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The Effects of Extending the SimCalc Approach  
to Grade 8 Mathematics

In a second randomized experiment SRI International (SRI) and its partners replicated the 
approach of their seventh-grade experiment, extending the SimCalc approach to eighth-
grade mathematics. We found that eighth-grade students learned more mathematics when 
their teachers used SimCalc curriculum and software in place of their traditional curriculum. 

In a series of large-scale randomized experiments in 
Texas public schools, our research has focused on 
the question: “Can a wide variety of teachers use an 
integration of curriculum, software, and professional 
development to increase student learning of complex 
and conceptually difficult mathematics?”

In our first report in this series (Roschelle et al., 
2007), we reported on an experiment in seventh 
grade mathematics. We found that wide variety 
of teachers was able to implement a technology-
enhanced replacement unit for the seventh-grade 
mathematics topic of rate and proportionality  
and that the students of these teachers learned 
the topic deeply. Because we randomly assigned 
teachers to use either a SimCalc replacement unit  
or their existing curriculum, our experiment provided 
strong evidence that the SimCalc intervention caused 
students to learn more mathematics. We argued that 
the learning gains were important by describing the 
central role of rate and proportionality in the middle 
school mathematics curriculum, and we showed that 
students gained in particular on the more advanced 
aspects of this topic. Given this positive result, a 
question naturally arose: “How can we take this to the  
next level of scale?” 

Two aspects of scaling up are covering more 
grade levels and providing more content. Our 
second experiment, reported here, implemented 
an eighth-grade intervention based on the SimCalc 
approach. We extended that approach by using 
the same SimCalc MathWorlds™ software but with 

a different replacement unit curriculum. The new 
replacement unit targeted the eighth-grade topic of 
linear functions, which is the next step in the natural 
sequence from our seventh-grade focus on rate 
and proportionality. Although the curriculum and 
teacher professional development were necessarily 
different for the eighth-grade, they were designed 
according to the same general principles and in 
the same style and format as for the seventh grade 
experiment. By once again comparing an integration 
of curriculum, software, and teacher professional 
development with a business-as-usual condition, we 
accumulated further evidence for the robustness of 
our approach in an additional grade level. Further 
research at the James J. Kaput Center for Research 
and Innovation in Mathematics Education at the 
University of Massachusetts, Dartmouth is extending 
the curricular scope of SimCalc to Algebra I and 
Algebra II.

Another aspect of scaling up is building capacity to 
train more teachers. In the eighth-grade experiment, 
we extended the SimCalc approach to a “train-
the-trainers” model whereas in the seventh-grade 
experiment, the curriculum developer led all the 
teacher workshops. In the eighth-grade extension, 
the curriculum developer trained teacher educators 
from regional Education Service Centers1 (ESCs) 
throughout Texas; these teacher educators then led 
the teacher professional development workshops. 
This train-the-trainers model is common in Texas and 
can more easily reach large numbers of teachers.

1  Educational Service Centers are public regional organizations that offer 
educational support programs to districts throughout the state of Texas.
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Below, we report on a main effect in the eighth-grade 
experiment that was consistent with the main effect in 
the seventh-grade experiment: in both cases, students 
of teachers who used SimCalc materials learned more. 
We also report on two similar moderating variables—
the cognitive complexity of teaching goals and the 
allocation of classroom time to allow students to 
work with the software. The consistency of the results 
of our eighth-grade and seventh-grade experiments 
should increase educators’ confidence in the value 
of the SimCalc approach for enabling teachers in a 
wide variety of contexts to enhance the mathematics 
learning of their students. 

Addressing a Focal Point of  
Eighth-Grade Mathematics
The National Council of Teachers of Mathematics 
(NCTM) has elaborated its earlier recommendations 
for learning and teaching mathematics to give 
teachers additional guidance on the most important 
ideas and major themes of mathematics at each grade 
level. This elaboration fits the NCTM’s curricular 
principle, which states “a curriculum is more than a 
collection of activities: it must be coherent, focused on 
important mathematics, and well articulated across 
the grade” (NCTM, 2000, p. 14). In particular, the 
new recommendations list “focal points” for each 
grade level. The first of three focal points for the 
eighth-grade is in the algebra strand and states:

Students use linear functions, linear equations, and 

systems of linear equations to represent, analyze, 

and solve a variety of problems. They recognize a 

proportion (y/x = k, or y = kx) as a special case of a 

linear equation of the form y = mx + b, understanding 

that the constant of proportionality (k) is the slope 

and the resulting graph is a line through the origin. 

