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ABSTRACT

We investigate the use of prosody for the detection of faustr
tion and annoyance in natural human-computer dialog. In ad-
dition to prosodic features, we examine the contributiolaof
guage model information and speaking “style”. Results st

a prosodic model can predict whether an utterance is negral
sus “annoyed or frustrated” with an accuracy on par with tiat
human interlabeler agreement. Accuracy increases wherirdis
inating only “frustrated” from other utterances, and wheing
only those utterances on which labelers originally agr&enither-
more, prosodic model accuracy degrades only slightly wisimgu
recognized versus true words. Language model features,itve
based on true words, are relatively poor predictors of fatign.
Finally, we find that hyperarticulation is not a good prediobf
emotion; the two phenomena often occur independently.

1. INTRODUCTION

As we strive to make spoken language systems increasingly na
ral, it becomes clear that systems must recognize not whigt
words a person says, but albow the words are spoken—i.e.
the user's emotion, as conveyed by spepabsody Emotion
recognition has direct consequences for a wide variety plicg
tions, from games and educational software (e.g., to détesers
are enthusiastic or bored), to life-support systems (&ogletect
panic), to commercial products (e.g., to detect if a usengna
and should be transferred to a human operator). In this werk w
focus on the last type of application, specifically, on theedgon

of user frustration with a telephone-based dialog syste¢erface.
Although we focus on frustration, we note that our methockeis-g
eral and could be extended to emotion detection involvirytyme

of emotion or domain.

There has been considerable past work in the area of characte
izing and detecting emotion in speech [1, 2, 3, 4, 5, 6]. Thecett
study differs from from previous work in a number of ways.sEir
much of the past work has studieticited emotions, produced by
a small number of actors who are simply instructed to conkiey t
emotion when reading prepared sentences. Elicited databeay
ideal for research in areas like descriptive linguisticd apeech
synthesis, which aim to characterize canonical emotiooswrk
in recognition of natural emotions across many differeeders,
however, it is crucial to use naturally-occurring data. sT&iudy
utilizes a dataset containing a large number of differeebkprs
engaged in a task that itself gives rise to emotion. Secoast, p
work has often used methods that are not entirely automeic,
suming correct word transcriptions and features that rellzand-
marked data (such as corrected pitch tracks or locationseafific

Table 1. Statistics of labeled data

Source| Dialogs | Utterances| Time period
CuU 205 5619 11/1999-6/2001
CMU 240 8765 1/2001-8/2001
NIST 392 7515 6/2000
Total 837 21899 -

measurement locations), or relied on very simple prosaditures
(e.g., excluding durations) that did not require recognitbutput.
The present work is based on the output of a speech recognizer
(free recognition, with forced alignment for comparisamd uses
prosodic features that are computed entirely automagicatird,
unlike studies that examine either emotion or speakinge siyt
which confound the two, in this work we aim to determine the
association between the two, by including hand-markedkspga
style characteristics in our database. By including the-attar-
istics (such as hyperarticulation, pausing, or raisedejoalong
with our prosodic features, we can determine which, if arffy, o
the style characteristics are good predictors of emotiad, tae
relative predictive strength of such features as comparqulite
prosodic measurements. That is, our methods for emoti@tdet
tion are entirely automatic, but we can ask whether therdduoel
added value for emotion detection if we were able to autarakyi
detect speaking style.

2. METHODOLOGY

2.1. Speech data

We used a large, multi-site research and evaluation corpus o
human-computer dialog developed under the DARPA Communi-
cator project [7]. Users called systems built by variousssind
made air travel arrangments over the telephone. Althoughsus
were not “acting” out any instructed emotions, it is impattéo
note that because users were not making real travel plam§eth
quency of frustration was lower than it would have been ihlifea

The data used in this project came from three sources: theetdni
sity of Colorado (CU) Communicator system, the Carnegiddel
(CMU) Communicator system, and data from a larger number of
sites collected during the June 2000 Communicator evaluatid
distributed by NIST. The amount of data used in our study and
their collection periods are summarized in Table 1. All datae
collected over the telephone and sampled at 8 kHz. Rougi§ty 75
of the utterances were used for training; the remaining 25%ew
used for testing; no dialogs were split between training st
sets.



2.2. Emotion labeling

User utterances were labeled by five students from UC Berkele
Because we wanted labeling to reflect judgments of the agerag
person, labelers came from different disciplines. Lalgelivas
done using a modified version of the Rochester Dialog Anitotat
Tool (DAT) [8].

Emotion labels Every utterance was given one of seven pos-
sible emotion labels: NEUTRAL, ANNOYED, FRUSTRATED,
TIRED, AMUSED, OTHER, or NOT-APPLICABLE (contained
no speech data from the user).

