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Abstract

We describe an efficient procedure for automatic repair of
quickly transcribed (QT) speech. QT speech, typically closed
captioned data from television broadcasts, usually has a signifi-
cant number of deletions and misspellings, and has a character-
istic absence of disfluencies such as filled pauses (for example,
um, uh). Errors of these kinds often throw an acoustic model
training program out of alignment and make it hard for it to
resynchronize. At best the erroneous utterance is discarded and
does not benefit the training procedure. At worst, it could mis-
align and end up sabotaging the training data. The procedurewe
propose in this paper aims tocleansesuch quick transcriptions
so that they align better with the acoustic evidence and thuspro-
vide for better acoustic models for automatic speech recognition
(ASR). Results from comparing our transcripts with those from
careful transcriptions on the same corpus, and from comparable
state-of-the-art methods are also presented and discussed.

1. Introduction
Speech transcription is a time-consuming and expensive pro-
cess, often involving expert guidance, supervision and multiple
iterations. As a consequence, when large amounts of data are
required to be distributed for training of acoustic models,it has
become common to distribute quick transcriptions. In QT data,
the goal is to get as much data out the door as rapidly as possi-
ble, without paying too much attention to the quality of the tran-
script produced. Obviously, this results in more errors, but the
implicit expectation is that the large volume of data will more
than make up for any errors in the transcription process. The
Linguistic Data Consortium (LDC) has, under this assumption,
recently distributed several thousand hours of closed captioned
broadcast news data.

In recent work, a number of researchers have examined a
variety of ways to deal with this type of data. Their methods
span the free recognition of acoustic data using an ASR pro-
gram and then extracting portions where the ASR output agrees
with the quick transcription to using special language models
trained on (only or mainly) the QT [1, 2, 3]. Besides being time-
consuming, a major problem with using an ASR program to de-
code the QT data is that errors made by the ASR system during
the decoding process will tend to reinforce the same kinds of
errors in future. We therefore propose a novel strategy thatin-
corporates the idea of running a decoder on the acoustic signal,
but also makes the maximum possible use of any provided QTs
during the decoding process to simultaneously increase theac-
curacy and reduce decoding time. We may succinctly describe
our method as one that decodes each speech sample with a spe-
cial very-high-order language model built from the particular

QT for that sample, but modified to account for missing disflu-
encies or the possibility of incorrect insertions and deletions.

2. Approach
We now give a detailed description of our approach. It is charac-
terized by a rapid alignment of the acoustic signal to specially
designed word lattices that allow for the possibility of either
skipping erroneously transcribed or untranscribed words in ei-
ther the transcript or the acoustic signal, and/or the insertion of
an optional disfluencies before the onset of every word.

However, flexible alignment is only one of a number of
steps (albeit the most important one) involved in preparingthe
QT for training acoustic models. The full sequence of process-
ing steps is as follows.

Step 1: Generating an initial set of references from the given
transcripts. Many of these will be excessively long and
often span entire broadcast shows. A good deal of text
normalization and filtering happens at this step to canon-
icalize spellings and automatically correct any obvious
transcription errors.

Step 2: Cutting the given waveforms to span exactly the set of
references generated in the previous step.

Step 3: Identifying waveforms and references that are too long
to be reliably processed (in our case these were segments
longer than 30 seconds)

Step 4: Forcibly aligning these long waveforms to their ref-
erence transcripts with partial flexibility. In this align-
ment, we allow both for reference words and portions of
the waveform to be skipped as otherwise the alignment
would fail on a number of waveforms.

Step 5: Identifying the location of pauses in the aligned out-
put and iteratively cutting the waveforms at increasingly
shorter pauses until all waveforms are of manageable
length (30s or less).

Step 6: Generating lattices for flexible alignment and flexibly
aligning all of the resultant waveforms.

Step 7: Converting the output of the recognizer from the pre-
vious step into reference transcripts for training acoustic
models.

