
NOISE ROBUST SPEAKER IDENTIFICATION 
FOR SPONTANEOUS ARABIC SPEECH 

 
Martin Graciarena

1
, Sachin Kajarekar

1
, Andreas Stolcke

1,2
, Elizabeth Shriberg

1,2
 

 
1
SRI International, Menlo Park, CA, USA, 

2
International Computer Science Institute, Berkeley, CA, USA 

www.speech.sri.com 
 

ABSTRACT 
 
Two important challenges for speaker recognition applications 
are noise robustness and portability to new languages. We 
present an approach that integrates multiple components and 
models for improved speaker identification in spontaneous 
Arabic speech in adverse acoustic conditions. We used two 
different acoustic speaker models: cepstral Gaussian mixture 
models (GMM) and maximum likelihood linear regression 
support vector machine (MLLR-SVM) models and a neural 
network combiner. The noise-robust components are Wiener 
filtering, speech-nonspeech segmentation, and frame selection. 
We present baselines and results on the Arabic portion of the 
NIST Mixer data, in clean conditions and with added noise at 
different signal-to-noise ratios. We used two realistic noises: 
babble and city traffic. In both noisy scenarios, we found 
significant equal error rate (EER) reductions over the no-
compensation condition. The various noise robustness methods 
gave complementary gains for both acoustic models.  Finally, 
the combiner provides a reduction in EER over the individual 
systems in noisy conditions. 
 

Index Terms— Speaker identification, Robustness, Arabic, 
cepstral GMM, MLLR-SVM 
 

1. INTRODUCTION 
 
Two increasingly important challenges for speaker recognition 
applications are noise robustness and portability to new 
languages. In this work, we focus on spontaneous Arabic speech 
data.  Various methods have been proposed in order to reduce 
the influence of noise and achieve reasonable speaker 
identification accuracy in noisy acoustic scenarios. One of them 
is the Wiener filter, which aims at estimating a clean speech 
waveform from a noisy one. It has been successfully used in 
speaker identification systems [1]. Another technique is frame 
selection [2], whose goal is to only use frames in scoring which 
are less degraded by noise. 

In this paper we integrate multiple components for 
improved speaker identification in adverse acoustic conditions. 
We first apply the Wiener filter to the unsegmented waveform. 
Next we extract speech-like segments from the unsegmented 
waveform. Our segmentation system uses SRI's Decipher speech 
recognition system and large vocabulary acoustic models. 
Finally, we do frame selection before scoring the speaker model. 
We select the frames that have an average energy above a certain 

threshold. In the experiments we added noise samples to clean 
speech at multiple signal-to-noise ratio (SNR) values. We used 
two realistic noises: babble and city traffic. We used state-of-
the-art speaker identification systems and a combiner for the 
Arabic data. Scores were generated by a Gaussian mixture 
model (GMM) base system and a maximum likelihood linear 
regression and support vector machine (MLLR-SVM) system. 
Speaker models were trained with clean speech only. We also 
used a neural network score combiner.  

All of the clean and noisy speech experiments were done 
using Arabic language data. We could find very few papers [3] 
on speaker identification in spoken Arabic.  

We have found significant equal error rate (EER) 
reductions over the baseline (no compensation) condition and 
complementary gains using the proposed noise robust 
techniques in both types of noise. We also found the combiner 
to be quite robust to noise. 
 

2. ARABIC DATA  
 
We used data from three Arabic dialects to train the background 
(speaker-independent) model in the GMM and MLLR-SVM 
systems.  (Note that for background training data, broadcast 
speech is included, to increase the dataset size.) 
� Modern Standard Arabic (MSA) is the dialect used in 
formal communication. The data was collected from radio 
newscasts from various radio stations in the Arabic-speaking 
world by the Foreign Broadcast Information Service (FBIS). It 
contains 145 recordings with an average length of 15 minutes.  
� Levantine Arabic (LVA) is a group of dialects spoken in 
the Levant (Syria, Palestine/Israel, western Jordan and 
Lebanon). The data includes 544 telephone conversations with 
an average length of 5 minutes. 
�  Egyptian Arabic (EGA) is widely understood in Egypt and 
many other Arab countries. This data contains 120 telephone 
conversations collected in the LDC’s CallFriend setup, with an 
average length of 5 minutes. 

