second element of the tuple.

SIMPONE = (TUPLE (STRIP (BAGA A 1 (SUBTRACT J 1})) (STRIP

ag

(BAG (STRIP (BAGA A {(PLUS 1 J) NN)) (ACCESS A J)}})

91 ARGSIMP = {LTO (STRIP {BAGA A 1 (SUBTRACT J 1))} (STRIP
(BAG (STRIP (BAGA A {PLUS 1 J) NN)) (ACCESS A J})))

gz (GOAL SGOALCLASSL 8X)

The simplified goal is
(STRIP (BAGA A 1 J-1))

< (STRIP (BAG (STRIP (BAGA A J+1 NN)})

AT D)

LAMBOA RELCHECK (LTQ (STRIP (BAEA A 1 (SUBTRACT J 1}}))

93
{STRIP (BAG (STRIP (BAGA A (PLUS 1 J) NN)}) (ACCESS A J)I 1)
LANBDA INEQSTRIPRAG (LTO (STRIF (BAGA A 1 (SUBTRACT J 11))

S4a
{STRIT (BA (STRIP (BAGA A (PLUS 1 J3 NN}} {ACCESS A U11)))

INEQSTRIPBAG breaks up the goal into two subgoals. The first of these

goals is
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(STRIP (BAGA A 1 J-1)) = (STRIP (BAGA A J+1 NN))

as (COAL SIHIEQUALLITIES (8F (TUFLE fi8L 8X 887)))
a6 LANMCDA RELCHECK (LTQ (STRIP (BACGA A I {SUBTRACT J 11})
(STRIP (BaGA A& (PLUS L J) HNY))

The rule INEQSTRIPSTRIP is applicable to this goal:

1a3 LAMBOA INEQSTRIFSTRIP (LTQ (STRIP {BAGA A 1 {SUBTRACT

Since it is known that
(STRIP (BAGA A 1 I-1)) < (STRIP (BAGA A J+1 NN)) ,

and, in this context, J < 1, INEQSTRIPSTRIP succeeds:

The other subgoal to be proved is

(STRIP (BAGA A 1 J-1)) < (STRIP (BAG A{J]))

143 (GOAL SINEQUALITIES (8F {TUFLE $8W (STRIP (BAG $8Y)) 882)1)
144 LAMEDA RELCHECK (LTQ (STRIF {(BAGA A 1 (SUBTRACT J 111)
{5TRIF (BAG (ALCESS A 11)})

INEQSTRIPBAG applies again, splitting this goal into two subgoals, one

of which is trivial.

144 LAMBDA [NEQSTRIPBAG (LTQ (STRIP {BAGA A | (SUBTRACT J
11)) (STRIP (BAG (ACCESS A J))))
14w (GOAL 8INEQUALITIES (8F {TUPLE #8U $X #87)))

The nontrivial goal is

(STRIP (BAGA A 1 J-1}) =< A[J]

147 LAMBDA RELCHECK (LTO (STRIF (BAGA A 1 (SUBTRACT J 111)
{ACCESS A 1))

This goal invokes the rule INEQSTRIPTRAN. We will examine the oper-

ation of this rule in detail:

154 LAMRDA |NEQSTRIPTRAN (LTQ (STRIP (BAGA A 1 (SUBTRA
V)Y O (ACCESS A U)) SUBTRACT
155 {EXTSTS (8F (TUPLE ISTRIF (BAGA $ARNAME «~LOWER: ~UPPER})

1)

The rule finds the hypothesis

(STRIP (BAGA A 1 I-1)) < R
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it tests if this relation is appropriate:

1% (COAL SDEQUCE (AND (LTO $LOWER 8L} {LTQ 8M SUPPER)
(LT 800 80 ))

L%7 LANMBDA RELUHECK {AND (LTQ 1 1) {LTQ (SUBTRACT J 1)
(GLDTRACT 1 101 (LT R (ACCESS A D))
The system is testing whether the array segment between 1 and I-1 includes

the segment between 1 and J-1, and also whether R < A[J]:

153 LANMBDA ANDSFLIT (AND (LTQ 1 1) (LTQ (SUBTRACT J 1)
{SLIBIRALT [ 1)) (LTQ R (ACCESS A Ji1)

159 [GOAL 8GOALCLASS 8X)

168 LAMBOA RELCHECK {LTQ 1 1)

1¢1 RELCHECK = TRUE

162 (GOAL 8GOALCLASS (AMD 88Y))

163 LAMBDA RELCHECK (AND (LTQ (SUBTRACT J 1) {SUBTRACT
1 1Y) (LTd R (ACCESS A J}))

14 LAMEDA ANDSPLIT {AND (LTQ [(SUBTRACT J 1) (SUBTRACT
[ 1)) (LTQ R {ACCESS A 1))

1635 (COAL 8GDALCLASS $X)

166 LAMEDA RELCHECK (LTQ (SUBTRACT J 1} (SUBTRACT
1 1))

167 RELCHECK = TRLE

1G5 (GOAL SGOALCLASS (AND §8Y))