Students understand that the slope (m) of a line 

is a constant rate of change, so if the input, or  

x-coordinate, changes by a specific amount, a, the 

output, or y-coordinate, changes by the amount ma. 

Students translate among verbal, tabular, graphical, 

and algebraic representations of functions (recognizing 

that tabular and graphical representations are usually 

only partial representations), and they describe how 

such aspects of a function as slope and y-intercept 

appear in different representations. Students solve 

systems of two linear equations in two variables and 

relate the systems to pairs of lines that intersect, are 

parallel, or are the same line, in the plane. Students 

use linear equations, systems of linear equations, linear 

functions, and their understanding of the slope of a 

line to analyze situations and solve problems (NCTM, 

2007, p. 20).

The eighth-grade replacement unit we tested aligned 
with this focal point. Our unit focused on linear and 
proportional functions, emphasizing that the slope 
of a line represents a constant rate of change. In the 
replacement unit, students translated among verbal, 
tabular, graphical, and algebraic representations, 
and were introduced to how slope and intercept 
appeared in different representations. Our unit 
did not address the concept of “systems of linear 
equations”, which is not considered appropriate 
for eighth-grade mathematics in Texas. Although 
students did not use systems of linear equations, 
they did analyze and compare pairs of linear and 
piecewise linear functions—a step toward using 
such equation systems. The replacement unit 
similarly aligned with relevant portions of the Texas 
standards for eighth-grade mathematics. In general, 
the concept of linear function was seen as a crucial 
transitional topic between earlier mathematics  
and algebra.

Like the seventh-grade experiment, the replacement 
unit intervention comprised a paper-based curriculum 
unit (in both student and teacher versions), the 
SimCalc MathWorlds software with custom software 
documents, and teacher professional development. 
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The eighth-grade replacement unit used the theme 
of designing cell phone games to address the target 
mathematics. Students were given roles as designers 
of electronic games who must use mathematics to 
make the games operate. Linear functions of the form 
y = mx + b were developed as models of motion and 
accumulation. Amounts and rates in the materials were 
realistic for the specific contexts within this theme. 
Students learned to use different representations 
of these functions for problem solving and the 
connections among representations were emphasized. 
The mathematics in the unit went beyond standard 
eighth-grade content to include complex average rate 
problems. For example, the familiar class of difficult 
problems in which trains or other vehicles leave a 
station and travel at differing rates can be more easily 
conceptualized using graphs. 

The unit was designed to be used daily over a 2- to 
3-week period, replacing regular lessons on linear 
functions. The teacher guide provided lesson plans 
that teachers could adapt, as well as guidance about 
possible student responses to questions and tasks. 
Daily access to a sufficient number of computers 
was required—enough so that students could 
interact directly with the software individually or 
in small groups. A student workbook sequenced all 
the problems and questions and provided space for 
student responses. The workbook linked to specific 
software documents that preloaded activities for the 
students. Activities made use of important SimCalc 
MathWorlds features, including: 

•  Visualizing mathematical functions as motions.

•  Showing more than one function at a time to 
allow comparison.

•  Editing mathematical functions in both graphical 
and algebraic forms.

•  Linking the verbal, graphical, tabular, and 
algebraic representations of a function.

•   Using piecewise linear functions to model 
situations with changing rates.

Teachers were trained to use the materials in 
two workshops. In a 3-day summer workshop, 
teachers worked through the SimCalc materials as 
learners, practicing with the software and discussing 
implementation issues. The facilitator demonstrated 
appropriate pedagogy. Then, in the fall, teachers 
gathered for a 1-day planning workshop in which 
they adapted the lesson plans to fit their classroom 
contexts but without modifying the materials or the 
activity sequence of the materials.

Scaling Up via a  
“Train-the-Trainers” Approach
In the interest of scaling up, we used a train-the-
trainer model to deliver preparatory workshops. This 
is closer to normal practice than the training used 
in the seventh-grade experiment. In fact, the train-
the-trainer model is widely used when teachers are 
introduced to a new curriculum. In previous work in 
Texas, our partners at the Charles A. Dana Center at 
the University of Texas at Austin had used train-the-
trainer workshops to introduce their TEXTEAMS 
materials to middle school mathematics teachers 
across Texas. 

