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ABSTRACT

We investigate using state-of-the-art speaker diarization output for
speech recognition purposes. While it seems obvious that speech
recognition could benefit from the output of speaker diarization
(“Who spoke when”) for effective feature normalization andmodel
adaptation, such benefits have remained elusive in the very challeng-
ing domain of meeting recognition from distant microphones. In this
study, we show that recognition gains are possible by careful post-
processing of the diarization output. Still, recognition accuracy may
suffer when the underlying diarization system performs worse than
expected, even compared to far less sophisticated speaker-clustering
techniques. We obtain a more accurate and robust overall system by
combining recognition output with multiple speaker segmentations
and clusterings. We evaluate our methods on data from the 2009
NIST Rich Transcription meeting recognition evaluation.

Index Terms— speech processing, speaker diarization, meeting
recognition, rich transcription, system combination.

1. INTRODUCTION

Recognition of free-form, multiparty meetings remains oneof the
most challenging tasks that is formally studied and evaluated by the
speech recognition community, especially when recognition is per-
formed by microphones at a distance from, and shared by, the speak-
ers. This scenario has been studied in a series of NIST evaluations
on conference-style meeting data [1], but is also very relevant to
what has been described as “broadcast conversation,“ such as talk
and call-in shows. Along with automatic speech-to-text transcription
(STT), NIST evaluates speaker diarization (i.e., speech detection and
speaker tracking to answer the question “who spoke when”).

It seems natural that STT systems should directly benefit from
proper diarization. First, most recognizers perform more accu-
rately and efficiently when applied to audio segments that have been
trimmed of nonspeech regions (except for short inter-word pauses
and a small amount of padding at the edges). Further, speech fea-
tures are best normalized by speaker, and acoustic model adaptation
usually works best on homogeneous speaker clusters.

However, for many reasons, the relationship between diarization
quality and STT accuracy is not straightforward. For example, a di-
arization system that over-hypothesizes speech is not as bad as one
that misses it, because the STT system provides another chance to
classify nonspeech as such. Also, sub-clustering speakerswith suffi-
cient data might well be beneficial, as the STT system can thenadapt
to variable acoustic conditions (such as environmental noise or posi-
tion relative to the microphone). The study in [2] found little or no
correlation between the standard diarization error metricand word

Table 1. Comparison of key NIST RT evaluation set properties
RT-07 RT-09

No. meetings 8 7
Avg./max. no. of speakers per meeting 4.38 / 6 5.43 / 11
Total duration 180 mins 181 mins
Total speech duration 147 mins 164 mins
Total no. of words 35882 40110

error recognition, and found that properly tuned pause-bridging and
padding parameters were the most important factors when utilizing
diarization system output for STT.

For many years, as a matter of practical experience, our groups
at SRI and ICSI have fielded both speech recognition and diarization
systems that had state-of-the-art performance in NIST evaluations.
Yet, in previous years, our STT system always worked best when
based on a rather simple, ad-hoc diarization system (described be-
low), and no gains were realized when coupling it with the output of
our best diarization system. Undaunted, we pursued such a coupling
again for the 2009 NIST Rich Transcription (RT-09) evaluation, us-
ing the techniques described here.

2. DATA AND METRICS

Our data is drawn from the two most recent NIST Rich Transcription
(RT) conference meeting evaluation sets, RT-07 and RT-09. Note
that each set contains 20- to 30-minute-long excerpts of longer meet-
ings, but only the regions defined for evaluation purposes are pro-
cessed by our systems; while using data outside those regions is le-
gal, little or no benefit was found doing so, for either diarization or
recognition. Statistics of these test sets are summarized in Table 1.

Diarization and recognition were evaluated under several micro-
phone conditions. The two conditions of interest here aresingle dis-
tant microphone (SDM) andmultiple distant microphones (MDM).
In both cases, microphones were placed on tables at which themeet-
ing participants were sitting. Type, placement, and number(for
MDM) of microphones was variable across meetings.

Diarization performance is measured by the NISTdiarization
error rate (DER), which is the total audio duration that is mistakenly
classified as speech or nonspeech or assigned to the wrong speaker
cluster, divided by the total speech duration. Similarly, STT word
error rate (WER) is computed as the total number of incorrectly rec-
ognized or deleted words, divided by the total number of reference
words. One additional parameter in error metrics for meeting recog-
nition is the maximum allowed number of overlapping speakers. An
“overlap-N ” metric includes all reference speech segments with up
toN speakers talking simultaneously.
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Fig. 1. The ICSI speaker diarization engine as configured for the
RT-09 evaluation, MDM condition

3. SPEECH PROCESSING

Prior to diarization and recognition, the audio signal is processed as
follows. In the SDM condition, a dynamic range compression is ap-
plied to normalize energy variance caused by different microphone
distances. Then, the signal is Wiener-filtered [3]. In the MDM con-
dition, the signal is then beamformed using BeamFormIt 2.0 [4].

