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ABSTRACT

Two important challenges for speaker recognitiopliaptions
are noise robustness and portability to new langsiayVe
present an approach that integrates multiple coewpsnand
models for improved speaker identification in spo®ous
Arabic speech in adverse acoustic conditions. Wed usvo
different acoustic speaker models: cepstral Gamssiature
models (GMM) and maximum likelihood linear regressi
support vector machine (MLLR-SVM) models and a maéur
network combiner. The noise-robust components aien®Y
filtering, speech-nonspeech segmentation, and freshection.
We present baselines and results on the Arabidopodf the
NIST Mixer data, in clean conditions and with addesse at
different signal-to-noise ratios. We used two w#adi noises:
babble and city traffic. In both noisy scenariose found
significant equal error rate (EER) reductions otkee no-
compensation condition. The various noise robustmesthods
gave complementary gains for both acoustic modé&imally,
the combiner provides a reduction in EER over tidividual
systems in noisy conditions.

Index Terms—Speaker identification, Robustnessabic,
cepstral GMM, MLLR-SVM

1. INTRODUCTION

Two increasingly important challenges for spealemognition
applications are noise robustness and portabildy new
languages. In this work, we focus on spontaneoadidrspeech
data. Various methods have been proposed in ¢odexduce
the influence of noise and achieve reasonable speak
identification accuracy in noisy acoustic scenar®se of them
is the Wiener filter, which aims at estimating &arl speech
waveform from a noisy one. It has been successfudlgd in
speaker identification systems [1]. Another techeids frame
selection [2], whose goal is to only use framesdaring which
are less degraded by noise.

In this paper we integrate multiple components for
improved speaker identification in adverse acousticditions.
We first apply the Wiener filter to the unsegmenteal/eform.
Next we extract speech-like segments from the unsated
waveform. Our segmentation system uses SRI's Deciggeech
recognition system and large vocabulary acousticdetsmo
Finally, we do frame selection before scoring theaker model.
We select the frames that have an average eneoyy @bcertain

threshold. In the experiments we added noise saniplelean
speech at multiple signal-to-noise ratio (SNR) ealuWe used
two realistic noises: babble and city traffic. Weed state-of-
the-art speaker identification systems and a coembfar the
Arabic data. Scores were generated by a Gaussiaturmi
model (GMM) base system and a maximum likelihoagdir
regression and support vector machine (MLLR-SVM3tem.
Speaker models were trained with clean speech &\ .also
used a neural network score combiner.

All of the clean and noisy speech experiments vedenee
using Arabic language data. We could find very feapers [3]
on speaker identification in spoken Arabic.

We have found significant equal error rate (EER)
reductions over the baseline (no compensation) iiondand
complementary gains using the proposed noise robust
techniques in both types of noise. We also foureddbimbiner
to be quite robust to noise.

2. ARABIC DATA

We used data from three Arabic dialects to traslibckground
(speaker-independent) model in the GMM and MLLR-SVM
systems. (Note that for background training dét@adcast
speech is included, to increase the dataset size.)

= Modern Standard Arabic (MSA) is the dialect used in
formal communication. The data was collected froadio
newscasts from various radio stations in the Arapigaking
world by the Foreign Broadcast Information SerE8IS). It
contains 145 recordings with an average lengttbahihutes.

= Levantine Arabic (LVA) is a group of dialects spak
the Levant (Syria, Palestine/lsrael, western Jordamd
Lebanon). The data includes 544 telephone convensawith

an average length of 5 minutes.

= Egyptian Arabic (EGA) is widely understood in E¢ymd
many other Arab countries. This data contains éphone
conversations collected in the LDC’s CallFriendupetwith an
average length of 5 minutes.

All experiments were conducted using an 8 kHz sampl
rate. For testing we used all Arabic-language cosat®ns (of
unknown dialect) contained in the NIST SRE 04 aBd[4)]
evaluation corpora, a subset of the LDC Mixer csrpthis
dataset contains speech from 43 speakers with erags of 5
conversations per speaker, 594 target trials, &4d Smpostor
trials.