TG LAMBDA RELCHECK (AND (LTQ R {ACCESS A J)1})

14 LAHBDA AMDSFLIT (AMD (LTQ R {ACCESS A 1))

171 {GOAL HGOALCLASS X}

172 LAMEDA RELCHECK (LTQ R (ACCESS A J))

173 RELCHECK = TRLE

174 ' (GOAL SGOALCLASS ([AND $8Y))

175 ANDSPLIT = (ANO)

176 ANDSPLIT = (AND)

177 ANOSPLIT = (AND)

The tests prove to be successful, and INEQSTRIPTRAN returns:
178 INEQSTRIPTRAN = (AND)

The trivial subgcal i1s achieved:

173 (GOAL 8$INEQUALITIES (8F (TUPLE 88K (STRIFP (BAG 88Y))

T4z 1)

183 LAMBDA RELCHECK (LTQ (STRI{P (BAGA A 1 (SUBTRACT J 1)1}
{(STRIP (BAG)))

18] RELCHECK = TRUE

The call to INEQSTRIPBAG from line 1453 returns successfully:
182 [HEQSTRIFBAG = TRUE
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The call to INEQSTRIPBAG from line 94 also returns:

132 INEQSTREFBAG = TRUE
Thus, the goal established in Line 11 has been successfully proved:

154 PROGFSIMD = TRUE
That goal was established by the rule INEQIFTHENELSE. This rule asserted
J = I with respect to a lower context and set up the goal with respect to
that context. The rule now attempts to deny J <« I with respect to another

context and to establish a new goal with respect to the new context.
185 {CENY 8X LIRT 8YERICON)

However, J <« I was also asserted with respect to a higher context in line
6. Therefore, denying J < I contradicts this assertion, causing the
denial to fail. Since the situation is contracidtory and could not arise,
it is unnecessary to achieve the goal, and the call to INEQIFTHENELSE

from line 9 returns successfully:

186 {RETURN (SUCCESS (TUPLE WITH INEQIFTHENELSE) )}
187 FNCOFTHEMELSE = (SUCCESS (TUPLE WITH INEQGIFTHENELSE) )

The goal established in line 7 has been achieved. This goal was set up
by an earlier call to INEQIFTHENELSE 1line 3) with respect to a context
in which J-1 « I was asserted line 4). It is now necessary to set up
a new poal with respect to a new context; in this new context, J-1 < I
is denied:

124 (DENY &Y WRT SYERICON)

This denial activates a demon that denies
J g I

153 LAIBDA TRYALL (TUPLE (TUPLE PLUSZMPTY PLUSSIMNGLE PLUSZERD
PLUSPLUS MLUSHINUS PLUSDIFFERENCE PLUSCOtBINE PLUSNUMBER) (PLUS 1

[ (MINUS 1))

1789 (GOAL $GOALCLASS] S$COALL)

191 [LAMBDA FLUSHINUS (PLUS 1 1 (MINUS 11}
19z PLUSHMINUS = (FLUS 1)

133 (GOAL $GOALLCLASSL $COALL)

194 LAMEDA PLUSSINGLE (PLUS 1)

195 PLUSSINGLE = 1
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1006 (GNAL SH0OALCLASSL SGOALL)

197 {RETURN 8G0ALL)
123 TRYALL = |

192 (DENY (10 sW SRTSI0E) LRT BVERICOM)

" The new goal

(STRIP (BAG (STRIP (BAGA A 1 I-1)
A[T7
(STRIP (BAGA A I+1 J-1))))
< (IF J £ I THEN (STRIP (BAGA A J NN))
ELSE (STRIP (BAG A[I]
(STRIP (BAGA A J+1 NN))

(STRIP (BAGA A J J-1))))

is established with respect to the new context:

THR O (GOAL SIMEGUALITIES (8F (TUPLE #8U1 87 $8WZ2)) WRT 8VERICON}

281 LANGDA RELLHECK {(LTQ {STRIFP (BAG (STRIP (BAGA A |1 (SUBTRACT

I 1YY} (ALLESS A ) (STRIP (BAGA A (PLUS 1 1) (SUBTRACT J 131310 (
TFTHEHCLL=E (LTO J 1) (STRIF (BAGA A J MNM)) (STRIP {(BAG (ACCESS A 1)
(51T TEAGA A (PLHIS 1 ) MY (STRIF (BAGA A J (SUBTRACT J 11)1))))

INEQIFTHENELSE 1s invoked because the right-side of the goal is of the

form IF-THEN-ELSE,.

