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Abstract—Sentence segmentation of speech aims at determining
sentence boundaries in a stream of words as output by the speech
recognizer. Typically, statistical methods are used for sentence seg-
mentation. However, they require significant amounts of labeled
data, preparation of which is time-consuming, labor-intensive, and
expensive. This work investigates the application of multi-view
semi-supervised learning algorithms on the sentence boundary
classification problem by using lexical and prosodic information.
The aim is to find an effective semi-supervised machine learning
strategy when only small sets of sentence boundary-labeled
data are available. We especially focus on two semi-supervised
learning approaches, namely, self-training and co-training. We
also compare different example selection strategies for co-training,
namely, agreement and disagreement. Furthermore, we propose
another method, called self-combined, which is a combination of
self-training and co-training. The experimental results obtained
on the ICSI Meeting (MRDA) Corpus show that both multi-view
methods outperform self-training, and the best results are ob-
tained using co-training alone. This study shows that sentence
segmentation is very appropriate for multi-view learning since
the data sets can be represented by two disjoint and redundantly
sufficient feature sets, namely, using lexical and prosodic informa-
tion. Performance of the lexical and prosodic models is improved
by 26% and 11% relative, respectively, when only a small set
of manually labeled examples is used. When both information
sources are combined, the semi-supervised learning methods
improve the baseline F-Measure of 69.8% to 74.2%.

Index Terms—Boosting, co-training, prosody, self-training,
semi-supervised learning, sentence segmentation.
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I. INTRODUCTION

D IALOG act or sentence segmentation for speech1 aims
at finding sentence units in a stream of words, output by

the speech recognizer. Sentence segmentation is a preliminary
step for many speech processing applications, such as parsing,
machine translation, and information extraction. Speech recog-
nizer output typically lacks certain entities, such as headers,
paragraphs, sentence punctuation, and capitalization. However,
speech provides extra nonlexical cues, related to features like
pitch, energy, pause and word durations, named as prosodic fea-
tures. It has been shown that for segmentation of speech into
sentences, prosodic and lexical cues provide complementary in-
formation [1].

For sentence segmentation, statistical methods are employed.
However, such data-driven methods require significant amounts
of labeled data, which is expensive, time-consuming, and
laborious to prepare. In this paper the goal is building a better
sentence segmentation system using less data. In our earlier
work, we proposed supervised model adaptation methods
for sentence segmentation using a small amount of labeled
in-domain data and a large amount of labeled out-of-domain
data [2]. This paper, on the other hand, focuses on multi-view
semi-supervised training of sentence segmentation models
without exploiting any out-of-domain data. We compare the
well-known semi-supervised learning approaches in the ma-
chine learning and speech and language processing literature,
including co-training and self-training. Furthermore, previ-
ously, we investigated the effects of co-training methods on
the sentence segmentation problem [3]. That work employed
a single pass co-training algorithm with only 1000 labeled
examples and showed an F-Measure improvement from 69.8%
to 71.2%.

In this paper, we study the effect of iterating the co-training
algorithm and show that F-Measure further increases to 74.2%.
The optimum number of iterations is determined using a
held-out set. Furthermore, we investigate the effect of the size
of the initial seed of manually labeled data on this task using
these semi-supervised learning methods. More specifically, we
show results using 1000, 3000, and 6000 annotated examples.
The performance improvement is consistently seen in all cases
using semi-supervised learning, however by a lesser amount as
the data sizes increase, as expected.

This study also proposes a novel multi-view semi-supervised
learning approach, called, self-combined learning combining
self-training and co-training algorithms. We show that this

1Sentence segmentation from here on.
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method outperforms co-training and self-training for the first
iteration, however after multiple iterations, co-training results
in better performance.

After giving the experimental results, we present an analysis
of cases which demonstrate the use of co-training for sentence
segmentation. Basically we compare examples that are classi-
fied correctly with high confidence by the lexical model but in-
correctly by the prosodic model and vice versa.

In Section II, we present related work on sentence segmenta-
tion and semi-supervised learning methods, and then describe
our sentence segmentation and semi-supervised learning ap-
proaches in Section III. We provide experimental results using
self-training and different semi-supervised learning strategies
with the ICSI Meeting Recorder Dialog Act (MRDA) corpus
[4] in Section IV and our conclusions in Section V.

II. RELATED WORK

Before presenting the details of the semi-supervised learning
methods employed in this study, we first present the related work
for sentence segmentation. Then we present the literature on the
semi-supervised learning methods.

A. Sentence Segmentation

Segmenting an utterance into sentential units has different in-
terpretations depending on the domain. In prewritten speech,
such as broadcast news, a sentential unit is equivalent to a reg-
ular grammatical sentence. However, work on multiparty meet-
ings has been more recent [5], [6], among others. The problem
with the meetings domain is that, unlike prewritten speech, it is
not always clear where the sentence boundaries are. The interan-
notator agreement has been low during the segmentation of the
meetings [5]. For the example utterance okay no problem, it is
unclear whether or not this is a single sentence. To alleviate this
problem, the segmentation task is redefined for the meetings do-
main as the task of dialog act segmentation, and dialog acts are
defined for conversational speech using various standards such
as DAMSL [7] or MRDA [8]. According to these, the example
okay no problem has two dialog act tags (or sentential units):
okay and no problem.