In implementing the train-the-trainer model, we were 
able to take advantage of our existing relationships 
with educators in Texas. We gathered a group of 
experienced professional development leaders, each 
of whom had responsibility for serving teachers in a 
particular region of the state. The leaders were already 
familiar, to some extent, with the SimCalc approach 
because they had recruited teachers for the previous 
experiment. Over 2 days, the curriculum developer 
and a well-known professional development leader 
taught the soon-to-be trainers the content of the 
unit. The workshop focused on what we wanted 
them to do in teacher training workshops, but their 
experience with the materials was compressed so 
that more time could be devoted to discussing how 
teachers might react to the materials and how to 
deepen their understanding of the mathematical 
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goals of the program. Over the summer, the trainers 
led workshops for the teachers in their regions.

Though widely used in a variety of fields, information 
about the train-the-trainer model and its validity as a 
training method in any discipline is scant (Orfaly et 
al., 2005). The train-the-trainer model is endorsed in 
the field of Public Health as a means of sustainability 
because the trainers are members of the community 
rather than experts without community ties. 
Although the model has the potential for dilution 
of content or lack of fidelity to the initial premise, 
studies in the Public Health field demonstrate that 
such defects do not generally occur (Orfaly et al., 
2005). Literature addressing the train-the-trainer 
model seems to be even sparser in the field of 
education. A literature review found studies relying 
on surveys and interviews, but no studies used data 
collected through direct observation of all levels of 
training and subsequent posttraining enactments 
(Bahr et al., 2006; Griffin, 1997; Wildy, Wallace, & 
Parker, 1996).

In a survey of teacher professional development 
research, Borko (2004) describes studies that look 
at a single professional development program 
enacted by more than one facilitator at more than 
one site as “Phase 2 research.” The central goal 
of Phase 2 research, according to Borko, is to 
determine whether or not a program can be enacted 
with integrity, especially as it becomes further 
removed from the original professional development 
providers. “Integrity” in this case does not imply 
rigid implementation of required activities; rather, it 
is important to investigate the balance and tradeoffs 
between fidelity and adaptation. Her literature review 
yielded no research that provided adequate evidence 
of such integrity in a Phase 2 project. She did find a 
small number of Phase 2 projects with widespread 
enactments, but research on those projects focused 
almost exclusively on the professional development 
conducted by the original design teams.

Research Design
Our research question concerned two key aspects 
of extending our research from the seventh to the 
eighth-grade:

Can a wide variety of teachers increase student 
learning of mathematics when (a) they are prepared to 
use SimCalc materials via a train-the-trainers model, 
and (b) they implement a SimCalc replacement unit 
that integrates curriculum and software to address 
focal topics of eighth-grade mathematics?

To address these questions, SRI and its partners led 
a randomized experiment whose rigorous design 
was largely parallel to that of the seventh-grade 
experiment. The experiment began in summer 2006. 
Teachers were randomly assigned to participate in 
either a Treatment or a Control group. The Treatment 
group received the SimCalc intervention, which 
began with a 3-day teacher professional development 
workshop in which teachers learned to teach using 
the eighth-grade SimCalc unit. Treatment teachers 
were then asked to teach the replacement unit in 
place of their usual unit on linear function.

The counterfactual or Control condition was 
designed to allow comparison between classrooms 
using the SimCalc unit and classrooms using their 
regular linear functions materials. In addition, to 
make sure participation in the study was fair for 
both groups, teachers in the Control group received 
professional development on the integration of 
technology into mathematics teaching, but pertaining 
to different eighth-grade content. These teachers 
were assigned to the Teaching Mathematics TEKS 
Through Technology (TMT3) workshop, a high-
quality professional development program with an 
emphasis on statistics that is offered throughout 
Texas. Each teacher in both groups received a $650 
stipend for his or her completed participation. 



6 © 2007 SRI International — Overview of Findings from the Eighth-Grade Year 1 Study

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

| | | | | | | | | | | | | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

| | | | | | | | | | | | | | | | | | | | |

The designs of the seventh- and eighth-grade studies 
differed in two key respects: 

1.  Whereas in the seventh-grade experiment teachers 
were asked to participate for 3 years, the eighth-
grade study took place over 1 year.

