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Abstract. This paper summarizes statistical modeling approaches forthe use of prosody (the

rhythm and melody of speech) in automatic recognition and understanding of speech. We outline
effective prosodic feature extraction, model architectures, and techniques to combine prosodic with
lexical (word-based) information. We then survey a number of applications of the framework, and
give results for automatic sentence segmentation and disfluency detection, topic segmentation, dialog
act labeling, and word recognition.
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1. Introduction. Prosody has long been studied as an important knowledge
source for speech understanding. In recent years there has been a large amount
of computational work aimed at prosodic modeling for automatic speech recogni-
tion and understanding.1 Whereas most current approaches to speech processing
model only the words, prosody provides an additional knowledge source that is
inherent in, and exclusive to, spoken language. It can therefore provide additional
information that is not directly available from text alone, and also serves as a par-
tially redundant knowledge source that may help overcome the errors resulting
from faulty word recognition.

In this paper, we summarize recent work at SRI International in the area
of computational prosody modeling, and results from several recognition tasks
where prosodic knowledge proved to be of help. We present only a high-level
perspective and summary of our research; for details the reader is referred to
publications cited.

2. Modeling philosophy. Most problems for which prosody is a plausible
knowledge source can be cast as statistical classification problems. By that we
mean that some linguistic unitU (e.g., words or utterances) is to be classified as
one of several target classesS. The role of prosody is to provide us with a set
of featuresF that can help predictS. In a probabilistic framework, we wish to
estimateP (SjF ). In most such tasks it is also a good idea to use the information
contained in theword sequenceW associated withU , and we therefore generalize
the modeling task to estimateP (SjW;F ). In fact,W andF are not restricted to�SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, Emailfees,stolckeg@speech.sri.com. We thank our many colleagues at SRI, ICSI,University of
Washington (formerly at Boston University), and the 1997 Johns Hopkins CLSP Summer Workshop,
who were instrumental in much of the work reported here. The research was supported by NSF
Grants IRI-9314967, IRI-9618926, and IRI-9619921, by DARPA contract no. N66001-97-C-8544,
and by NASA contract no. NCC 2-1256. Additional support camefrom the sponsors of the 1997
CLSP Workshop [7, 11] and from the DARPA Communicator project at UW and ICSI [8]. The
views herein are those of the authors and should not be interpreted as representing the policies of the
funding agencies.

1Too much work in fact, to cite here without unfair omissions.We cite some specifically relevant
work below; a more comprehensive list can be found in the papers cited.
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pertain only to the unit in question; they may refer to the context ofU as well. For
example, when classifying an utterance into dialog acts, it is important totake the
surrounding utterances into account.

Starting from this general framework, and given a certain labeling task, many
decisions must be made to use prosodic information effectively. What is the nature
of the featuresF to be used? How can we model the relationship betweenF and
the target classesS? How should we model the effect of lexical informationW
and its interaction with prosodic propertiesF? In the remainder of this paper we
give a general overview of approaches that have proven successful for a variety of
tasks.

2.1. Direct modeling of target classes.A crucial aspect of our work, as
well as that of some other researchers [6, 5] is that the dependence between
prosodic features and target classes (e.g., dialog acts, phrase boundaries) is mod-
eled directly in a statistical classifier—without the use of intermediate abstract
phonological categories, such as pitch accent or boundary tone labels. This by-
passes the need to hand-annotate such labels for training purposes, avoids prob-
lems of annotation reliability, and allows the model to choose the levelof granu-
larity of the representation that is best suited for the task [2].

2.2. Prosodic features.As predictors of the target classes, we extract fea-
tures from a forced alignment of the transcripts (usually with phone-level align-
ment information), which can be based on either true words, or on (errorful)
speech recognition output. Similar approaches are used by others [2]. Thisyields
a rich inventory of “raw” features reflecting F0, pause and segment durations, and
energy. From the raw features we compute a wide range of “derived” features—
devised (we hope) to capture characteristics of the classes—which are normalized
in various ways, conditioned on certain extraction regions, or conditioned on val-
ues of other features.