In the literature, typically sentence or dialog act segmentation
is treated as a boundary classification problem where the goal
is finding the most likely boundary tag sequence given the
features

To this end, mostly generative, discriminative, or hybrid models
are used. The most popular generative model is the hidden event
language model, as introduced by Stolcke and Shriberg [9]. In
this approach, sentence boundaries are treated as the hidden
events, and the above optimization is simply done by the Viterbi
decoding using only lexical features, i.e., language model, to
model . is simply considered to be a constant,
optimized according to the tradeoff between false alarms and
misses:

Decision trees were also used to build hybrid models to improve
this approach by using additional prosodic features [1]. The pos-
terior probabilities obtained from the decision trees were simply
converted to state observation likelihoods by dividing to their
priors following the well-known Bayes rule

With the advances in discriminative classification algorithms,
researchers tried using conditional random fields [10], boosting
[2], and hybrid approaches using boosting and maximum en-
tropy classification algorithms [11]. In this paper, we employed
a discriminative classifier namely, boosting which is described
below.

Recent research has focused on model adaptation methods
for improving dialog act segmentation for meetings using spon-
taneous telephone conversations, and speaker-specific prosodic
[12] and lexical modeling [2].

B. Semi-Supervised Learning

The goal of semi-supervised learning is to reduce the amount
of labeled data needed to train statistical models. In most real-
life applications it is easier to collect, than to label, data. For
example, one can easily record audio from broadcast news, but
transcribing or annotating the audio with some labels is a harder
task.

Semi-supervised learning methods assume that there is a
small amount of in-domain labeled data and a relatively larger
amount of unlabeled data. Then the goal is exploiting the
unlabeled data to improve performance of the system. In all
semi-supervised learning methods, first an initial classifier
is trained using the available data. Then the basic idea is to
use this classifier to label the unlabeled data automatically,
and improve classifier performance using the machine-labeled
examples. Making this process iterative and exploiting a small
number of automatically labeled examples in each iteration
enables incremental use of unlabeled data. This is in contrast to
using all the unlabeled data (even in a weighted manner), and
the behavior of the models significantly changes accordingly
[13].

1) Self-Training: Self-training is the most popular semi-su-
pervised learning method. For self-training, the given model es-
timates the classes for the unlabeled portion of the data. Then
the examples that are classified automatically are added to the
training set, the model is retrained, and the whole process is iter-
ated [13]. To eliminate the noise introduced by falsely classified
samples, only those classified with a high confidence may be
exploited. Similarly, those classified with very high confidence
may also be ignored to avoid the bias toward easy-to-classify
classes.

Self-training is very closely related to unsupervised model
adaptation typically employed for speech and speaker pro-
cessing systems. A very popular adaptation approach is
maximum a posteriori (MAP) adaptation [14]. With some sim-
plification, the MAP adaptation can be reduced to a weighted
linear interpolation of the prior model and the model trained
with automatically classified samples. That is nothing but
self-training. This approach has been applied to unsupervised
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acoustic and language model (LM) adaptation and speaker
adaptation. Bacchiani and Roark have applied iterative un-
supervised LM adaptation to voicemail transcription [15].
Hakkani-Tür et al. have employed unsupervised LM adaptation
for new call center spoken dialog applications [16]. Gretter and
Riccardi have exploited word confidences obtained from word
confusion networks during unsupervised LM adaptation [17].

Self-training has been applied to a number of language pro-
cessing tasks, such as part of speech tagging [18], word sense
disambiguation [19], and syntactic parsing [20].

2) Co-Training: Contrary to the traditional single view ma-
chine learning concept, the set of features of the multi-view ap-
proach consists of two or more different feature subsets (views),
each of which is distinguishable and sufficient for learning from
itself individually. The main difference between these two ap-
proaches is that in the multi-view concept the views are boot-
strapped from each other, while in the single view the algorithm
trains itself.

Co-training is a very effective machine-learning technique
that has been used successfully in several classification tasks,
such as web page classification, word sense disambiguation,
and named-entity recognition. Co-training is a semi-supervised
learning method that aims to improve performance of a super-
vised learning algorithm by incorporating large amounts of un-
labeled data into the training data set. Co-training algorithms
work by generating two or more classifiers trained on different
views of the input labeled data that are then used to label the
unlabeled data separately. The most confidently labeled exam-
ples of the automatically labeled data can then be added to the
set of manually labeled data. The process may continue for sev-
eral iterations. In this paper, we describe the application of the
co-training method for sentence segmentation where we use
prosodic and lexical information as two views of the data.