2.  Whereas in the seventh-grade experiment Control 
teachers were offered training in the mathematics 
that would be assessed but no training in 
integrating technology, teachers in the eighth-
grade experiment received training in integrating 
technology into mathematics teaching, but with 
respect to a different mathematical topic.

For each teacher, data were collected for one “target 
class,” which the research team randomly chose 
from the teacher’s roster.

Participants
With the cooperation of five Texas ESCs, we 
recruited teacher volunteers whose students reflected 
the regional, ethnic, and socioeconomic diversity of 
the state. Recruitment for the eighth-grade study 
did not occur in schools already participating in the 
seventh-grade experiment; therefore, none of the 
students participating in the eighth-grade unit had 
studied the seventh-grade unit. If the replacement 
units had been offered to the same students in the 
seventh and eighth-grades, students might have 
been better prepared to learn from the more difficult 
eighth-grade unit, making it difficult to tease apart 
the effect of the eight-grade unit. 

Teachers were randomly assigned by school either 
to the Treatment or Control group. After receiving 
invitations, 63 teachers from our applicant pool 
were able to attend and complete a summer 
workshop. Eventually, 56 teachers (and their 825 
students) returned complete data. At intake, the 
Treatment group (33 teachers) and the Control 
group (23 teachers) did not differ in any important 
way (e.g., with respect to teaching experience, 
ethnicity, gender, mathematical content knowledge, 
or percent of students eligible for free or reduced-

price lunch in school). The greater number of 
teachers in the Treatment group was an artifact of 
teachers’ scheduling conflicts with the workshops 
to which they were assigned. Because teachers were 
not informed about the workshop type until the 
workshop actually occurred, the consequences for 
randomization and thus the validity of the experiment 
are minimal. The attrition rate was comparable to 
other large experiments with educational technology 
(Dynarsky et al., 2007) and we have no evidence that 
would suggest differential attrition, which would be 
the principal threat to validity. 

Assessment of Student Learning
The primary outcome measure in this experiment was 
student learning of core mathematical content. Our 
team designed an assessment that was administered 
in a single class period to students before and after 
their linear function unit was taught. 

Working with a panel of mathematicians and 
mathematics education experts, we developed an 
assessment blueprint that encompassed both simple 
and more complex aspects of linear function. The 
content which is outlined in Table 1, was aligned 
to the eighth-grade Texas state standards (the 
Texas Essential Knowledge and Skills—TEKS). The 
simple aspects addressed content pertaining to linear 
function covered in the Texas state test (the Texas 
Assessment of Knowledge and Skills—TAKS). The 
complex aspects addressed content aligned with the 
NCTM’s Focal Points for Grade 8. 
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The simpler items were based on those used on the 
TAKS for the eighth-grade; these items typically ask 
students to calculate using a linear relationship stated 
either as a word problem or more mathematically. 
For example, one question was:

Deondra is saving to buy a new bike. She starts off 
with $10 in her account and saves $20 a month 
babysitting. She writes an equation that represents 
the total amount of money (y) she has saved in any 
given month (x): y = 20x + 10. How much money 
has Deondra saved after 6 months? 

Students could answer this question by substituting 
6 for “x” in the given equation and computing 
the result, $130. Many students were also able to 
compute the answer in their heads without using 
the equation by noticing that 6 times 20 is 120, and 
then adding 10 more. In either event, the calculation 
drew on skills aligned with our framework for 
conceptually simple math.

Other simpler items asked students to choose graphs 
that represented a proportional relationship or to 
choose equations that did not represent a linear 
relationship (e.g., one equation had an x3 term in it 
and so was not linear). Other simple items required 
only simple cognitive tasks, like finding the graphed 
line that contained a set of points given in a table. 

More complex items on our test required comparing 
multiple rates or finding average rates. One item 
showed a line graph of the balance in a bank account 
by month and asked in which month the balance 
increased at the highest rate (see Figure 1). This item 
required students to make sense of the “highest rate” 
within a graph that displayed conceptual distracters, 
such as the highest balance. Thus the students had 
to distinguish rate from amount. Further, the rate 
information was not provided directly; students had 
to infer it from the slopes in the graph. In addition, the 
item had both positive and negative slopes; students 
had to understand the meaning of these directions in 
the graph. 