2.1. Flexible Alignment

The flexible alignment procedure described by us requires the
construction of a special recognition search graph (lattice) for
each reference transcript. We do this programatically, by pro-
cessing every transcript to generate a hypothesis search graph
that has the following properties.



1: Every word is made optional. This allows for arbitrary
amounts of the transcript to be skipped while still enter-
taining the possibility of resynchronizing with the wave-
form at a later point.

2: Every word is preceded by either an optionalgarbageword,
which we call the @reject@ word, or one of a certain
number of disfluencies, namely, um, uh, uhhuh, huh,
hmm or uhuh. This allows for arbitrary amounts of the
acoustic signal to be skipped while still entertaining the
possibility of re-synchronizing with the transcription at
a later point. It also allows some of the words frequently
omitted in QT to be recovered.

3: Every word is followed by an optional pause of variable
length. In our approach the pause word is modeled us-
ing a special pause phone that is trained on background
noise.

The @reject@ word nominally represents out of vocabu-
lary items in the recognition language model. Consequentlyit
allows for the possibility of unknown words being present inthe
acoustic signal. These words are matched to the @reject@ word
if none of the known words provides a better acoustic match.
Because the @reject@ word ought to be able to match arbitrary
unknown words, it is composed of a special phone that we call
rej. This phone is trained on the acoustic data from all of the out
of vocabulary (OOV) words. Also, because @reject@ nomi-
nally stands for out of vocabulary items, we encode it in the
search graph with a probability that is roughly equal to thatof
an OOV item (the OOV rate) as measured on a development test
set. Similarly, the probabilities of transitioning through each of
the disfluencies are likewise determined empirically to be the
relative frequencies of each disfluency on a development test
set.

2.2. Class Based Lattices

To allow for a compact representation of the flexible alignment
lattice, we encode the optional elements as class tags in thetop-
level lattice. These class tags subsequently expand out into sub-
lattices of their own. Although arbitrarily nesting such lattices is
in theory possible, we obtained the most compact representation
at this level where each of the sub-lattices of the top-levellattice
contained only terminal symbols. Figure 1 shows a top-level
lattice and Figures 2 and 3 show the nested sub-lattices.

Word Probability
@reject@ 0.003
hmm 0.0000293
huh 0.0000162
uh 0.014
uhhuh 0.00015
uhuh 0.00015
um 0.0000162

Table 1: Probabilities of transitioning into each of the arcs of
the OPTNSREJ lattice. These were estimated empirically from
held out data. These probabilities are expectedly low because
the vocabulary of the ASR system is large.

Figure 2: The sub lattice that encodes disfluencies and the
@reject@ word. This is represented by the node labeled
OPT NSREJ in the top-level lattice. Transition probabilities are
not shown here, but are listed in table 1.

Figure 3: The sub lattice that encodes an optional pause before
each word. This is represented by the node labeled OPTPAU
in the top-level lattice. The probability of skipping the pause
word was empirically estimated to be 0.6 from the proportion
of pause words words in previous recognition outputs.

3. Method
3.1. Data Used

Our empirical tests were based on the the broadcast news
(BN) data from the TDT-4 collection released by LDC. The
LDC baseline transcripts came from closed captioned televi-
sion shows. More recently, the LDC has released a manually
corrected subset of these transcripts. These were used to upper-
bound the improvement that can be obtained with automatic QT
cleanup procedures.

As a further point of reference, we also tested TDT-4 tran-
scripts that were automatically generated by Cambridge Uni-
versity’s BN recognition system using a biased language model
(LM) trained on the closed captions. Their automatic tran-
scriptions, which we call the Cambridge transcripts, were gen-
erated by a fast, stripped-down version of their regular ASR
system that had the best performance in the NIST 2003 BN
STT evaluations [4]. These transcripts have also been used
by Cambridge University for their own experiments on lightly-
supervised acoustic model training [2].



Figure 1: Part of a top level flexible alignment lattice for the reference transcript “this is headline news with judy fortin”. Nodes labeled
with upper case letters (except NULL) are actually sub-lattices that are dynamically expanded in the recognizer.