All experiments were conducted using an 8 kHz sample 
rate. For testing we used all Arabic-language conversations (of 
unknown dialect) contained in the NIST SRE 04 and 05 [4] 
evaluation corpora, a subset of the LDC Mixer corpus. This 
dataset contains speech from 43 speakers with an average of 5 
conversations per speaker, 594 target trials, and 5940 impostor 
trials. 



3. BASELINE SYSTEMS AND COMBINER 
 
3.1. Cepstral Gaussian Mixture Model 
 
A GMM system was used to model speaker-specific cepstral 
features. The system was based on the GMM-UBM model 
paradigm, where a speaker model is adapted from a universal 
background model (UBM). Maximum a posteriori (MAP) 
adaptation was used to derive a speaker model from the UBM. 
The GMM has 2048 Gaussian components, and is described in 
detail in [5]. The cepstral GMM system includes gender/handset 
normalization and utterance-level mean and variance 
normalization. Table 1 presents the results of the cepstral GMM 
system on the Arabic portion of the NIST Mixer data. Two 
background models were used, one trained with English data 
from the Switchboard (landline and cellular) and Fisher 
databases, and another with the Arabic data described above. 
 
3.2. Maximum Likelihood Linear Regression Model 
 
The second model is a maximum likelihood linear regression 
MLLR-SVM [6] system. It estimates adaptation transforms 
using a phone-loop speech model with three regression classes, 
for nonspeech, obstruents, and nonobstruents (the nonspeech 
transform is not used). Such a system models speaker-specific 
translations of the Gaussian means of phone recognition models, 
and does not require running a word recognition system. We 
used an English phone recognition system (with an English 
phone set and trained on English Switchboard telephone data). 
The coefficients from the two speech adaptation transforms are 
concatenated into a single feature vector and modeled using 
support vector machines (SVMs). A linear inner-product kernel 
SVM is trained for each target speaker using the feature vectors 
from the background training set as negative examples, and the 
target speaker training data as positive examples. Rank 
normalization on each feature dimension was used. Table 1 
shows the results of the MLLR-SVM system on the Arabic 
Mixer data. 
 
3.3. Score Combiner 
 
The MLLR-SVM system is an acoustic model using cepstral 
features, but using a nonstandard representation of the acoustic 
observations. Therefore it may provide complementary 
information to the cepstral GMM. We used a neural network 
classifier from the LNKnet library [7] to combine the two 
systems at the score level. The neural network had two inputs, 
no hidden layer, and a single linear output activation unit. We 
split the testset in two halves for jackknifing purposes. The 
combiner was first trained using both systems’ scores from the 
first half of the database and score estimates were generated for 
the second half. The procedure was repeated, but switching the 
training and test sets. Finally, we juxtaposed the estimated 
scores from both halves and computed the EER. 
 

Table 1: EER Results without Added Noise on Arabic Mixer Data 
 

System 
Background 

Data 
% EER 

1 GMM English 10.27 

2 GMM Arabic 9.09 

3 MLLR-SVM Arabic 8.41 

 Combiner (2+3)  8.42 

 
Table 1 shows  that there is a 10% improvement in the 

GMM system using Arabic background data compared to using 
English, even though the Arabic data set is much smaller. We 
can compare the 9.09% EER obtained on Arabic data to the 
7.17% EER from the GMM system on the English SRE 05 test 
set [8], which has more and better-matched training data. The 
MLLR-SVM system is competitive with the best GMM system 
even though it uses English acoustic models for recognition and 
background modeling. The combiner does not produce a gain 
over the best system in clean conditions. However, it proves 
valuable in noisy conditions, as we will see next. 

 
4. NOISY SPEECH PROCESSING TECHNIQUES 

 
4.1. Wiener Filtering 
 
The goal of the Wiener filter is to estimate a clean speech 
waveform from a noisy speech waveform. We used an 
implementation from the Qualcomm-ICSI-OGI Aurora system 
[9]. It first uses a neural-network-based voice activity detector to 
mark frames as speech or nonspeech. Next, a noise spectrum is 
estimated as the average spectrum from the nonspeech frames. 
Finally, this noise spectrum is used in the Wiener filtering of the 
noisy waveform. The Wiener filter was applied to the 
unsegmented waveform in order to take advantage of the long 
silence segments between speech segments for noise estimation.  
 