M1—Conceptually Simple M2—Conceptually Complex

Overview of Concepts Concepts are typically covered in the grade-

level standards, curricula, and assessments.

Building on the foundations of M1 concepts, 

the concepts constitute more complex 

building blocks for the mathematics of 

change and variation found in algebra, 

calculus, and the sciences.

Seventh-Grade Study

(focus on rate and proportionality)

•   Simple a/b = c/d or y = kx problems in 

which all but one of the values are pro-

vided and the last must be calculated.

•   Basic graph and table reading without in-

terpretation (e.g., given a particular value, 

finding the corresponding value in a graph 

or table of a relationship).

•   Reasoning about a representation (e.g., 

graph, table, or y = kx formula) in which 

a multiplicative constant “k” represents 

a constant rate, slope, speed, or scaling 

factor across three of more pairs of values 

that are given or implied.

•   Reasoning across two or more  

representations.

Eighth-Grade Study

(focus on linear function)

•   Categorizing functions as linear/nonlinear 

and proportional/ nonproportional.

•   Within one representation of one linear 

function (formula, table, graph, narrative), 

finding an input or output value.

•   Translating one linear function from one 

representation to another.

•   Interpreting two or more functions that 

represent change over time, including 

linear functions or segments of piecewise 

linear functions.

•   Finding the average rate over a piecewise 

linear function.

Table 1. Topics found in the student assessments. These were also the topics covered in the replacement unit.
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Another, more advanced item showed a graph with 
two piecewise linear segments, depicting a faster rate 
followed by a slower rate (see Figure 2). Students 
were asked to compute average speed and draw a 
graph representing another motion moving at the 
average speed for the same length of time.

The overall 36-item test included 18 simple and 
18 complex items. After completing these items, 
students were asked to answer a few demographic 
and attitude questions. We carried out rigorous 
validation processes for the test. This included expert 
panel reviews for grade-level appropriateness and 
alignment with Texas state standards and our target 
content. We also conducted cognitive interviews with 
students, as well as an item response theory analyses 
of field test data collected from a large sample  
of students.

Teacher Measures
In addition to the student assessment, key teacher 
measures included: (1) an assessment of teachers’ 
knowledge of the mathematics necessary to teach 
the unit; (2) a questionnaire about each teacher’s 
background, attitudes, and beliefs; (3) a daily log 
in which teachers provided a structured report of 
their implementation of the unit; and (4) a teacher 
retrospective log about the unit as a whole. In 
addition, demographic data about each participating 
school were drawn from a database maintained and 
published by the state of Texas.

Procedure
The timeline for the experiment follows: During 
summer 2006, Treatment (SimCalc) and Control 
(TMT3) workshops were conducted in each of the 
participating regions and all teachers attended a 
3-day workshop. Then, in fall 2006, Treatment 
teachers attended a 1-day planning workshop. At the 
beginning of the school year, teachers received a box 
that contained all of the materials they would need, 
both for teaching and research. Then, during the 
2006-2007 school year, teachers taught their assigned 
units. Student assessments were administered before 
and after teaching the unit. Measures to assess 
teachers’ mathematics knowledge were administered 
at the beginning of the summer workshop and 

The graph below shows the balance in Eva’s bank account over the course of a year. 
Use the graph to answer the following questions.

Month

a. In which period did Eva’s balance INCREASE at the highest rate?
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a. In which period did Eva’s balance DECREASE at the highest rate?
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Figure 1. Advanced item requiring students to identify the fastest rate.

Juanita ran a 45-meter race as represented in the graph below.

SECONDS

a. What was Juanita’s average speed?

b. Vanessa ran the same race. She ran the entire race at Juanita’s average speed. 
    Sketch Vanessa’s race on the graph above. 
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Figure 2. Advanced item requiring students to represent the  
average speed.
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after the teachers completed teaching the unit. 
Teachers also filled out their daily logs during the 
unit. After completing data collection, they mailed 
the required materials to the research team. On 
receipt of the completed materials, teachers received  
their stipends. 

In executing the design, the research team took 
particular care to avoid any suggestion that one 
group might be advantaged or perform “better” than 
the other, and our scientific advisory board reviewed 
the design to ensure that such suggestions had been 
avoided. With this concern in mind, the PIs and  
co-PIs also conducted detailed reviews for bias of each 
video presentation—the method we used, rather than 
in-person presentations, to inform teachers about 
the research design—for the Treatment and Control 
group teachers and the recruitment partners. The 
two teacher groups were shown essentially the same 
video presentations, although the videos for the two 
groups did differ in regard to a few details to reflect 
the slightly different research procedures. 