The co-training approach was first introduced and performed
by Blum and Mitchell [21], [22]. The main goal is using multiple
views together with unlabeled data to augment a much smaller
set of labeled examples. More specifically, the presence of mul-
tiple distinct views of each example can be used to train separate
models for the same task, and then each classifier’s predictions
on the unlabeled examples are used to augment the training set
of the other classifier. The task Blum and Mitchell used was
identifying the web pages of academic courses from a large col-
lection of web pages collected from several computer science
departments. Their co-training implementation had two natural
feature sets: the words present in the course web page and the
words used in the links pointing to that web page. For this task,
both views of examples are considered as sufficient for learning.
Blum and Mitchell showed that co-training is probably approxi-
mately correct (PAC) learnable when the two views are individ-
ually sufficient for classification and conditionally independent
given the class. Their results showed that the error rate of the
combined classifier was reduced from 11% to 5%.

There has been much effort on investigating the effectiveness
of the co-training algorithm in different domains and applica-
tions. In recent work [23], it is shown that the independence as-
sumption can be relaxed, and co-training is still effective under
a weaker independence assumption. In that work, a greedy al-
gorithm to maximize the agreement on unlabeled data is pro-

posed. This resulted in improved results in a co-training experi-
ment for named entity classification. It is shown that the rate of
disagreement between two classifiers with weak independence
is an upper bound on the co-training error rate.

Kiritchenko and Matwin applied co-training to the e-mail
classification task [24]. In this work, it was found that perfor-
mance of the co-training was sensitive to the learning algorithm
used. In particular, co-training with Naïve Bayes did not result in
better performance. However, this was not the case with support
vector machines. The authors explained this situation with the
inability of the Naïve Bayes to deal with large sparse datasets.
This explanation was also confirmed by significantly better re-
sults after feature selection.

Nigam and Ghani demonstrated the relationship between the
expectation-maximization (EM) algorithm and the semi-super-
vised learning methods, such as self-training and co-training
[13]. They also proposed a hybrid approach, called Co-EM, an
iterative semi-supervised learning method in which all the un-
labeled data is exploited in each iteration. They performed ex-
periments to investigate the sensitivity of the co-training to the
assumptions of conditional independence and redundant suffi-
ciency. In the first experiment, co-training was applied to the
web page database from Blum and Mitchell [21]. The results
showed that the use of co-training was not better than expec-
tation maximization even when there is a natural split of fea-
tures. Both expectation maximization and co-training improved
performance of the initial classifier by approximately 10%. The
second experiment was performed on a dataset that had been
created in a semi-artificial manner so that the two feature sets
are truly conditionally independent. In addition, the condition
of redundantly sufficient features was met, since the classifier
trained on each of the data sets separately was able to obtain a
small error rate. It was found that co-training well outperformed
expectation–maximization, and even outperformed the classi-
fier trained with all examples labeled. Their third experiment
involved performing co-training on a dataset whereby a natural
split of feature sets is not used. The two feature sets were chosen
by randomly assigning all the features of the dataset into two dif-
ferent groups. This was tried for two datasets, one with a clear
redundancy of features, and one with an unknown level of re-
dundancy and nonevident natural split in features. The results
indicated that the presence of redundancy in the feature sets gave
the co-training algorithm a bigger advantage over expectation
maximization. However, performance of the co-EM method is
similar to that of co-training. The results of these experiments
verified that co-training has a considerable dependence on the
assumptions of conditional independence and redundant suffi-
ciency. However, even when either or both of the assumptions
are violated, the performance of co-training can still be quite
useful in improving a classifier’s performance. We believe that
the sentence segmentation task demonstrates a sufficient amount
of redundancy since ends of sentences are typically marked with
lexical and prosodic cues.

Some studies also consider using different classification algo-
rithms instead of different views for co-training. For example,
Wang et al. employ maximum entropy and hidden Markov
models (HMMs) for part-of-speech tagging and parsing [18].
They also compare co-training with self-training. Similarly,
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Mihalcea applied co-training to word sense disambiguation,
comparing the effectiveness with self-training [19].

III. APPROACH

We first briefly present our sentence segmentation approach
using lexical and prosodic features. Then, we present how we
employ the semi-supervised learning algorithms for this task
using various example selection mechanisms. We also provide
a description of the self-training method commonly used for
semi-supervised learning.

A. Sentence Segmentation

In this paper, the sentence segmentation task was considered
as a binary sequence classification problem while and rep-
resent the sentence boundary and nonsentence boundary as the
classes, respectively. In sentence segmentation, the aim is to es-
timate the classes for sentence boundaries for a
given word sequence , where ,
is the boundary between the word and the word , and

is the last boundary following . This is done by training
a binary statistical classifier [25] to estimate the posterior prob-
ability , where for sentence and
nonsentence boundaries and are the feature observations for
the word boundary . For each word boundary, a probability
is emitted by the statistical classifier. Ideally, the decision of
the classifier is the class with maximum probability

. Nevertheless, in the sentence segmentation task, the esti-
mated sentence boundary probabilities are com-
pared with a threshold value. If the probability is higher than the
threshold, a decision of sentence boundary is made; otherwise,
the boundary is marked as nonsentence boundary. In this paper,
we used a discriminative classifier, namely, Boosting, to esti-
mate .