3.1. Baseline speech detection and clustering

The standard speech detection and clustering process used for STT
purposes was developed without regard to diarization metrics and
optimized purely with respect to STT accuracy. First, the input is
segmented into speech and nonspeech portions by decoding with a
two-class GMM acoustic model based on standard Mel frequency
cepstral coefficient (MFCC) features. The HMM structure imposes
some minimum duration constraints and penalizes transitions be-
tween speech and nonspeech classes. The resulting speech segments
are combined and padded to satisfy some duration constraints: no
pauses longer than 0.4 s, no segments longer than 60 s, and 0.06 s
nonspeech at the beginning and end of segments.

Second, the resulting speech segments from a given meeting un-
dergo agglomerative clustering based on acoustic similarity, follow-
ing a method previously developed for broadcast news recognition
[5]. To define a distance between segments a single GMM is trained
per meeting, with a separate mixture weight vector per segment. The
distance between two segments is then defined as the weighted-by-
counts increase in entropy of the mixture weight distribution due to
clustering two segments. As a stopping criterion, a fixed limit on
the increase in entropy can be chosen. However, probably dueto
the typical makeup of RT evaluation meetings, in past evaluations
we had obtained best results by fixing the number of clusters at four,
and we stuck to this choice.

3.2. ICSI diarization system

In contrast to the baseline approach, we also used the ICSI diariza-
tion system as developed for the RT-09 evaluation, which is a“prop-
er” diarization system optimized for the error metric employed by
NIST. The system architecture is depicted in Figure 1. From the au-
dio, 19th-order MFCC features are extracted with a frame size of
30 ms and a step size of 10 ms. Speech activity regions are deter-
mined using a state-of-the-art speech/nonspeech detector[6]. The
nonspeech regions are then excluded from the agglomerativeclus-
tering as described below.

In the multiple microphone condition, time-delay-of-arrival fea-
tures are computed between a reference channel (selected automat-
ically) and each of the other available channels, at a rate of10 ms,
with an analysis window of 500 ms. These delays are input intothe
clustering system as an extra feature vector and are modeledby an
HMM model using the same topology as the cepstral features, using
one Gaussian per cluster. In both the Viterbi decoding and the BIC
comparison, we used a weighted combination of the two models.

The algorithm is initialized using the prosodic-features initial-
ization scheme presented in [7, 8]. Each cluster is modeled with a
Gaussian mixture model (GMM). The algorithm then performs the
following iterations:

Re-Segmentation: Run Viterbi alignment to find the optimal path
of frames and models. As classifications based on 10 ms framesare
very noisy, a minimum duration of 2.5 s is assumed for each speech
segment.

Re-Training: Given the new segmentation of the audio track,
compute new GMMs for each of the clusters.

Cluster Merging: Given the new GMMs, try to find the two
clusters that most likely represent the same speaker. This is done
by computing a score based on the Bayesian information criterion
(BIC) of each of the clusters and the BIC score of a new GMM
trained on the merged segments for two clusters. If the BIC score
of the merged GMM is larger than or equal to the sum of the in-
dividual BIC scores, the two models are merged and the algorithm
continues at the re-segmentation step using the merged GMM.If no
pair such is found, the algorithm stops.

A more detailed description can be found in [9, 10]. As a result
of various optimization approaches [11], our current implementation
runs at about 0.6 times real time.

3.3. Other diarization systems

For analysis purposes, we also experimented with two addi-
tional diarization outputs. As an upper bound on what could be
achieved with perfect diarization, we use the NIST scoring refer-
ences as a “cheating” diarization system, providing close-to-perfect
speech/nonspeech and speaker assignment. Second, we also tested
our algorithms on output provided by the Institute for Infocomm
Research/Nanyang Technological University (IIR/NTU), Singapore
[12], which had outstanding performance on the RT-09 diarization
tasks.

3.4. Speech Recognition

The STT system for all our experiments is the meeting recognition
system jointly developed by SRI and ICSI for the distant micro-
phone, conference meeting conditions in the NIST RT-07 meeting
recognition evaluation [13]. The recognizer performs a total of eight
decoding passes with alternating acoustic front-ends: onebased
on telephone-band MFCCs augmented with multilayer-perceptron
(MLP) features, and one based on full-band perceptual linear pre-
diction (PLP) features. Acoustic models are cross-adaptedduring
recognition to output from previous recognition stages, and the out-
put of the three final decoding steps is combined via confusion net-
works. The MFCC models are trained on telephone conversations
and then adapted to about 200 hours of meeting data. The PLP mod-
els, by contrast, are originally trained on broadcast data.Various
discriminative techniques are used in training and adaptation [14].
Language models (LMs) consist of a mixture of genre-specificmod-
els for meeting transcripts, telephone conversations, broadcast news,
and web data.