Atotal of 49,553 emotion classifications were made on 21,899
utterances from the NIST, CU, and CMU recordings, for an-aver
age of 2.26 labelers labeling each utterance. The breakaddwn
class frequencies is shown in Table 2.

In addition to emotion, each utterance was also labeled for
three further types of information: speaking style, repdate-
quests or explicit corrections, and data quality problenkor
speaking stylewve settled on the following, nonexclusive cate-
gories: hyperarticulation (exaggerated pronunciatiorspgcific
phones or syllables), pausing (between words or betweda- syl
bles in a word), and “raised voice” (an increase in pitchdimss,
or both). Forrepeated requests or correctignse labeled utter-
ances either not a repeat/correction, a “repeat-or-rephoaly”,

a ‘“repeat-or-rephrase-with-explicit-correction”, or éexplicit-
correction-only”, based on [9]. Falata qualitywe marked prop-
erties of the speaker (nonnative, speaker switches, sydteni-
oper), properties of the speech content (side-talk, jokimmd
aspects of the recording (noise, system cut-offs). Whikéengp
and system cut-offs were included in our analyses, we odhitte
other cases from the present study. In principle we wouldhav
liked to retain the nonnative speech, which was not infratjire

the CU corpus. But because such speakers (1) were difficult or

impossible to judge hyperarticulation for; and (2) werachmore
tolerant of system failures than native speakers (as jubgetie
nonnatives’ much longer calls and low level of frustrationg de-
cided to omit them for the sake of data homogeneity.

Labeling Issues.We found that labeling of emotion as well
as speaking style is an inherently difficult task. First, @oro
is conveyed on a continuous scale, and for purposes of this wo
we needed to come up with discrete labels (alternative ajgpes
such as additional classes or uncertainty labels, did notdwe in-
terlabeler agreement). Second, emotion characterisigsenor-
mously from person to person, and from context to contextisTh
an issue that arose was whether to label emotion relativheto t
speaker and previous context, or to use an absolute labigtiog
ing both of these factors. We chose the former option, sihae t
is the most relevant option given the application in mindtéde
changes in the current user over the dialog). Finally, mbsuo
utterances were quite short, often just the word “Yes” or ™No
making emotion and style difficult to judge.

“Original” and “Consensus” Labels In a first pass, label-
ers annotated individually after calibration. Interlaredgreement
(even after grouping ANNOYED and FRUSTRATED together)
was only about 71%, with a Kappa of 0.47. We deemed this too
low for our purposes, but note that it appears to be due tcasie t
rather than to our labelers, because agreement among thas/ar
pairwise combinations of labelers did not significantlyfefif and
because agreement did not improve with additional trainivg
therefore conducted a second pass of labeling, which we tefe
as “Consensus” labeling, in which the two most experienabdilt
ers together relabeled any utterances that original ledobkd not

Table 2. Frequency of emotion labels. NOT-APPLICABLE cases
are waveforms with no user speech; these are excluded im#he a
yses. Note that low rate of frustration overall is attrilinketo the
fact that users were not making real travel plans, as disduiss
the text.

Emotion Class Instances| Percent
NEUTRAL 41545 | 83.84%
ANNOYED 3777 7.62%
FRUSTRATED 358 0.72%
TIRED 328 | 0.66%
AMUSED 326 0.66%
OTHER 115 0.23%
NOT-APPLICABLE 3104 6.26%
Total 49553 | 100.0%
agreed on.

2.3. Speech recognition and forced alignment

Both the prosodic and language model features for our nmagleli
relied on alignment information from a speech recognizethBr
than use the recognition results from the various Commtmica
systems (which were not always available), we ran a simglifie
version of SRI's Hub-5 system for conversational teleprepeech
[10], using a class-based trigram language model develéged
SRI's own Communicator system. This ensured that recagniti
errors and the specifics of the recognition system (such as th
choice of pronunciations) affected data from all sites éguahe
word error rates obtained with this system were 29.6% for CMU
data, 27.8% for the CU data, and 24.9% for the NIST data (mea-
sured on the subset of utterances used in our experiments). T
investigate the effects of recognition errors, we also aatienh fea-
tures based on the reference transcriptions of the uséesantes,

via forced alignment to the waveforms.