3. BASELINE SYSTEMSAND COMBINER
3.1. Cepstral Gaussian Mixture M odel

A GMM system was used to model speaker-specificstcap
features. The system was based on the GMM-UBM model
paradigm, where a speaker model is adapted fromivensal
background model (UBM). Maximum a posteriori (MAP)
adaptation was used to derive a speaker model thenyBM.

The GMM has 2048 Gaussian components, and is tescin
detail in [5]. The cepstral GMM system includes derhandset
normalization and utterance-level mean and variance
normalization. Table 1 presents the results ofceyestral GMM
system on the Arabic portion of the NIST Mixer dafavo
background models were used, one trained with Emgliata
from the Switchboard (landline and cellular) andsher
databases, and another with the Arabic data destebove.

3.2. Maximum Likelihood Linear Regression M odel

The second model is a maximum likelihood linearr@sgion
MLLR-SVM [6] system. It estimates adaptation tramsis

using a phone-loop speech model with three regnesdasses,
for nonspeech, obstruents, and nonobstruents (timspeech
transform is not used). Such a system models speakeific

translations of the Gaussian means of phone rettogmhodels,
and does not require running a word recognitiortesys We
used an English phone recognition system (with agligh

phone set and trained on English Switchboard telepldata).
The coefficients from the two speech adaptationsf@ams are
concatenated into a single feature vector and meddeking
support vector machines (SVMs). A linear inner-prcidkernel
SVM is trained for each target speaker using thagufe vectors
from the background training set as negative exasy@nd the
target speaker training data as positive exampRank

normalization on each feature dimension was usedhleT 1
shows the results of the MLLR-SVM system on the bica
Mixer data.

3.3. Score Combiner

The MLLR-SVM system is an acoustic model using t&ps
features, but using a nonstandard representatidheofcoustic
observations. Therefore it may provide complementar
information to the cepstral GMM. We used a neureiwork
classifier from the LNKnet library [7] to combinéa two
systems at the score level. The neural networktivadinputs,
no hidden layer, and a single linear output adtvatunit. We
split the testset in two halves for jackknifing pases. The
combiner was first trained using both systems’ easdrom the
first half of the database and score estimates generated for
the second half. The procedure was repeated, hitdhéng the
training and test sets. Finally, we juxtaposed &stimated
scores from both halves and computed the EER.

Table 1. EER Results without Added Noise on Arabic Mixer Data

System Baclégrt(;und % EER

1 GMM English 10.27
2 GMM Arabic 9.09
MLLR-SVM Arabic 8.41
Combiner (2+3) 8.42

Table 1 shows that there is a 10% improvementhe t
GMM system using Arabic background data comparedstng
English, even though the Arabic data set is muchllsm We
can compare the 9.09% EER obtained on Arabic datdne
7.17% EER from the GMM system on the English SREe3%
set [8], which has more and better-matched traimiata. The
MLLR-SVM system is competitive with the best GMMssym
even though it uses English acoustic models fargmeition and
background modeling. The combiner does not produgmin
over the best system in clean conditions. Howeiteproves
valuable in noisy conditions, as we will see next.

4. NOISY SPEECH PROCESSING TECHNIQUES
4.1. Wiener Filtering

The goal of the Wiener filter is to estimate a nlegpeech
waveform from a noisy speech waveform. We used an
implementation from the Qualcomm-ICSI-OGI Aurorastgyn

[9]. It first uses a neural-network-based voicévitgtdetector to
mark frames as speech or nonspeech. Next, a nuéstrsm is
estimated as the average spectrum from the norsgeenes.
Finally, this noise spectrum is used in the Widfitering of the
noisy waveform. The Wiener filter was applied toeth
unsegmented waveform in order to take advantagbeofong
silence segments between speech segments forasbisetion.

4.2. Segmentation

We applied a speech-nonspeech segmenter to expaetch
segments from the noisy speech waveform. This segmtakes
advantage of the cleaner signal produced by theaYifitering.
The segmenter is from SRI's large-vocabulary teteghspeech
recognizer and was trained on 315 English telephone
conversations from the Switchboard and CallHomeaar. It
was not specifically tuned for Arabic or the noisanditions.
Segmentation is performed by Viterbi-decoding each
conversation side separately, using a speech/necisg@adden
Markov model (HMM), followed by padding at the balanies
and merging of segments separated by short pauses.