Table 2. DER and WER results for different diarization methods
Diarization RT07 MDM RT07 SDM RT09 MDM RT09 SDM

metric DER WER WER DER WER WER DER WER WER DER WER WER
overlap 1 4 1 4 1 4 1 4

Baseline 30.9 26.2 40.5 53.9 33.1 45.2 37.3 34.0 42.9 37.3 41.3 49.9
ICSI 8.6 25.9 37.8 17.2 32.5 44.2 17.2 35.9 43.0 31.3 44.6 51.6
IIR/NTU n/a n/a n/a n/a n/a n/a 9.2 34.7 43.4 16.0 40.9 49.4
Reference 0 24.6 39.2 0 30.7 44.6 0 31.7 43.9 0 39.5 50.0

Table 3. WER (overlap-1) results for different diarization front ends
Speech detection Clustering RT07

MDM SDM
Baseline Baseline 26.2 33.1
ICSI Baseline 26.4 33.1
ICSI ICSI 25.9 32.5

The recognition system assumes that speech is first separated
from nonspeech and segmented into segments of moderate length
(up to 60 seconds). Further, the system assumes that the speech
segments are clustered into equivalence classes that, ideally, each
pertain to a single speaker. Thesepseudo speaker clusters are then
used to perform vocal tract length normalization, and cepstral mean
and variance normalization. In later recognition passes, the pseudo
speaker clusters also form the units on which unsupervised acous-
tic adaptation is performed. In each MLLR step of the multi-pass
recognition systems, separate adapted models are computedfor each
of the speaker clusters.

Recognition for single and multiple distant microphone condi-
tions differs only in the preprocessing of the signal, usingWiener
filtering and beamforming as for the diarization system. Processing
time is about 3.8 times real time on an 8-core, 3.1-GHz Intel-based
server.

4. COMBINING DIARIZATION AND RECOGNITION

From prior experience (our own as well as others’ [2]), good STT
performance requires postprocessing of the speech regionsdetected
by the diarization system. The parameters of this postprocessing
were optimized on a previous NIST evaluation set (RT-06). The re-
sulting steps for segmentation postprocessing were as follows:

1. Merge segments assigned to the same speaker if they are sepa-
rated by less than 0.4 s nonspeech, and as long as the resulting
segment is shorter than 60 s long.

2. Discard segments with less than 0.2 s of speech

3. Pad segments with 0.2 s of nonspeech at the beginning and
end.

After optimizing these steps based on the ICSI diarization output
on RT-06 data, we kept them constant for all subsequent experi-
ments with other diarization systems and reference outputs. The
speaker assignments of the diarization system can be transferred to
the STT system because the segment postprocessing never combines
segments from different speakers.

Table 3 shows the STT results with various combinations of
baseline and ICSI processing for speech segmentation and cluster-
ing. A small gain (0.3% for MDM, 0.6% for SDM) is seen with
ICSI diarization compared to the baseline. However, we alsosee
that this gain can be credited fully to the improved speaker cluster-
ing from the diarization system. The updated segmentation does not
seem to yield an improvement, and it might even hurt STT (0.2%

degradation for MDM). Note that the ICSI speaker clusteringwas
optimized to operate on ICSI segmentation; therefore, we found it
safest to adopt both segmentation and clustering from the diarization
system.

Table 2 shows DER and WER results for different diarization
methods. (The IIR/NTU diarization output was only available for
the RT-09 test set.) The main observation is that the RT-09 data
was much more challenging for diarization, and using its output for
STT leads to a loss compared to the baseline. A likely reason for
the greater difficulty is that the RT-09 evaluation set contains more
speakers (cf. Table 1) and, most importantly, a much larger amount
of overlapping speech (up to 37% in one meeting) than all previous
evaluation and development sets. Even using the IIR/NTU system,
with much lower DER than ICSI, gives no gain in the MDM condi-
tion, even though a 0.4% improvement is found for SDM. Also note
that, as expected, the baseline system has very high DER, mostly
because of poor speaker clustering (by diarization standards).

The reference diarization provides substantial benefits for
overlap-1 WER: 2.3% lower WER for MDM and 1.8% for SDM.
Note that the overlap-4 WER results with reference diarization are
not easily interpreted since the reference output containsoverlapping
speaker segments, but the STT system has no special processing for
such overlaps (it assumes the speakers are strictly nonoverlapping).
None of the actual diarization systems produce overlappingspeaker
labelings.