4.2. Segmentation 
 
We applied a speech-nonspeech segmenter to extract speech 
segments from the noisy speech waveform. This segmenter takes 
advantage of the cleaner signal produced by the Wiener filtering. 
The segmenter is from SRI’s large-vocabulary telephone speech 
recognizer and was trained on 315 English telephone 
conversations from the Switchboard and CallHome corpora.  It 
was not specifically tuned for Arabic or the noise conditions.  
Segmentation is performed by Viterbi-decoding each 
conversation side separately, using a speech/nonspeech hidden 
Markov model (HMM), followed by padding at the boundaries 
and merging of segments separated by short pauses. 
 
4.3. Frame Selection 
 
In GMM scoring only the frames with average frame energy 
above a certain threshold were used. In clean conditions it is 
desirable to discard silence frames. Therefore the energy 
threshold should be low in these conditions. In noisy conditions, 
however, we want to discard frames that are more likely to be 
degraded by noise. Here the threshold should be higher to 
eliminate noisy nonspeech frames frames. The actual energy 
threshold for each waveform is computed multiplying an energy 
percent (EPC) parameter (between zero and one) to the 



difference between maximum and minimum frame log energy 
values and adding the minimum log energy. We have found that 
the optimal EPC (i.e. the parameter for which the testset EER is 
the lowest) is dependent on both noise type and SNR. 
 

5. EXPERIMENTS WITH NOISY ARABIC SPEECH 
 
Here we show EER results in noisy conditions. We also test the 
proposed noise compensation techniques with both systems. 
Finally, we test how the combiner performs in noisy conditions. 
The noises used are babble noise from the Noisex-92 [10] 
database, and city traffic noise. They were digitally mixed with 
the clean speech waveforms at different SNRs. In all the 
experiments we used only speaker models trained on clean 
speech, since it is not possible to train speaker models in all 
noisy acoustic scenarios. 
 
5.1. GMM System 
 
Table 2 shows results of the GMM system in noisy conditions. 
The segmentation results are obtained from a full segmentation 
in each noise and SNR condition. We show frame selection 
results using the optimal EPC for each condition (shown in 
parentheses for the last system). The baseline EER in the clean 
condition was 9.09% (Table 1). 

First, we observe in Table 2 a significant degradation under 
noisy conditions. We see that adding frame selection on top of 
segmentation is advantageous and results in additional EER 
reductions in all conditions. The optimal EPC for frame 
selection is dependent on both noise type and SNR. Finally, we 
observe that Wiener filtering results in a small EER reduction in 
babble noise down to 5dB SNR, and produces significant EER 
reductions across all SNR conditions for city traffic noise. 
Overall, the proposed techniques complement each other and 
yield incremental gains when combined. 

 
5.2. MLLR-SVM System 
 
In Table 3 we show the EER results of the MLLR-SVM system 
in both noise conditions. Frame selection was not used since it is 
incompatible with the phoneloop MLLR-SVM setup. 

Comparing Tables 2 and 3, we observe that the MLLR-
SVM system is much more affected by the babble noise than is 
the GMM system. Note that the MLLR-SVM system is based on 
a more detailed speech model (a phone recognition loop) that is 
potentially more affected by the speech-like components of 
babble noise. We also observe that Wiener filtering results in 
EER reductions in both noise types, but is more effective for 
city traffic noise.  

 
5.3. Automatic EPC Parameter Selection  
 
The next step in the GMM system was to automatically find an 
appropriate energy percent parameter based on an estimate of 
the SNR. With our current framework we can compute an 
accurate SNR estimate based on the speech/nonspeech 
segmenter output. We used the nonspeech regions to estimate 
the noise power. Then we used the traditional SNR formula with 
a clean speech power approximated as the noisy speech power 
minus the noise power. One very important advantage of this 
SNR estimator is that the noise is not assumed to be stationary.  

Table 2: EER Results on Arabic Mixer Data with GMM 
System for Babble and City Traffic Noise at Multiple 

SNRs. Optimal Energy Percent Parameter in Parentheses 

System 20dB 15dB 10dB 5dB 0dB 

Babble noise 

Segmented 11.28 12.14 13.97 17.82 21.72 

Segmented + 
frame selection 

10.94 11.78 13.80 16.67 19.86 
Wiener + seg + 
frame selection 

10.30 
(0.3) 

11.45 
(0.3) 

13.13 
(0.3) 

16.15 
(0.5) 

20.03 
(0.7) 

City Traffic noise 

Segmented 13.47 14.97 18.01 21.55 24.75 
Segmented + 
frame selection 

12.79 13.97 15.83 19.02 23.06 
Wiener + seg + 
frame select 

11.61 
(0.5) 