4.3. Frame Selection

In GMM scoring only the frames with average franrergy
above a certain threshold were used. In clean tondiit is
desirable to discard silence frames. Therefore énergy
threshold should be low in these conditions. Irspa@ionditions,
however, we want to discard frames that are mdedylito be
degraded by noise. Here the threshold should b&ehigo
eliminate noisy nonspeech frames frames. The actnalgy
threshold for each waveform is computed multiplyargenergy
percent (EPC) parameter (between zero and one)héo t



difference between maximum and minimum frame logrgyn
values and adding the minimum log energy. We haued that
the optimal EPC (i.e. the parameter for which #stdet EER is
the lowest) is dependent on both noise type and.SNR

5. EXPERIMENTSWITH NOISY ARABIC SPEECH

Here we show EER results in noisy conditions. \é® &bst the
proposed noise compensation techniques with bositess.
Finally, we test how the combiner performs in naisyditions.
The noises used are babble noise from the Noisef@9?
database, and city traffic noise. They were dilyitalixed with
the clean speech waveforms at different SNRs. Intra
experiments we used only speaker models trainedlean
speech, since it is not possible to train speakedats in all
noisy acoustic scenarios.

5.1. GMM System

Table 2 shows results of the GMM system in noisyditions.
The segmentation results are obtained from a éghgentation
in each noise and SNR condition. We show framectete
results using the optimal EPC for each conditiono{e in
parentheses for the last system). The baseline iEERe clean
condition was 9.09% (Table 1).

First, we observe in Table 2 a significant degradatinder
noisy conditions. We see that adding frame seleabio top of
segmentation is advantageous and results in additiBEER
reductions in all conditions. The optimal EPC faarhe
selection is dependent on both noise type and FHitlly, we
observe that Wiener filtering results in a smalREfduction in
babble noise down to 5dB SNR, and produces sigmfiEER
reductions across all SNR conditions for city iafhoise.
Overall, the proposed techniques complement eakhr aind
yield incremental gains when combined.

5.2. MLLR-SVM System
In Table 3 we show the EER results of the MLLR-S¢jstem

in both noise conditions. Frame selection was setlsince it is
incompatible with the phoneloop MLLR-SVM setup.

Comparing Tables 2 and 3, we observe that the MLLR-

SVM system is much more affected by the babbleentiian is
the GMM system. Note that the MLLR-SVM system isdzon
a more detailed speech model (a phone recognitiop) Ithat is
potentially more affected by the speech-like congmis of
babble noise. We also observe that Wiener filteresults in
EER reductions in both noise types, but is morectffe for
city traffic noise.

5.3. Automatic EPC Parameter Selection
The next step in the GMM system was to automagidaid an

appropriate energy percent parameter based ontenags of
the SNR. With our current framework we can compate

accurate  SNR estimate based on the speech/nonspeec

segmenter output. We used the nonspeech regioastitnate
the noise power. Then we used the traditional SdiRdila with
a clean speech power approximated as the noisgtsperver
minus the noise power. One very important advantgtnis
SNR estimator is that the noise is not assumee &tdtionary.

Table 2: EER Results on Arabic Mixer Data with GMM
System for Babble and City Traffic Noise at Multiple
SNRs. Optimal Energy Percent Parameter in Parentheses

System | 20dB | 15dB ‘ 10dB ‘ 5dB ‘ 0dB

Babble noise

Segmented 11.28 | 12.14 | 13.97 | 17.82 | 21.72

Segmented + 10.94 | 11.78 | 13.80 | 16.67 | 19.86
frame selection

Wiener + seg + 10.30 | 11.45 | 13.13 | 16.15 | 20.03
frame selection (0.3) (0.3) (0.3) (0.5) (0.7)

City Traffic noise

Segmented 13.47 | 14.97 | 18.01 | 21.55 | 24.75

Segmented + 12.79 | 13.97 | 15.83 | 19.02 | 23.06
frame selection

Wiener + seg + 11.61 | 12.61 | 13.97 | 17.00 | 21.33
frame select (0.5) (0.5) (0.5) (0.7 (0.7

Table 3: EER Results on Arabic Mixer Data with MLLR-SVM
System for Babble and City Traffic Noise at Multiple SNRs