2.4. Prosodic model

Prosodic features We extracted the following types of features:
duration and speaking rate features, pause features fpdtires,
energy features, and spectral tilt featuréduration featuresin-
cluded the maximum and average durations of the normalfeed (
true or recognized phone identity) vowels or phones in therut
ance. Speaking rate featurescluded the number of vowels di-
vided by the duration of the utterandeause featuremcluded the
ratio of speech to pause time, the duration of the longestegpau
and the number of long pauses inside an utteraRiteh features
which proved to be quite useful, were based on post-proddsde
output using a stylization and regularization algorithnsdzhon
an updated version of [11]. Pitch was further post-proatssiag

a lognormal tied mixture model of FO that provides estimates
an individual speaker’s pitch range [11]. We used two versio
one based on data from all utterances in a call, and one usigg o
the first five utterances. The latter, which turned out to terlge
as good as the full-call version, allows for online emotiated-
tion (especially since users are rarely frustrated dutieditst five
utterances). Pitch features included raw and speakeralized
minimum and maximum utterance pitch, as well as the maximum
pitch taken within the region of the longest normalized vowad
slopes at various locationsEnergy featuresncluded the maxi-
mum or average RMS energy during voiced frames and during the
longest normalized vowel, normalized by the mean and vegian



@@ ANNOYED+FRUSTRATED vs. ELSE, Consensus vs. ELSE. In both cases, the ELSE class contained all rengini
100 - A—A ANNOYED+FRUSTRATED vs. ELSE, Orig. Agreed emotion types (NONE, plus the small amounts of other emstion
OO FRUSTRATED vs ELSE, Consensus such as TIRED, AMUSED, and OTHER, since we wanted to ac-
count for all datapoints). The first task allowed us to useifiig
cantly more emotional data, as can be inferred from Tablehz T
latter task aimed to detect only extreme cases of anger. ItResu
for both tasks, using both true and recognized words, arersho
in Table 3. The different rows in the table show results fdiedi
ent experiment conditions, in which we varied both the sewfc
the predicted emotion labels and the features availableetdeci-
sion tree. In the “Consensus version” experiments, the hpde
dicted the labels resulting from the consensus labeling; pashe
“Originally agreed” experiments, only the subset of utitees for
which individual labelers had been in agreement on pass & wer
60 ; : : : : included. Note that the latter case is expected to showrhette
Pro+Rep+Sty Pro+Rep Pro_only Rep_only LM_only .
Features Allowed in Decision Tree Model sults, since presumably labelers agreed on cases that vaeee m
Fig. 1. Comparison of annoyance and frustration detection with clear-cut prosodically. Results are given in both accur@ey-
different input features. Pro = prosody, Sty = Style, Rep=re  centage of correct decisions) and “efficiency” (reductiorclass
etition/correction feature. The dashed line indicatesiesmy for entropy provided by the model). Because of the fairly limisize
human interlabeler agreement on the first task. of our emotional-utterance corpus, we report results geztérom
20 separate experiments for each condition, each with aerdiit
of energy over the whole call (or over the first 5 utterancdg)on ~ fandom downsampling of the training data.
Spectral tilt featuresncluded the average of the first cepstral co- Looking first at the ANNOYANCE+FRUSTRATION
efficient, the average slope of the linear fit to the magnitsjec- vs. ELSE experiments, as summarized by the middle column of
trum, and the average difference in the sum of log energisin Table 3, we can draw several conclusions. First, we seelikat t
and high frequency regions—all taken over the longest ndzetl baseline experiment (Consensus version, no STYLE fegtates
vowel. In addition to the prosodic features, twonprosodic fea-  75.2%, shows better prediction of human consensus labais th
tures were included: the position of the utterance in the dialog, individual human labelers do with each other (72.6%). When w
and the labels described earlier for repeated attemptsaitie exclude the dialog state (repeat/correction) featurerebelts are
corrections. Position can be assumed to be automaticathjraal slightly worse (71.1% for tree versus 72.6% for human to hujna
by a system; repeats and corrections are of course not ageeasy We also see that when considering only the utterances orhwhic
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obtain, but we consider their detection a separate probiehoae labelers originally agreed, performance consistently rowgs

in which many systems already have some ability to detect. by 5-6% (except for the language model only experiment.).
We used decision trees as our classifiers, employing a brute-The repeat/correction feature always increases perfarepan

force iterative feature selection algorithm to find a minliset of sometimes by up to 4%. Again this is expected, since users

useful features and avoid the problem of greedy search.uBeca are typically more frustrated after system errors. Spepkin
of the large skew in our class sizes, we downsampled our data t Style features also increase performance relative to teelina
equal class priors to allow the tree maximum sensitivityga-f ~ prosodic tree. Potential candidates for the improvemetitidte
tures. This approach, when used in multiple experimentyifvg hyperarticulation, pauses, and raised-voice features;attual
the downsampling random seed each time), proved supenmitto ~ contributing feature is discussed in the section on feabsage
downsampling and also to upsampling. In testing, we usethall below. The FRUSTRATION vs. ELSE experiment involved very

data, but weighted the class accuracies to simulate ecasslas. little data, and thus only cautious conclusions can be drame
of these is that the performance on this task is consistemttly
2.5. Language model features significantly better than on the ANNOYANCE+FRUSTRATION