The acoustic models used for flexible alignment were
trained on the 1996 and 1997 Hub4 Broadcast News acoustic
training data. They consist of gender-independent, within-word
genonic triphones using standard 39-dimensional MFCC fea-
tures. The recognition vocabulary was selected to be the top
125000 words from the Hub4 language model training data us-
ing the maximum likelihood procedure due to [5] tuned on the
TDT-4 data set on which the resultant vocabulary was found to
have a negligible out of vocabulary (OOV) rate.

3.2. Evaluation strategy

The final output of our flexible alignment procedure is a set of
reference transcripts that is (hopefully) of better quality than
the original closed captioned transcripts that were distributed
by LDC. In order to measure the quality of these transcripts,
we decided to train acoustic models with them and evaluate the
performance of these acoustic models on three different eval-
uation data sets. Approximately 36 hours of these transcripts
were discarded as unsuitable for training. 14 of these hours
were dicarded by the alignment procedure itself as unalignable
data. The remaining 22 hours were discarded post-hoc because
the proportion (20%) of @reject@ words in them exceeded our
intuitive threshold for being acceptable.

The three data sets used to evaluate the acoustic models
were the 2003 and 2004 TDT-4 development test sets defined by
the DARPA EARS program participants (denoteddev2003and
dev2004) and the RT-03 Speech To Text (STT) evaluation data
set for broadcast news distributed by NIST (denotedeval2003).

Besides the TDT-4 reference and acoustic data, the data
used for acoustic model training includes 1996 and 1997 Hub4
English Broadcast News Speech (75 hours and 71 hours, respec-
tively). The acoustic training data was processed with cepstral
normalizations and vocal tract length normalization (VTLN).
52 dimensional Mel frequency cepstrum (MFC) features (13
MFCcs + first, second and third order differences) are reduced
to 39 dimensions using Heteroscedastic Linear Discriminant
Analysis (HLDA). The acoustic models were trained as follows:
after training phonetically tied mixture (PTM) models, themod-
els were clustered and genonic acoustic models were trained.
Phonetic models had the usual three-state HMM structure with
left-to-right transitions and self-loops (enforcing a minimum
duration of 3 frames). All models used were trained using the
maximum likelihood criterion [4].

4. Results and Discussion
4.1. Word Error Rates on Hub-4 Broadcast News Data

We now report the results of evaluating the various sources
of TDT-4 transcripts. Evaluation was performed indirectlyby
adding in TDT-4 transcripts from each source into the acous-
tic model training procedure and observing the ASR accuracy
of the resultant models. All the models were trained on the
same 146 hours of Hub4 Broadcast news training data from

1996 and 1997, but with the different supplemental sources of
TDT-4 data, and in the baseline, no supplemental TDT-4 data.
The versions of the TDT-4 transcripts that we evaluated include
the original and hand-corrected closed captions from the LDC,
Cambridge University’s ASR transcripts, and our own flexibly
aligned transcripts. Transcripts that did not align duringtraining
were simply discarded. We also discarded any training shows
from the two-week period from which the two development test
sets were drawn and shows that didn’t belong to the subset of
hand-corrected TDT-4 transcripts provided by the LDC.

Our ASR procedure included the following steps: Segmen-
tation, computation of cepstra, removal of cepstral mean, nor-
malization of variances, application of vocal tract lengthnor-
malization (VTLN), HTK lattice generation using a within-
word acoustic model and a bigram language model, and finally
rescoring of HTK bigram lattices using a 5-gram almost-parsing
language model [4]. In Table 2, the initial WERs (%) refer to
the 1-best WER of the bigram HTK lattices and the final WERs
(%) refer to the WER after 5-gram language model rescoring.

To reduce the influence of varying segmentation strategies
between the systems employed by Cambridge University and
us, we trained two variations of acoustic models from the Cam-
bridge transcripts. One used their own segmentations and the
other had segment lengths determined by our waveform seg-
ments. Consequently, there were five acoustic models evaluated
on the three test sets described in Section 3, as shown in Table
2.