Data Entry, Cleaning, and Analysis
The complex data entry process included careful 
tracking for completeness and multiple crosschecks 
for accuracy. Student assessments were scored by a 
team who had been trained to score to almost perfect 
agreement. To maintain scorer accuracy throughout 
the process, a random sample of 10% of the student 
assessments was double-scored. Computer scanning 
was used to input scorers’ records for each test. 
Computer scanning was also used for each of the 
teacher daily log pages. All other data were entered 
by hand. On completion of the collection and 
entry of all data (i.e., student assessments, teacher 
assessments, teacher questionnaires, teacher logs), 
a random sample of 5–10% of each data set was 
compared with the original data to check for accuracy. 

All data were also subjected to thorough checks for 
reasonableness of range and distribution. The error 
rate across all of these checks was negligible.

Because sampling was at the level of intact classrooms 
(clusters of students), classic statistical models such 
as the t-test or multiple regression models would 
have been inappropriate without modification. 
Accordingly, hierarchical linear modeling (HLM) 
was employed to estimate the effects of the treatment 
(Raudenbush & Bryk, 2002). HLM accounts for 
measurement and sampling error at both the student 
level and the classroom level, resulting in correctly 
adjusted standard errors for the treatment effect. 
Once a main effect is established, HLM enables 
analysis of the impact of additional student-level or 
classroom level factors.

Characteristics of the Sample
Tables 2 and 3 (on the next page) show how the 
teachers and schools varied in this study. In any 
randomized experiment, it is important to verify 
whether the assignment procedure resulted in any 
differences between groups. We found no significant 
differences between groups on any of these variables.
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Note: There were no statistically significant differences between groups for any of these variables. 
Table 3. School-level characteristics of the sample. 

Control Treatment Total Sample

Total count 23 33 56

Teacher gender, percent

    Female

    Male

82.6

17.4

84.8

15.2
83.9

16.1

Years teaching total (mean) 9.57

Range: 0–27

7.91

Range: 0–31

9.59

Range: 0–31

Teacher ethnicity, percent

      Caucasian

      Hispanic

      African-American

87.0

8.7

4.3

78.8

15.2

6.1

82.1

12.5

 5.4

Teacher age (mean) 42.0

Range: 25–62

41.0

Range: 27–64

41.0

Range: 25–64

Percent with master’s degrees 26.1 6.0 14.3

Percent by Texas ESC region

      Wichita Falls (Region 9)

      Dallas (Region 10)

      Austin (Region 13)

      Lubbock (Region 17)

      Midland (Region 18)

9.1

24.2

39.4

18.2

9.1

17.4

17.4

43.5

21.7

0.0

5

12.5

21.4

41.1

19.6

5.4

Note: There were no statistically significant differences between groups for any of these variables.
Table 2. Teacher-level characteristics of the sample.

Control Treatment Total Sample

Total count of schools    19 24 53

Percent free or reduced-price lunch (mean) 43.0 42.4 42.2

School size (mean) 643

Range: 104–2,245

634

Range: 121–1,375

638

Range: 104–2,245

Research Findings
The design of this experiment allowed a comparison 
of student learning gains in two conditions. Teachers 
of students in the Treatment group were prepared to 
use SimCalc materials via a train-the-trainers model 
and implemented a SimCalc replacement unit that 
integrated curriculum and technology. Teachers of 
students in the Control group went to a workshop 
on integrating technology in their teaching but 
taught with their existing linear function curriculum 
materials. The main effect in the eighth-grade 
experiment was statistically significant; students in 