1) Feature Design: Prosodic and lexical features are used to
represent word boundaries to the classifier. The six lexical fea-
tures are -grams composed of the word following the boundary
of interest and the two previous words. The 34 prosodic fea-
tures are the pause duration between the two words at the word
boundary of interest and at the preceding boundary, and various
measures of the pitch and the energy of the voice of the speaker.
The features include comparison of the value of the pitch or en-
ergy before and after the word boundary of interest, and their
speaker normalized versions, following [1]. The range in which
the value is measured is either the word or 200-ms time window
before/after the word boundary, and the measure considers the
maximum, minimum, and average values in this range.

2) Boosting: In this paper, we employed a discriminative
classifier, namely, boosting. Boosting is an iterative learning
algorithm that aims to combine weak base classifiers to come
up with a strong classifier. At each iteration, a weak classifier
is learned so as to minimize the training error, and a different
distribution or weighting over the training examples is used to
give more emphasis to examples that are often misclassified
by preceding weak classifiers. In boosting, weighted sampling
is used instead of random sampling to focus learning on most
difficult examples. Furthermore, weak classifiers are combined
using weighted voting instead of equal voting.

Fig. 1. AdaBoost algorithm for the binary classification task.

The basic boosting algorithm is shown in Fig. 1. Boosting
assumes that the data set consists of the training instances
or examples . Each example in is represented by a set
of features (prosodic, and lexical, ). Each example
has also the classes (labels) , which are assigned by
human labelers. As stated above, the sentence segmentation task
can be considered as a binary classification problem, in which
every word boundary must be labeled as a sentence boundary
or as a nonsentence boundary. In this manner, the set of pos-
sible classes is also referred to true or refer-
ence classes, where 1 and 1 represent the sentence and the
nonsentence boundaries, respectively. Note that since sentence
segmentation is treated as a binary classification task,

and hence denote the score of the
positive scoring class (i.e., highest scoring class), given for the
sample, and denotes the boundary type.

B. Semi-Supervised Learning

In our experiments, we applied the semi-supervised methods
described below on the sentence segmentation task.

1) Self-Training: The first semi-supervised learning ap-
proach we employ is iterative self-training. We believe that
self-training will provide us a baseline to compare the perfor-
mance of other semi-supervised methods. In self-training the
feature set is considered to be single view, and there is only
a single model automatically labeling the examples for itself.
The algorithm for self-training for sentence segmentation is
shown in Fig. 3. The scheme of the self-training algorithm
that we used is illustrated in Fig. 2. Note that, to reduce the
classification noise, we employ a threshold, , to select the
most confident examples at each iteration. In our experiments
this threshold is optimized using a held-out data set.

2) Co-Training: Co-training is one of the most effective
multi-view semi-supervised machine learning approach based
on learning a hypothesis in each view, and adding to the training
set the most confident predictions made on the unlabeled exam-
ples repeatedly. In our approach, we use prosodic and lexical
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Fig. 2. Self-training scheme with lexical and prosodic features.

Fig. 3. Self-training algorithm.

information as two separate views for the sentence segmenta-
tion task. In this paper, we use an extended version of the basic
co-training algorithm as shown in Fig. 5. The scheme of our
co-training approach is illustrated in Fig. 4. Our co-training
approach consists of multiple stages. In the first stage, we train
two separate models ( and ) using only prosodic
and only lexical features based on small amounts of manually
labeled data . Then we estimate the sentence boundaries for
the unlabeled portion of the data using these models. The
examples are sorted according to their confidence scores for
both cases. At this point, we tried different example selection
mechanisms to come up with the set of examples from both
sides.

• Agreement: In this strategy, we consider only the ex-
amples that get high confidence scores according to
both prosodic and lexical models and . In
other words, both classifiers have the same decision,

and highly confident
about the class of the . We add these examples
to the training set of individual models, and
with their agreed labels, and iterate. In this strategy, any
unlabeled example is determined with its estimated class
by using

Fig. 4. Co-training scheme with lexical and prosodic features.

Fig. 5. Co-training agreement algorithm.

and

The algorithm of the co-training with the agreement
strategy is shown in Fig. 5.

• Disagreement: In this strategy, we consider only the exam-
ples that are labeled with high confidence scores using one
model and low confidence scores using the other model.
We add these examples to the training set of the other
model. The motivation here is to incorporate new examples
that are hard to classify for the other model to its training
data. Note that this is equivalent to the max-t-min-s method
proposed by [18]. In this strategy, the examples whose
classes estimated by the prosodic model
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Fig. 6. Co-training disagreement algorithm.

with a high probability are assigned to the training set of
the lexical model when

and vice versa. Note that is closer
to 0 when the classifier is less confident about its decision.

This process may be iterated until the unlabeled data set is
exploited completely or the models do not improve any more
as determined by a held-out set. After that, one can train a
single model using both the lexical and prosodic features of the
automatically and manually labeled examples to combine the
models. The algorithm of the co-training with the disagreement
strategy is shown in Fig. 6.