As Table 2 shows, the Flexalign model produced the low-
est word error rate (WER) after first-pass decoding on both the
Hub4 Broadcast News 2003 and 2004 TDT-4 development test
set and the lowest WER on all test sets after rescoring using
the 5-gram almost-parsing language model. On the Eval 2003
test set, the performance of the Flexalign model is still compet-
itive with the performance of the two best models. Taking into
account that the flexible alignment approach is faster than real
time, these results verify that this approach is at once effective
and efficient.

4.2. Varying the amount of data

Besides comparing the quality of transcripts generated using
different methods for acoustic model training, we were also
interested in investigating the effect of varying the amount of
training data for our proposed approach. Table 3 presents
the WERs using a similar evaluation framework to Table 2.
The Flexalign-subset model was trained using Flexibly aligned
TDT-4 transcripts from the same subset of shows as in the LDC-
hand-corrected data (325 hours). The Flexalign-full model
was trained using all available Flexibly aligned transcripts (366
hours). For each model, As can be seen from Table 3, increas-
ing the amount of training data also scales up the performance
of the the flexible alignment procedure.



Model WER on dev2003 WER on eval2003 WER on dev2004
Initial Final Initial Final Initial Final

Baseline 22.0 17.8 19.9 14.9
LDC-raw 21.3 16.8 19.7 14.7 22.4 18.9
LDC-hand-corrected 20.9 15.9 18.9 13.9 22.0 18.1
CUED-CUED-segs 21.1 16.0 19.2 14.1 21.9 18.2
CUED-SRI-segs 20.7 15.9 18.9 14.0 22.0 18.2
Flexalign 20.8 15.8 19.3 14.4 21.8 18.0

Table 2: WER results (%) using models trained with flexible alignment transcripts compared with those with (1) only Hub4 transcripts
(no TDT-4 data) (2) Raw closed captioned transcripts processed just as with our flexible alignment procedure except thatoptional
words were not used and unalignable transcripts were discarded (3) A hand-corrected subset of (2) provided by LDC (4) Transcripts
from Cambridge (CUED) with lengths determined by CUED’s segmentation and (5) Transcripts from Cambridge but with lengths
determined by our waveform segments. The Initial WERs refers to the 1-best WER of the bigram HTK lattices and the final WERs
refer to the WER after 5-gram language model rescoring.

Model WER on dev2003 WER on eval2003 WER on dev2004
Initial Final Initial Final Initial Final

Flexalign-subset 20.8 15.8 19.3 14.4 21.8 18.0
Flexalign-fullset 20.9 15.8 19.0 14.2 21.8 17.7

Table 3: WER results using models trained with varying amounts of flexibly aligned transcripts.

4.3. Precision and Recall on Disfluency Insertion

A final experiment examined the accuracy of inserting disflu-
encies from the flexible alignment approach. The experiment
was performed on the 1996 Hub4 Broadcast News training tran-
scripts by initially removing all of the disfluencies from the set
and re-inserting them using the flexible alignment approach.
The original transcripts with disfluencies served as the reference
set. We then evaluated the precision (proportion of inserted dis-
fluencies that were correct) and the recall (proportion of correct
disfluencies that were inserted). On the 1996 broadcast news
acoustic training data, the flexible alignment approach obtains a
precision of 68% and a recall of 54%. While it is hard to assess
these numbers in absolute terms for lack of a point of reference,
we take them as further indication that the flexible alignment
approach works reasonably on its intended task of fixing inac-
curacies in quick transcriptions.

5. Conclusions
We have shown a fast and effective approach for correcting
(some of) the errors found in quick transcripts (e.g., closed cap-
tions) of speech, thus making them more suitable for training
acoustic models. We obtained consistently better accuracies on
three BN testsets from the flexibly aligned transcripts thanwith
the originals, and results that are comparable to or better than
those with transcripts generated by free recognition, which are
more time-consuming to produce. In future work, we hope to
refine this procedure by employing more sophisticated flexible
alignment lattices that use higher-order context dependent tran-
sition probabilities.
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