the Treatment group learned more than students in 
the Control group. The overall effect size was 0.79 
(see Figure 3), which is considered large in education 
studies (z = 5.38, p<0.0001, using a two-level 
hierarchical linear model with students nested within 
teacher). The difference between the groups occurred 
mostly on the complex portion of the test. The effect 
size of treatment on this portion was 1.27 (z = 7.62, 
p<0.0001). The effect size of the treatment on the 
simple portion was 0.20 (z = 1.6, p = 0.11, n.s.). 
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As was the case in the seventh-grade unit, we found 
that the teachers reported more cognitively complex 
teaching goals in the Treatment group. Further, teacher 
report of more complex teaching goals was related to 
student learning gains. In the daily log, teachers rated 
their degree of focus for the day’s class on goals of 
low-cognitive complexity (memorization and use of 
routine procedures) and high-cognitive complexity 
(communicating conceptual understanding; making 
mathematical connections and solving nonroutine 
problems; and conjecturing, generalizing, or 
proving). For high-order goals, Treatment teachers 
(versus Control) reported a stronger daily focus 
(t(54) = 4.1, p<0.0001) and the overall statistical 
association with classroom mean student gain on 
the complex mathematical subscaleswas positive (ß 
= 1.7, p<0.01). 

We also collected teacher self-report data on topic 
coverage. The daily log asked teachers “To what 
extent did you and your class focus on the following 
topics?” and listed the following topics aligned with 
the conceptually simple content of linear function:

•  Categorizing Functions as nonlinear or linear, 
proportional or nonproportional.

•  Using Input-Output Operations: using equations 
to find unknowns, completing tables, or finding 
points on a graph.

•  Moving across Representations: generating one 
representation (e.g. equations, tables, graphs), 
given a different representation.

In addition, the daily log listed the following topics 
aligned with the conceptually complex content of 
the unit:

•  Multiple Rates and Relationships: comparing 
varying rates within the motion of one object or 
comparing rates across different speeds or prices.

•  Average Rate: using graphs to find the average rate 
of an object that changes speed while moving.

Teachers responded on a 4-point Likert scale from 
“not at all” (1) to “a major focus” (4), and the 
score for each teacher on each scale was computed 
by computing the average across their daily reports 
(see Figure 4). Teachers who used SimCalc covered 
the first three topics to the same degree as Control 
group teachers but covered the latter two topics 
more often. These data suggest that the SimCalc 
approach achieves its main effect in part by covering 

Figure 3. Student gain scores aggregated by teacher. Mean difference 
scores (± SE of total) on the 36-item student assessment.
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Figure 4: Teacher self-report of topic coverage. Average of daily ratings 
on a 4-point Likert scale (± SE).

Subscale:            “Complex” linear function

                            “Simple” linear function

Control

Treatment

Experimental Group

Rating

M1: Categorizing functions

M1: Input-output operation

M1: Moving across repreentations

M2: Multiple rates and relationships

M2: Average rate

1.00 1.50 2.00 2.50 3.00 3.50 4.00
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more content within the same unit. This is consistent 
with SimCalc program philosophy that dynamic 
representation software allows a greater depth and 
range of mathematics to be coherently addressed 
within each classroom activity. 

As shown in Figure 5, the teacher daily log also 
asked teachers to report on the activities in which 
they and the class engaged during the class period. 
These activities included whole-class lectures, teacher 
demonstrations, whole-class discussion, individual 
student work, student pair work, and student small 
group work. Each day the teachers checked off 
which of the activity types they used with their target 
class. We later counted the number of days students 
engaged in each activity.

In the Treatment group, there was a negative 
relationship between the number of days in which 
whole-class lecture was used and how much complex 
mathematics students learned (r(33) = –0.35, p<0.05), 
and a positive relationship between the number of 
days in which students engaged in individual work 

and how much complex mathematics students 
learned (r(33) = 0.64, p<0.0001). For all the other 
activity types (teacher demonstrations, whole-class 
discussions, student pair work, and student small 
group work), the relationships between the number 
of days and student gains were not statistically 
significant. These findings show that students using 
the SimCalc unit learned more complex mathematics 
when they engaged more frequently in individual 
work, whereas learning more complex mathematics 
was reduced when more time was spent on lectures 
(see Figure 5). This finding is consistent with the 
SimCalc program philosophy that individual student 
work on activities, using both workbooks and 
software, is important to learning. In forthcoming 
case studies, we may be able to more fully identify 
the roles of these different activities in learning. 
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Figure 5. For Treatment teachers only, teachers’ report of how many days students engaged in each activity structure, in relation to overall mean 
student gains on the complex subcale in their classroom.
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Discussion
In our eighth-grade experiment, we found that 
students learned more from a SimCalc replacement 
unit than they learned from their existing curriculum. 
Our findings parallel the findings of our seventh 
grade experiment in several notable ways. Students 
learned more of the advanced aspects of the target 
concepts; for the simpler aspects, students of teachers 
who used the SimCalc replacement unit showed a 
nonsignificant trend toward greater gains. Teachers 
who used SimCalc reported more complex teaching 
goals and students of teachers who reported such goals 
learned more. Teachers who used SimCalc covered 
some topics to the same degree as Control teachers, 
but covered advanced topics more frequently. These 
findings are consistent with the SimCalc program 
philosophy, which aims to democratize access to 
advanced mathematics.