3) Self-Combined: In this approach, we consider the ex-
amples that have the highest confidence scores obtained from
the self-training of the prosodic and lexical models individ-
ually in each iteration. First, as an initialization process, the
manually labeled data that contain both the prosodic and
lexical features are separated into two parts, which consist of
the prosodic and lexical features with their classes as and

. Then we train the prosodic and lexical models
by using this small amount of manually labeled data separately,
and we obtain the estimated confidence scores
and of the larger set of unlabeled prosodic
and lexical data by using these two trained models. The
examples having the highest confidence scores from both sides
are determined by sorting the confidence scores in descending
order and employing different thresholds. For example, if the

confidence scores of the examples estimated by the prosodic
model are bigger than a threshold and the estimated classes
agree

and

the estimated classes are assigned to these exam-
ples and they are added to labeled examples with their prosodic
and lexical features and estimated classes. In the other case, if
the confidence scores of the examples estimated by the lex-
ical model are bigger than a threshold and the estimated classes
agree

and

the estimated classes are assigned to these exam-
ples and added to labeled examples with their prosodic and lex-
ical features and estimated classes. It should be noted that, in
both cases, the examples labeled with different tags (conflict
examples) by the prosodic and lexical classifiers are excluded
in each iteration. The whole process is iterated until the unla-
beled sets are completely labeled or the models do not improve
any more as determined by a held-out set. In this method, in
each iteration the prosodic and lexical classifiers are trained in-
dividually (self-training based on one view). The performance
evaluation is realized on the held-out and test data sets in each
iteration after obtaining newly labeled data which contain both
the prosodic and lexical features. In this stage, we train a model
in each iteration using whole labeled data and experiment on the
held-out set and test set. The algorithm of our new semi-super-
vised learning approach is given in Fig. 7.

IV. EXPERIMENTS AND RESULTS

All experiments are performed using manual transcriptions
to avoid the noise introduced by the speech recognition system.
The prosodic features are computed using the forced alignments
of the manual transcriptions. We perform experiments using dif-
ferent sizes of initial manually labeled data and compare dif-
ferent semi-supervised learning methods. In our experiments,
we used the BoosTexter tool (described in [26]) as a classifier.
For all experiments we iterated Boosting 500 times.

A. Data Sets

The ICSI meeting corpus [4] contains approximately 72 h
of multichannel conversational speech data. Generally, for sen-
tence segmentation experiments 73 out of the total 75 available
meetings (two meetings are excluded because of their very dif-
ferent character from the rest of the data) are used. The 73 meet-
ings are split into a training set (51 meetings, approximately
539K words), a development set (11 meetings, approximately
110K words), and a test set (11 meetings, approximately 102K
words). In our experiments, we use the lexical and prosodic
features of the ICSI Meeting Recorder Dialog Act (MRDA)
Corpus. We use 51 meetings, which have in total 538 956 ex-
amples with prosodic and lexical features, as training data. We
use three different random orderings of the training set to get
different feature distributions and remove the biasing effect in
the evaluation stage. Then we report the average performance.
In addition to this, both the development and test sets consist of
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Fig. 7. Self-combined algorithm.

11 meetings and they have 110 851 and 101 510 examples, re-
spectively. The test and development sets are kept the same for
all the experiments.

B. Evaluation Metrics

For the sentence segmentation, performance of the baseline
and the semi-supervised methods is evaluated by the F-measure
and the NIST error rate metrics. The F-measure, which is often
used in information retrieval and natural language processing,
is the weighted harmonic mean of the precision and recall mea-
sures for the classes hypothesized by the classifier to those as-
signed by human labelers. The NIST error rate is the ratio of
the number of insertion and deletion errors for sentence bound-
aries made by the classifier to the number of reference sentence
boundary classes. Therefore, if no boundaries are marked by
sentence segmentation, it is 100%, but it can exceed 100%; the
maximum error rate is the ratio of number of words to number
of correct boundaries.

C. Experimental Results

In the experiments we use three different sizes of initial man-
ually labeled data, which have 1000, 3000, and 6000 examples,
respectively. For each amount of manually labeled data points,
we repeat all the experiments by adding different amounts of
automatically labeled data such as 100, 250, 500, 1000, 2000,
3000, and 5000 examples in the following iterations. The total
number of iterations used in the experiments is 25. In each it-

Fig. 8. F-measure results of the different strategies for the lexical features only.

Fig. 9. NIST results of the different strategies for the lexical features only.

eration, we pick the number of automatically labeled examples
that result in maximum performance on the development set.

Performance of each method is evaluated in two phases. First,
all the results of the different semi-supervised strategies are ob-
tained by using only the lexical and only the prosodic models
and compared with a baseline. The baseline result in each of
these experiments is computed using only the set of manually
labeled examples with supervised learning.

Figs. 8–11 present the results using self-training and the other
co-training strategies (agreement and disagreement) against
the baseline. The curves show performance improvement on
the individual lexical and prosodic models when different sizes
of initial manually labeled data are used. These figures show
that co-training methods, especially the disagreement strategy,
improve the results of the baseline significantly, especially
when a lesser amount of labeled data is available. With only
1000 manually labeled examples, performance of the lexical
model increases from 55.10% to 69.40%, an improvement of
25.95% relative by using the disagreement strategy (Fig. 8).
Performance of the prosodic model increases from 58.42%
to 64.61%, an improvement of 10.59% relative by using the
disagreement strategy (Fig. 10).