. . . vs. ELSE classification (by an average of about 9%).
We trained a class-based trigram model from the words in ekch . )
the classes (using the same word classes as used in theizeepgn All the above experiments are based on forced alignments for
and computed log likelihoods according to the models fohezic ~ féature processing. In parallel experiments using autiemeatog-

the test utterances. For convenience and to best assessirthe j Nition outputs, accuracies were only 0.1-2.6% worse in the A
contribution of language model and prosodic features, vaead ~NOYANCE+FRUSTRATION vs. ELSE task, and slightly better in

the language model features to the prosodic decision trads. (e FRUSTRATION vs. ELSE tasks, as shown in Table 3. These
tried two types of language model features. One featuregifie  esults imply that for this (and possibly other) emotioroguition
ference of log likelihoods of the two classes, was heavisdsy tasks based on whole utterances, highly accurate word mézmny

the decision trees, but led to poor results on the test desarly is not necessarily a requirement.
showing overfitting. We eliminated this feature in favor ahare Overall feature usage for the ANNOYED+FRUSTRATED
coarse feature, theignof the likelihood difference, which did not ~ versus ELSE task used five main types of features. We repmrt fe
show overfitting problems. ture usage as the percentage of decisions for which the éeispe
is queried; thus features higher in the tree have highereugem
3. EXPERIMENTSAND RESULTS those lower in the tree. The most-queried feature type, deahp

features, represented roughly 28% of total usage. Therfsain
Experiments were run with two basic classification tasks:- AN this category were mainly normalized duration and speakae
NOYANCE+FRUSTRATION vs. ELSE, and FRUSTRATION features, including features normalized by only the firs fitter-



Table 3. Summary of experimental results. “STYLE” = speaking stigatures; “REP” = repeat/correction features; “LM” =

laage

model features; “Consensus version” = emotion labels edrat after labelers resolved any disagreements; “Origiaglreed” = subset
of utterances on which individual labelers had agreed onléibeling pass; “Acc” = accuracy (linear average of 20 safgaexperiments);
“Eff” = efficiency (linear average of 20 experiments). Nokév features were computed for the first task only, althoughrinciple could
be computed for both. Accuracies reflect simulated equabdastributions in the test set through sample weighting.

ANNOY.+FRUST. vs. ELSE FRUST. vs. ELSE
True words | ASR words | True words | ASR words
Acc Eff | Acc Eff | Acc Eff | Acc Eff
Each human with other human, overall 72.6 68.8
Human with human “Consensus” (biased) | 83.9 77.3
Consensus version, [All Features] 80.2 32.7 93.2 67.2
Originally agreed, [All Features] 85.4 472 91.8 63.3
Consensus version, [no STYLE] (“Baseline()75.2 21.2| 75.1 21.9| 86.4 46.5| 87.0 495
Originally agreed, [no STYLE] 80.0 32.0| 785 28.2| 86.4 44.6| 857 46.9
Consensus version, [no STYLE,noREP] | 71.1 14.6| 70.7 148 | 84.2 39.7| 86.7 47.9
Originally agreed, [no STYLE, no REP] 77.1 230|745 186|804 31.8| 83.6 39.6
Consensus version, [RERIy] 69.8 12.8 76.6 21.1
Originally agreed, [RERNIy] 74.7 18.5 85.4 143
Consensus version, [Linly] 65.6 3.8
Originally agreed, [LMonly] 645 -0.9

ances in the call. Longer durations and slower speaking ve¢ee
associated with frustration. Pitch features represeredts?26%
of total usage, and included the maximum FO in the longeseljow

the maximum overall FO, the times that the maximum and mini-
mum FOs occured, the maximum speaker-normalized FO rige, an

the distance of various FO statistics from the speaker in&selll

were associated with frustration when their values werb.Hidne
repeat/correction feature represented roughly 26% of trstage
as well, with (as expected) more frustration after systerarsr

The speaker-normalized RMS energy accounted for 11% of the

usage, and the remaining 8% of usage was from featuresrgacki

the number of dialog exchanges between the user and systism th

far.

(2]

(3]

(4]

(5]

The experiments showed that among the speaking style fea- 6]

tures, only raised voice is a helpful predictor for emotiday-
perarticulation and pauses between syllables and words mar
useful. This indicates that it is not crucial to detect hyptcu-
lation for emotion detection, and confirms our initial démisto
treat the two phenomena as separate. However, our progadic f
tures could be useful in detecting hyperarticulation fisdthough
this remains an interesting open question for further study
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