Our eighth-grade experiment went beyond the 
seventh grade experiment in two notable ways. First, 
we addressed content that is appropriate for eighth-
grade. This content aligns closely to a recognized 
“focal point” for eighth-grade instruction and sets 
the stage for Algebra. The clear importance of this 
content makes our findings more noteworthy. Second, 
we employed a train-the-trainer model for delivering 
training to teacher. Relative to our seventh grade 
experiment, the use of the train-the-trainer model 
brings an additional realistic element of “scaling up” 
into consideration in our research. The robustness of 
the results under a procedure where different teacher 
educators delivered teacher training adds credibility 
to the case that SimCalc materials can be used 
effectively at scale. Dunn (2007) is further analyzing 
similarities and differences among participating 
teachers, both in terms of their perceptions and 
their actual classroom enactments. Dunn will seek 
to determine whether or not a relationship exists 
between these elements and the workshop attended. 

As in any experiment, these findings should be 
interpreted with caution. First, the gains applied to 
more complex and conceptually difficult mathematics 

and were enhanced when teachers reported more 
complex teaching goals. Consequently, schools may 
not see benefits unless teachers have more complex 
teaching goals and unless they assess more complex 
reasoning. Second, the results were obtained in Texas, 
a state with a long record of a stable standards-
based educational system. Results may vary in states 
with different contexts. Third, although we view 
replacement units as a good strategy to fit within 
school constraints, the tested replacement units 
occupied only a modest amount of instructional 
time. We do not yet know the consequences of more 
extended uses of such units and do not necessarily 
recommend using software every day; software use 
may be most useful when targeted specifically at the 
most complex and conceptually difficult aspects of 
mathematics learning. Fourth, our sample lacked a 
majority African-American school. Fifth, we worked 
with volunteer teachers and do not know how well 
nonvolunteer teachers would fare. Sixth, we required 
schools to have a computer laboratory; however, not 
all schools have suitable computer facilities.

Although these studies were not designed to isolate 
particular features of the intervention (e.g., the 
software, the student printed text, the teacher 
professional development), two features of this 
experiment encourage us to conclude that the 
software—and in particular student use of the 
software—are important. We gained confidence that 
the software was important because it was a salient 
common element in both the seventh- and eighth-
grade studies (although the principles and approach 
to the design of the other materials were also common 
between the two interventions). Further, the teacher 
self-report data suggest that when teachers lecture less 
and allow the students to use the software more in 
individual work, students learn more. However, care 
should be taken in interpreting this finding. We are 
not arguing for a flawed discovery-learning paradigm 
in which students figure out difficult mathematics 
concepts on their own (Kirschner, Sweller, & Clark, 
2006). Instead, we view student use of the software 
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and teacher explanations and teacher-led discussions 
as complementary activities (Lobato, Clarke, & Ellis, 
2005). We suspect that students can learn more from 
teacher-led presentations and discussions when they 
have had direct experience with the software, as in a 
preparation for future learning paradigm (Bransford 
& Schwartz, 1999).

In conclusion, the results of this second experiment 
encourage further scaling up of the SimCalc 
approach. Several kinds of further efforts might 
be contemplated. As mentioned earlier, additional 
research is under way to continue the learning 
progression into high school Algebra I and II courses. 
Scaling across grade levels is also possible by using 
related dynamic mathematics software products such 
as The Geometer’s Sketchpad™, Cabri Geometry™, 
TinkerPlots™, and Fathom™.In such efforts, 
educators should take note that our research has 
found effects from the integration of three elements—
curriculum, teacher training, and software—and not 
just from the software alone. Finally, scaling up to 
implementations that provide the opportunity for 
students to experience the SimCalc approach in 
several consecutive years is also a possibility and one 
that might result in considerable cumulative gains.
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