12.61 
(0.5) 

13.97 
(0.5) 

17.00 
(0.7) 

21.33 
(0.7) 

 
 

Table 3: EER Results on Arabic Mixer Data with MLLR-SVM 
System for Babble and City Traffic Noise at Multiple SNRs 

System 20dB 15dB 10dB 5dB 0dB 

Babble noise 

Segmented 11.07 12.95 16.66 21.39 29.78 

Wiener + seg 10.94 12.32 15.98 20.87 30.64 

City Traffic noise 

Segmented 11.61 12.13 14.98 19.21 25.73 

Wiener + seg 10.60 11.61 13.43 16.97 25.41 

 
In the experiments we added noise to each Arabic database 

waveform with a randomly selected SNR between 25dB and 
0dB from a uniform distribution. Next we estimated the SNR 
using the previously described estimator. Finally, we used the 
following EPC parameters given the SNR regions: >20dB: 0.3, 
20dB-10dB: 0.5, <10dB: 0.7. These values were chosen based 
on the results in Tables 2 and 3. This assignment was used for 
both noisy conditions. In Table 4 we present the EERs using the 
true SNR and the estimated SNR to determine the EPC 
parameter. 

 
Table 4: Automatic EPC Parameter Selection Results on Arabic 

Mixer Data with GMM System based on True and Estimated 
SNRs for Babble and City Traffic Noises 

System SNR Babble City Traffic 

Wiener + seg  16.47 15.48 

Wiener + seg + 
frame selection 

True 14.31 14.78 

Wiener + seg + 
frame selection 

Estimated 14.48 14.65 

 
From Table 4 one can conclude that the energy percent 

parameter selection performs about as well based on either the 
estimated or the true SNR. 
 
 
 



5.4. Combiner  
 
We were also interested in how the combiner described in 
Section 3.3 performs in noisy conditions. We tested the 
combiner using the same jackknifing procedure as described 
previously for clean speech. We tested two combiners. The first 
combiner was trained using scores in the matched noise and 
SNR condition. The second combiner was trained in clean 
conditions only. The same neural network model was used for 
testing on both noises and all SNRs. We also report in Table 5 
for this last combiner the average of false acceptance (FA) and 
false rejection (FR) using the score threshold corresponding to 
the EER in clean conditions. 

 
Table 5: EER Results on Arabic Database with GMM, MLLR-

SVM Systems and Combiners for Babble and City Traffic Noises 
at Multiple SNRs. Parentheses: (FA+FR)/2 with Clean Threshold  

System 20dB 15dB 10dB 5dB 0dB 

Babble noise 

GMM 10.30 11.45 13.13 16.15 20.03 
MLLR-SVM 10.94 12.32 15.98 20.87 30.64 

Combiner Match 
Training  

9.59 10.60 12.96 16.49 20.87 

Combiner Train 
Clean Data 

9.42 
(8.7) 

10.41 
(9.9) 

12.46 
(11.3) 

15.82 
(17.4) 

22.22 
(30.8) 

City Traffic noise 

GMM 11.61 12.61 13.97 17.00 21.33 
MLLR-SVM 10.60 11.61 13.43 16.97 25.41 

Combiner Match 
Training  

9.27 9.76 11.11 14.31 20.32 

Combiner Train 
Clean Data 

9.42 
(8.5) 

9.62 
(9.0) 

11.11 
(11.3) 

15.02 
(15.7) 

19.86 
(23.0) 

 
We conclude from Table 5 that both combiners produce a 

gain over each system alone in city traffic noise and in babble 
noise up to 10dB SNR. Surprisingly, the clean combiner with 
the threshold obtained in clean conditions achieves similar 
results to the matched combiner for SNRs up to 5dB.  
 

6. CONCLUSIONS 
 
We explored two increasingly important challenges for speaker 
recognition applications: noise robustness and porting to a 
language of interest (Arabic). We described a noise robust 
speaker identification system that includes multiple components 
and multiple models. We found complementary gains from the 
multiple noise robust components, especially in combination. In 
city traffic noise we obtained a gain over all SNRs by using 
score combination. Interestingly, we found that the combiner 
trained in clean conditions performed similarly to one trained in 
matched conditions, a useful finding since matched data are 
often not available or practical. Furthermore, our systems were 
not specifically tuned for Arabic. For example, the MLLR-SVM 
system used English acoustic models.  Thus, future work in 
which such systems are tailored to the language might yield 
additional performance gains. 
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