The other performance evaluation was done by using the lex-
ical and prosodic models together. In this case, the examples
with all the lexical and prosodic features combined are used
in the implementation of the methods. Figs. 12 and 13 illus-
trate complete results of different strategies using all the fea-
tures. The highest performance improvement was obtained with
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Fig. 10. F-measure results of the different strategies for the prosodic features
only.

Fig. 11. NIST results of the different strategies for the prosodic features only.

Fig. 12. F-measure results of the different strategies using all the features.

the disagreement strategy. F-measure of the baseline increases
from 69.77% to 74.16%, an improvement of 6.29% relative by
using the disagreement strategy, and the NIST error drops from
52.00% to 48.34%, a relative reduction of 7%. As seen, the dis-
agreement strategy is slightly better than the agreement strategy.
This behavior can be explained by reasoning that if both models
are confident about an example it is relatively less informative.
It is impressive that the co-training strategies significantly out-
perform self-training, which provides slight improvement over
the baseline.

To expose the effect of the iterative process we use the
combination of both lexical and prosodic features on the agree-

Fig. 13. NIST results of the different strategies using all the features.

TABLE I
EFFECT OF THE ITERATIVE PROCESS ON THE SEMI-SUPERVISED LEARNING

METHODS WHEN ONLY 1000, 3000, AND 6000 MANUALLY LABELED

EXAMPLES ARE AVAILABLE

ment, disagreement, self-training, and self-combined methods.
We also compute the F-measure and NIST error results of
the methods on the test set starting at the first iteration to the
optimum number of iterations that maximize the development
set. The effect of the iterative process is shown in Table I when
only 1000, 3000, and 6000 manually labeled data examples
are available. The table shows the maximum performance dif-
ference between the first iteration and the optimum number of
iterations observed in the disagreement strategy when a small
amount of manually labeled data is available. The improvement
of the effect of the iterative process decreases relatively when
the amount of manually labeled data is increased. The proposed
self-combined method typically results in better performance
than self-training and co-training with the agreement strategy,
but is still worse than co-training with the disagreement
strategy.

D. Analysis and Discussion

An interesting question is whether there is a pattern for the op-
timal number of iterations for each co-training strategy. Table II
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TABLE II
AVERAGE NUMBER OF ITERATIONS AND AMOUNT OF AUTOMATICALLY

ANNOTATED DATA EXPLOITED WITH THE SEMI-SUPERVISED LEARNING

METHODS WHEN ONLY 1000, 3000, AND 6000 MANUALLY LABELED

EXAMPLES ARE AVAILABLE

presents the average of the optimum iteration number and the
amount of unlabeled data exploited for each co-training strategy
corresponding to Table I. As seen, the average number of iter-
ations are typically in single digits, and it is hard to find any
correlation between the initial data sizes and semi-supervised
learning techniques employed. We observe a relatively steep
slope during the iterative process and later the performances
have phased out as more number of less informative samples
are introduced.

When we examine the errors of the lexical model when the
prosodic model correctly classifies the example, we see that the
prosodic model is very strong especially in the cases of disrup-
tions and disfluencies. When the speaker rephrases the sentences
or the speaker is interrupted by another speaker the prosodic
model marks these examples as a sentence boundary while the
lexical model may not.

Consider the following example excerpt from two speakers,
where the first speaker is interrupted by the second one. The
lexical model does not expect a new dialog act unit start after the
word you, whereas the prosodic model may capture it. “(SB)”
indicates a sentential unit boundary.

Speaker 1: if you (SB).
Speaker 2: great (SB).
Speaker 1: okay so that will get us through the next couple
days (SB).

Another frequent case of conflict between two models occur
around disfluencies such as self repetitions or repairs. In such
cases the lexical model interprets these examples as a part of
continuous speech and cannot detect the boundary. The correct
decision is made by the prosodic model. Below are some exam-
ples of such cases.

Speaker: that’s probably the (SB) this is probably channel
error stuff (SB) huh (SB).

Speaker: I mean you’re (SB) I think you (SB) I think you’d
have to modify the standard deviation or something so that
you make it wider or narrower (SB).
Speaker: are you using (SB) are you using the (SB) oh you
oh you are (SB) we already talked about that (SB).

In our experiments, if we examine the other way around, we
observe that the prosodic model sometimes misses the bound-
aries before conjunctive words and phrases such as “but,” “so,”
and “because.” These results are also verified by the audio data.
In some of these examples the boundaries are not prosodically
marked, whereas the lexical model usually marks them correctly
as sentence boundaries.

