

Panel 4

Robotics, Wearables, and Future Work

Award Number: 2128907

FW-HTP-P: Firefighter Exoskeleton for Navigation In eXtreme Environments (FENIXE)

Pls: Michael Bazzocchi¹, Sean Banerjee², Natasha Banerjee², Kevin Fite¹, and Marcias Martinez¹

¹Department of Mechanical & Aerospace Engineering, Clarkson University

Presenter's Contact Information: mbazzocc@clarkson.edu

Goal: To investigate the challenges faced by career and volunteer firefighters and mitigate challenges by providing FENIXE, a low-cost, automated, adaptive, and integrated intelligent exoskeleton suit

Tasks

- Use markerless motion capture and sEMG to study joint motion and muscle activation for firefighters from various groups completing functional tasks
- Create an integrated exoskeleton design that combines ergonomic and biomechanical considerations with structure, dynamics, and control
- Conduct stress testing of multiple multimodal sensors under high-stress conditions, such as heat and smoke
- Plan meetings and conduct surveys with stakeholders to better understand technological perceptions, safety considerations, injury mitigation, concerns of underrepresented groups, and barriers for adoption

Automated, Adaptive, & Integrated Intelligent Exoskeleton

Robot Dynamics, Controls & Exoskeletons (M. Bazzocchi)

Multi-Modal Sensing & Human-Computer Interaction (S. Banerjee)

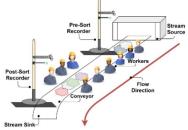
Computer Vision & Machine Learning (N. Banerjee)

Materials & Structural Optimization (M. Martinez)

Biomechanics & Ergonomics (K. Fite)

²Department of Computer Science, Clarkson University

#1928506: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry


PIs: Berk Calli¹ (<u>bcalli@wpi.edu</u>), Aaron Dollar², Kate Saenko³, Co-PIs: Vitaly Ablavsky⁴, Marian Chertow², Brian Scassellati², Barbara Reck², Jacob Whitehill¹, Amy Wrzesniewski²,

Berk Calli, Worcester Polytechnic Institute

Scope

- Focus: materials sorting for recycling
- Recycling: \$117B economy, 530k workers in US
- Tight profit margins, inefficient, high injury rates

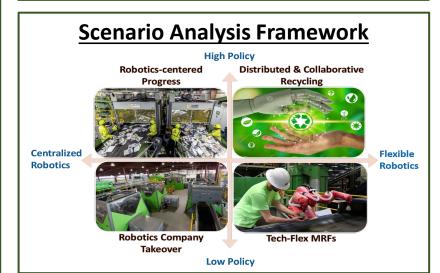
Future of Waste Sorting Technology Waste Type Recognition Pre-Sort Recorder Stream Source

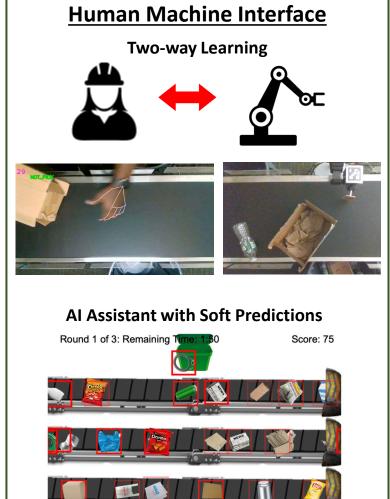
Waste Sorting Setups

Goal: Best division of labor for humans-robots Profitable Safe and Environmentally

Robotic Picking in Clutter

Meaningful work




Industry

Sustainable

Economy

2026478 FW-HTF-RM: Human-Robot Collaboration for Enhancing Manual Work

Robert Radwin, Bilge Mutlu, Shiyu Zhou, Lindsay Jacobs, & Timothy Smeeding, University of Wisconsin-Madison, rradwin@wisc.edu

Objectives

- Create a "matchmaking" process for human-robot collaboration to optimally match:
 - Work activities
 - Human capabilities
 - Robot augmentations
 - Economic models
- Improve productivity, health and safety, while maximizing human labor resources
- Transform employment across industries through human-robot collaboration
- Gain insight into how the next generation of robot systems should be designed

Approach

- Study existing manufacturing jobs that show potential to benefit from the integration of collaborative robots
- Hierarchical task analysis
 - Identify the job work activities
 - Quantify human tolerances for strain
 - Optimally assign tasks to the human and robot

- Optimization
 - Physical workload
 - Mental workload
 - Human tolerances
 - Human and robot abilities
 - Cycle time and productivity
 - Human labor and automation costs

Auto Assembly Example

- High levels of physical stress
 - Shoulder elevation
 - Carrying and supporting tool
 - Tool reaction forces
- Robot-human collaboration
 - Robot carries and reacts against tool forces
 - Maintains human dexterity for aligning tool
 - Eliminates physical stress and strain
 - Less tasks reduces cycle time/ increases productivity

Courtesy Ford Motor Company