System | 20dB ‘ 1508 ‘ 10dB | 5dB | 0dB
Babble noise
Segmented 11.07 | 12.95 | 16.66 | 21.39 | 29.78
Wiener + seg 10.94 | 12.32 | 15.98 | 20.87 | 30.64
City Traffic noise
Segmented 11.61 | 12.13 | 1498 | 19.21 | 25.73
Wiener + seg 10.60 | 11.61 | 13.43 | 16.97 | 25.41

In the experiments we added noise to each Araliabdae
waveform with a randomly selected SNR between 2%dH
0dB from a uniform distribution. Next we estimatége SNR
using the previously described estimator. Finallg, used the
following EPC parameters given the SNR regions:d00.3,
20dB-10dB: 0.5, <10dB: 0.7. These values were ahdsesed
on the results in Tables 2 and 3. This assignmexst weed for
both noisy conditions. In Table 4 we present thREHsing the

true SNR and the estimated SNR to determine the EPC

parameter.

Table 4: Automatic EPC Parameter Selection Results on Arabic
Mixer Data with GMM System based on True and Estimated
SNRs for Babble and City Traffic Noises

System SNR Babble City Traffic
Wiener + seg 16.47 15.48
Wiener + seg + True 14.31 14.78
frame selection

Wiener + seg + Estimated 14.48 14.65
frame selection

From Table 4 one can conclude that the energy perce
h parameter selection performs about as well baseeitber the

estimated or the true SNR.



5.4. Combiner

We were also interested in how the combiner desdrim
Section 3.3 performs in noisy conditions. We testbe
combiner using the same jackknifing procedure ascriteed
previously for clean speech. We tested two combinEne first
combiner was trained using scores in the matchesenand
SNR condition. The second combiner was trained lgarc
conditions only. The same neural network model used for
testing on both noises and all SNRs. We also rdépofable 5
for this last combiner the average of false accemaFA) and
false rejection (FR) using the score threshold esponding to
the EER in clean conditions.

Table 5: EER Results on Arabic Database with GMM, MLLR-
SVM Systems and Combiners for Babble and City Traffic Noises
at Multiple SNRs. Parentheses: (FA+FR)/2 with Clean Threshold

System | 20dB ‘ 150B ‘ 10dB ‘ 548 ‘ 0dB

Babble noise

GMM 10.30 | 11.45 | 13.13 | 16.15 | 20.03
MLLR-SVM 10.94 | 12.32 | 15.98 | 20.87 | 30.64
Combiner Match | g 59 | 1960 | 12.96 | 16.49 | 20.87
Training

Combiner Train | 9.42 | 10.41 | 12.46 | 15.82 | 22.22
Clean Data (8.7) (9.9 | (11.3) | (17.4) | (30.8)

City Traffic noise

GMM 1161 | 12.61 | 13.97 | 17.00 | 21.33
MLLR-SVM 10.60 | 11.61 | 13.43 | 16.97 | 25.41
Combiner Match | ¢ 57 | 976 | 11.11 | 14.31 | 20.32
Training

Combiner Train 9.42 9.62 11.11 | 15.02 | 19.86
Clean Data (8.5) (9.0) | (11..3) | (15.7) | (23.0)

We conclude from Table 5 that both combiners predaic
gain over each system alone in city traffic noisd & babble
noise up to 10dB SNR. Surprisingly, the clean comabiwith
the threshold obtained in clean conditions achiesigsilar
results to the matched combiner for SNRs up to 5dB.

6. CONCLUSIONS

We explored two increasingly important challengesdpeaker
recognition applications: noise robustness andimmprto a
language of interest (Arabic). We described a noisleust
speaker identification system that includes mudtipbmponents
and multiple models. We found complementary gaiosnfthe
multiple noise robust components, especially in loo@tion. In
city traffic noise we obtained a gain over all SNBRs using
score combination. Interestingly, we found that twenbiner
trained in clean conditions performed similarlyotoe trained in
matched conditions, a useful finding since matcdeth are
often not available or practical. Furthermore, eystems were
not specifically tuned for Arabic. For example, HieLR-SVM
system used English acoustic models. Thus, fuluwek in
which such systems are tailored to the languagehtmyigeld
additional performance gains.
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