Speaker: okay (SB) but

V. CONCLUSION

We have investigated the application of the multi-view semi-
supervised learning algorithms on the sentence boundary classi-
fication problem by using lexical and prosodic information. The
experimental results on the ICSI MRDA corpus show the effec-
tiveness of these algorithms for the task of sentence segmen-
tation. Performance of the lexical and prosodic models is im-
proved by 25.95% and 10.59% relative, respectively, when only
a small set of manually labeled examples is used. When both in-
formation sources are combined, the semi-supervised learning
methods improve the baseline F-Measure of 69.8% to 74.2%.

Our future work includes employing cross-adaptation
methods instead of simply concatenating the data to improve
performance. The classifiers trained with lexical and prosodic
features can be treated as a committee of classifiers, and can
be used for committee-based active learning. We also plan to
investigate the application of committee-based active learning
for this task and combine with co-training. Furthermore, we
plan to experiment with speech recognition output. A similar
approach could also be useful for other tasks that use prosodic
and lexical features, such as emotion detection, topic segmen-
tation, and dialog act tagging.

ACKNOWLEDGMENT

The authors would like to thank E. Shriberg, A. Stolcke, B.
Favre, M. Zimmerman, and M. Magimai Doss for many helpful
discussions.

REFERENCES

[1] E. Shriberg, A. Stolcke, D. Hakkani-Tür, and G. Tur, “Prosody-based
automatic segmentation of speech into sentences and topics,” Speech
Commun., vol. 32, no. 1–2, pp. 127–154, 2000.

[2] S. Cuendet, D. Hakkani-Tür, and G. Tur, “Model adaptation for sen-
tence segmentation from speech,” in Proc. IEEE/ACL Spoken Lang.
Technol. (SLT) Workshop, Aruba, 2006.

[3] U. Guz, D. Hakkani-Tür, S. Cuendet, and G. Tur, “Co-training using
prosodic and lexical information for sentence segmentation,” in Proc.
Interspeech, Antwerp, Belgium, Aug. 2007.

[4] E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, and H. Carvey, “The ICSI
Meeting Recorder Dialog Act (MRDA) corpus,” in Proc. SIGdial
Workshop Discourse and Dialogue, 2004, pp. 97–100.

[5] J. Kolar, E. Shriberg, and Y. Liu, “Using prosody for automatic sen-
tence segmentation of multi-party meetings,” in Proc. Int. Conf. Text,
Speech, Dialogue (TSD), Czech Republic, 2006.

[6] J. Ang, Y. Liu, and E. Shriberg, “Automatic dialog act segmentation
and classification in multiparty meetings,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Philadelphia, PA, Mar. 2005, pp.
1061–1064.

Authorized licensed use limited to: SRI International. Downloaded on April 14,2010 at 16:31:24 UTC from IEEE Xplore.  Restrictions apply. 



GUZ et al.: MULTI-VIEW SEMI-SUPERVISED LEARNING FOR DIALOG ACT SEGMENTATION OF SPEECH 329

[7] M. Core and J. Allen, “Coding dialogs with the DAMSL annotation
scheme,” in Proc. Working Notes Conf. Amer. Assoc. Artif. Intell.
(AAAI) Fall Symp. Commun. Action in Humans Machines, Cambridge,
MA, Nov. 1997.

[8] E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, and H. Carvey, “The ICSI
Meeting Recorder Dialog Act (MRDA) corpus,” in Proc. SigDial Work-
shop, Boston, MA, May 2004.

[9] A. Stolcke and E. Shriberg, “Statistical language modeling for speech
disfluencies,” in Proc. Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Atlanta, GA, May 1996, pp. 405–408.

[10] Y. Liu, A. Stolcke, E. Shriberg, and M. Harper, “Using conditional
random fields for sentence boundary detection in speech,” in Proc.
Annu. Meeting Assoc. Comput. Linguist. (ACL), Ann Arbor, MI, 2005.

[11] M. Zimmerman, D. Hakkani-Tür, J. Fung, N. Mirghafori, L. Gottlieb,
E. Shriberg, and Y. Liu, “The ICSI+ multilingual sentence segmenta-
tion system,” in Proc. Int. Conf. Spoken Lang. Process. (ICSLP), Pitts-
burg, PA, 2006.

[12] J. Kolar, Y. Liu, and E. Shriberg, “Speaker adaptation of language
models for automatic dialog act segmentation of meetings,” in Proc.
Interspeech, Antwerp, Belgium, 2007.

[13] K. Nigam and R. Ghani, “Understanding the behaviour of co-training,”
in Proc. Workshop Text Mining 6th ACM SIGKDD at the KDD, 2000.

[14] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observation of Markov chains,” IEEE
Trans. Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.

[15] M. Bacchiani and B. Roark, “Unsupervised language model adapta-
tion,” in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Hong Kong, Apr. 2003, pp. 173–176.

[16] D. Hakkani-Tür, G. Tur, M. Rahim, and G. Riccardi, “Unsupervised
and active learning in automatic speech recognition for call classifica-
tion,” in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Montreal, QC, Canada, May 2004, pp. 429–432.

[17] R. Gretter and G. Riccardi, “On-line learning of language models
with word error probability distributions,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Salt Lake City, UT, May 2001, pp.
557–560.