5. COMBINING MULTIPLE DIARIZATIONS

To extract larger STT gains from diarization output, we may com-
bine STT outputs from multiple STT systems, each based on dif-
ferent diarizations. This approach is motivated by two prior results:
Cambridge U. reported gains from combining hypotheses obtained
based on different broadcast news segmentations [15], and in the
2007 evaluation, we had seen gains by combining systems thatdif-
fered only in their pseudo-speaker clustering parameters,according
to the baseline algorithm [13]. In this study, we combined two STT
systems at a time. One was always based on the baseline segmen-
tation and clustering method (in hindsight this was a good choice
because the baseline system seems quite robust even to data that is
difficult to diarize). The other STT systems made use of one ofthe
diarization outputs, as described before.

Hypotheses from the component systems were then combined
using one of two methods. The first was the NIST ROVER algo-
rithm [16], which aligns the hypothesized 1-best words and resolves
disagreements based on word confidences. We used the word poste-
rior probabilities generated during the final confusion network (CN)
combination stage in each of the STT systems as confidence esti-
mates.

The second method was confusion network combination (CNC),
whereby the CNs from both STT systems are aligned, and all word
hypotheses (not just the 1-best) vote with their posterior probabilities
toward a new best hypothesis [17]. CNC requires a consistentseg-



Segmentation A    ____    _____     __   ____   ___    ___     ___    __________

Segmentation B ___   _____         ______  ______          ________    ___   _____

Consensus             ___________     _________________     ____________________

Fig. 2. Consensus segmentation for CNC from differing diarizations

Table 4. STT WER results combining diarization methods
Diarization RT09 MDM RT09 SDM

overlap 1 4 1 4
Baseline 34.0 42.9 41.3 49.9
ICSI 35.9 43.0 44.6 51.6
Base+ICSI (ROVER) 34.2 43.8 42.2 51.1
Base+ICSI (CNC) 33.3 43.0 40.8 50.1
IIR/NTU 34.7 43.4 40.9 49.4
Base+IIR/NTU (CNC) 32.7 41.5 40.0 48.8

mentation of hypotheses across the combined system, and is there-
fore not directly applicable to our case. Stringing all the segment-
level CNs from one system together would not be feasible, as the
CNC algorithm is quadratic in the length of the inputs. As a so-
lution, we concatenate CNs according to aconsensus segmentation
(i.e., a set of segments bounded by nonspeech regions that are shared
among all input systems, as depicted in Figure 2), and then perform
CNC on the matching concatenated CNs. Finally, the new 1-best
words are force-aligned to the consensus waveform segmentsto ob-
tain word times.

As shown in Table 4, combining diarizations is generally ben-
eficial. CNC gives results that are between 0.8% and 1.4% bet-
ter than ROVER combination. Using the best-available diarization
(from IIR/NTU), we now see substantial gains over the baseline, of
between 1.1% and 1.4% lower WER. Even for the ICSI diarization
system, CNC results in 0.7% to 0.5% overlap-1 WER reduction (and
a very small loss in overlap-4 WER).

6. CONCLUSIONS

We have shown that meeting diarization system output can give
modest gains in STT accuracy over a simple, but relatively robust
baseline speech segmentation and clustering algorithm as found in
our state-of-the-art meeting recognizer. Potential gainsfrom bet-
ter diarization are substantial (around 2%), as assessed byutilizing
gold-standard diarization references. However, even state-of-the-
art meeting diarization systems are presently not accurateenough
to give substantial and consistent STT gains, as seen on the more
difficult RT-09 evaluation set. Finally, we do see more than 1% ab-
solute WER reduction over baseline when the outputs of STT sys-
tems based on different diarizations are combined. To this end, we
developed a confusion network combination algorithm that can deal
with diverging waveform segmentations in the component systems.
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versitat Politècnica de Catalunya, Oct. 2006.

[5] A. Sankar, F. Weng, Z. Rivlin, A. Stolcke, and R. R. Gadde,“The
development of SRI’s 1997 Broadcast News transcription system”, in
ProceedingsDARPA BroadcastNews Transcription and Understanding
Workshop, pp. 91–96, Lansdowne, VA, Feb. 1998. Morgan Kaufmann.

[6] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diarization
system”, In Stiefelhagen et al. [18], pp. 509–519.

[7] D. Imseng and G. Friedland, “Tuning-Robust Initialization Methods
for Speaker Diarization”,IEEE Transactions on Audio, Speech, and
Language Processing, vol. to appear, 2010.

[8] D. Imseng, “Novel initialization methods for speaker diarization”,
Idiap-RR Idiap-RR-07-2009, IDIAP, May 2009, Master’s thesis.

[9] J. Ajmera, “A robust speaker clustering algorithm”,in Proceedings
IEEE Workshop on Speech Recognition and Understanding, pp. 411–
416, St. Thomas, U. S. Virgin Islands, Dec. 2003.

[10] X. Anguera, C. Wooters, B. Peskin, and M. Aguiló, “Robust speaker
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