A LANECA THEQIETHEMELSE (LTQ {STR{F (BAG (STRIP (BAGA A L (SUBTRACT
[ 1)) (ACCESS A J) (STRIP (BAGA A (PLUS 1 i) (SUBTRACT J 1)11)) ¢
IETHENELSF (LTO J 1) (STRIP (BAGA A J NN)) (STRIP {(BAG (ACCESS A 1)
(GTRIP (BAGA A (PLUS 1 J) NM)) (STRIF (BAGA A J (SUBTRACT J 1111311}

Again the rule creates two contexts: In one context J < I is asserted,
and in the other J < I is denied. However, since J £ I was denied in a
higher context (line 199), the assertion of J £ I fails; this contradic-
tory case can safely be ignored, and attention focuses on the second con-
text:

—04 (UL 8% LRT SVERICOH)

The goal is established using the ELSE clause of the previous

goal:



(STRIP (BAG (STRIP (BAGA A 1 I-1))

AfJ)

(STRIP (BAGA A I+1 J=1))))

< (STRIP (BAG A[I]
(STRIP (BAGA A J+1 NN))

(STRIP (BAGA A J J=1))))

20k {GOAL STHEQUALITIES {8F (TUPLE SSLIL #Z 8SKUZ)}) WRT SYERICON)

ol | ANMBOA RELCHECK (LTQ (STRIP (BAG (STRIP (BAGA A 1 (SUBTRACT
1)) {(ATLESS A JY (STRIF (BAGA A (PLIIS 1 1)} (SUBTRACT J 11))1} (STRIP
(CAG LACCESD A 1Y (STRIFP (BAGA A (PLUS 1 1) NNJ)) {STRIP {BAGA A J
{SLBTHACT .1 11)Y)E))

-av LAMEDA THEDSTRIFRAG (LTQ {STRIP (BAG (STRIP (BAGA A 1 (SUBTRACT
I 1)y (ACCESS A J) {STRIP (BAGA A (PLUS 1 1) (SUBTRACT J 111)}) (STRIP
(BAL (ATLESS A 1Y ISTRIF (BAGA A (PLUS 1 .1 NNJ) (STRIP (BAGA A J
(ZRTEACT 1 11N

The proof from this point will only be summarized, since it is lengthy
but uneventful. The goal is divided into nine subgoals by successive
applications of INEQSTRIPBAG. Each of these goals turns out to be easily

proved, and the proof ends successfully.

- TRUE
TRUE

2 INCNTFTHEMNEL SE
I INFUTRTHENFLSE =

ner

A
ol
vBG

TRUL

X
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Appendix C

EXAMPLE OF HOW A VERIFICATION CONDITION IS GENERATED

For those readers unfamiliar with the Floyd-Naur method of producing
verification conditions, we give below an exawple of its application, a

complete trace of how the first condition in Section III was produced.
The program under discussion is reproduced again in Figure 5.

The path under consideration begins at point C, travels around the
loop through point E, and returns again to C. We will try to prove the

second conjunct at C.

This statement is

A[0] < MAX, A[1] < MAX, ..., A[I] < MAX . (1)

We pass this assertion backward around the loop to point E, making the

corresponding substitution. The transformed assertion is then
a[0] < A[1], A[11 < A[1], ..., A[1] < A[I] (2)

Since LOC does not appear explicitly in (2), the assignment LOC .~ I has

no effect.
To reach point E, the test
MAX < A[I7? (3)

must have been true., Passing the assertion back before the test gives

the implication
MAX < A1) o> A[0] < Al1], A[1] < A[I], ..., A[I] < A[L]
If this implication (4) is true before the test (3), the assertion (2)

will be true after the test.
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[ <0 MAX = A[LOC] :
MAX « A[0} D AA[0l € MAX, A1] < MAX,... -
LOC « 0 LAl < MAX

l . A0S LOCSISN :

Yes
N <1 D
? :
No
A0l < MAX, . . . AN} < MAX:
0 : .
I AMAX = A[LOC]
A0 < LOC <N
E Jl Yes
LoC « 1 F
MAaxX « A[l]

TA-740522-8

FIGURE 5 FINDING THE MAXIMUM OF AN ARRAY
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To travel around the loop at all, the result of test
N < I? (3)

must have been false. Passing the assertion (4) back over the test (35)

gives

(N <« I) A MAX < A[I

> A[0] < A[I3, A[1] < A[I7, ..., A[I] < A[I] . (6) -
Passing (6) back over the assignment statement
I~ I+l (7
gives

—(N < I+1) A MAX < A[I+1]

D Al07 < A[I+1], A[1] < A[I+1], ..., A[I+1] < A[I+1] . ()

This statement has been generated in such a way that if it is true
when control passes throughpoint C, then (1) will be true if control
passes around the loop through poin£ E and returns to C. If we consider
this path as a straight line program with the assertion at C as both its
start assertion and its halt assertion, then proving the correctness of

the second conjunct (1) at C reduces to. proving

MAX = A[LOC] A

A[0] = MAX, ..., A[I] < MAX A

0 <LOC<I < NA
—(N < I+1) A
MAX < A[I+1] o

A[0]) < A[I+1], ..., A[I+1] < A[I+1] .

Finally, the antecedents of this implication are expressed as, separate

hypotheses, and the consequent is represented as a goal.
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