[18] W. Wang, Z. Huang, and M. Harper, “Semi-supervised leaning for
part-of-speech tagging of mandarin transcribed speech,” in Proc. Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Honolulu, HI, 2007,
pp. 137–140.

[19] R. Mihalcea, “Co-training and self-training for word sense disambigua-
tion,” in Proc. Conf. Comput. Natural Lang. Learn. (CoNLL), Boston,
MA, May 2004.

[20] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training for
parsing,” in Proc. Conf. North Amer. Chapt. Assoc. Comput. Linguist.
(NAACL), New York, Jul. 2006.

[21] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proc. Workshop Computational Learning Theory
(COLT), Madison, WI, Jul. 1998.

[22] T. M. Mitchell, “The role of unlabeled data in supervised learning,” in
Proc. 6th Int. Colloquium Cognitive Sci., San Sebastian, Spain, 1999.

[23] S. Abney, “Bootstrapping,” in Proc. Annu. Meeting Assoc. Comput.
Linguist. (ACL), 2002.

[24] S. Kiritchenko and S. Matwin, “Email classification with co-training,”
in Centre for Advanced Studies on Collaborative Research (CASCON),
2001.

[25] R. E. Schapire, “The boosting approach to machine learning: An
overview,” in Proc. MSRI Workshop Nonlinear Estimation and Clas-
sification, Berkeley, CA, Mar. 2001.

[26] R. E. Schapire and Y. Singer, “Boostexter: A boosting-based system
for text categorization,” Mach. Learn., vol. 39, no. 2/3, pp. 135–168,
2000.

Umit Guz (M’03) received the M.S. and Ph.D. de-
grees in electronics engineering from the Institute of
Science, Istanbul University, in 1997 and 2002, re-
spectively.

He is an Assistant Professor in the Department
of Electronics Engineering, Engineering Faculty,
Isik University, Istanbul, Turkey. He was awarded a
Postdoctoral Research Fellowship by The Scientific
and Technological Research Council of Turkey
(TUBITAK) in 2006. He was accepted as an In-
ternational Fellow by the SRI International Speech

Technology and Research (STAR) Laboratory in 2006. He was awarded a J.
William Fulbright Postdoctoral Research Fellowship for 2007. He was accepted
as an International Fellow by the International Computer Science Institute
(ICSI) Speech Group at the University of California at Berkeley in 2007 and
2008. His research interest covers speech processing, speech modeling, speech
coding, speech compression, automatic speech recognition, natural language
processing, and biosignal processing.

Sébastien Cuendet received the B.Sc. and M.Sc. de-
grees from the Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), Lausanne, Switzerland, in 2004 and
2006, respectively.

He was a Research Scholar at the International
Computer Science Institute (ICSI) when this work
was realized. Since August 2007, he has been with
Optaros, Zurich, Switzerland, a consulting company
based on open source solutions for web technologies.

Dilek Hakkani Tür (M’01–SM’05) received the
Ph.D. degree from the Department of Computer
Engineering, Bilkent University, Ankara, Turkey, in
2000.

She is a Senior Researcher at the International
Computer Science Institute (ICSI), Berkeley, CA.
Prior to joining ICSI, she was a Senior Technical
Staff Member in the Voice Enabled Services Re-
search Department, AT&T Labs-Research, Florham
Park, NJ. She worked on machine translation during
her visit at the Language Technologies Institute,

Carnegie Mellon University, Pittsburgh, PA, in 1997, and her visit to the
Computer Science Department, The Johns Hopkins University, Baltimore, MD,
in 1998. In 1998 and 1999, she visited the Speech Technology and Research
Laboratory, SRI International Menlo Park, CA, and worked on using lexical
and prosodic information for information extraction from speech. She has
coauthored more than 100 papers in natural language and speech processing.

Dr. Hakkani Tür is a member of ISCA, the Association for Computational
Linguistics, and was an Associate Editor of IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING.

Gokhan Tur (M’01–SM’05) received the B.S., M.S.,
and Ph.D. degrees from the Department of Computer
Science, Bilkent University, Ankara, Turkey, in 1994,
1996, and 2000, respectively.

From 1997 to 1999, he visited the Center for
Machine Translation, Carnegie Mellon University,
Pittsburgh, PA, then the Department of Computer
Science of The Johns Hopkins University, Baltimore,
MD, and then the Speech Technology and Research
(STAR) Laboratory, SRI International, Menlo Park,
CA. He worked at AT&T Labs-Research from

2001 to 2006. He is currently with the Speech Technology and Research
Laboratory, SRI International. His research interests include spoken language
understanding (SLU), speech and language processing, machine learning,
and information retrieval and extraction. He coauthored more than 75 papers
published in refereed journals, and presented at international conferences.

Dr. Tur is a senior member the ACL and ISCA, and was a member of the IEEE
Signal Processing Society (SPS), Speech and Language Technical Committee
(SLTC) for 2006–2008.

Authorized licensed use limited to: SRI International. Downloaded on April 14,2010 at 16:31:24 UTC from IEEE Xplore.  Restrictions apply. 