Phone-level alignments from a speech recognizer provide durations of
pauses and various measures of lengthening (we have used syllable, rhyme, and
vowel durations for various tasks) and speaking rate. Pitch-based features bene-
fit greatly from a postprocessing stage that regularizes the raw F0 estimates and
models octave errors [10]. As a byproduct of the postprocessing, wealso obtain
estimates of the speaker’s F0 baseline, which we have found useful for pitch range
normalizations.

Combined with F0 estimates, the recognizer output also allows computa-
tion of pitch movements and contours over the length of utterances or individual
words, or over the length of windows positioned relative to a location of interest
(e.g., around a word boundary). The same applies to energy-based features.

2.3. Prosodic models.Any number of statistical classifiers that can deal
with a mix of categorical and real-valued features may be used to modelP (SjF;W ). These requirements, as well as our desire to be able to inspect our
models (both to understand patterns and for sanity checking), have led usto use
mainly decision trees as classifiers. Decision trees have two main problems, how-
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ever, which we have tried to address. First, to help overcome the problem of
greediness, we wrap a feature subset selection algorithm around the standard tree
growing algorithm, thereby often finding better classifiers by eliminating detri-
mental features up front from consideration by the tree [9]. Second, to make
the trees sensitive to prosodic features in the case of highly skewed class sizes,
we train on a resampled version of the target distribution in which all classes have
equal prior probabilities. This approach has additional benefits. It allows prosodic
classifiers to be compared (both qualitatively and quantitatively) across different
corpora and tasks. In addition, classifiers based on uniform prior distributions are
well suited for integration with language models, as described below.

2.4. Lexical models. Our target classes are typically cued by both lexical
and prosodic information; we are therefore interested in optimal modeling and
combination of both feature types. Although in principle one could add words
directly as input features to a prosodic classifier, in practice this is often not fea-
sible since it results in too large a feature space for most classifiers. Approaches
for cardinality reduction (such as inferring word classes via unsupervised cluster-
ing [4]) offer promise and are an area we are interested in investigating. To date,
however, we have used statistical language models (LMs) familiar from speech
recognition. One or more LMs are used to effectively model the joint distribu-
tion of target classesS and wordsW , P (W;S). With labeled training data, such
models can usually be estimated in a straightforward manner. During testing on
unlabeled data, we computeP (SjW ) to predict the possible classes and their
posterior probabilities, or simply to recover the most likely target class given the
words.

2.5. Model combination. The prosodic model may be combined with a lan-
guage model in different ways, including� Posterior interpolation:ComputeP (SjF;W ) via the prosodic model

andP (SjW ) via the language model and form a linear combination of
the two. The weighting is optimized on held-out data. This is a weak
combination approach that does not attempt to model a more fine-grained
structural relationship between the knowledge sources, but it also does
not make any strong assumptions about their independence.� Posteriors as features:ComputeP (SjW ) and use the LM posterior es-
timate as an additional feature in the prosodic classifier. This approach
can capture some of the dependence between the knowledge sources.
However, in practice it suffers from the fact that the LM posteriors on
the training data are often strongly biased, and therefore lead the tree to
over-rely on them unless extra held-out data is used for training.� HMM-based integration:Compute likelihoodsP (F jS;W ) from the
prosody model and use them as observation likelihoods in a hidden
Markov model (HMM) derived from the LM.2 The HMM is constructed

2By equating the class distributions for classifier training, as advocated above, we obtain posterior
estimates that are proportional to likelihoods, and can therefore be used directly in the HMM.
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TABLE 1
Sentence boundary and disfluency event tagging error rates for the Switchboard corpus. The

higher chance error rate for recognized words is due to incorrect word boundary hypotheses.

Model True words Recognized words
LM only 7.3 26.2
Prosody only 11.1 27.1
Combined 6.9 25.1
Chance 18.2 30.8

to encode the unobserved classesS in its state space. By associating
these states with prosodic likelihoods we obtain a joint model ofF , S,
andW , and HMM algorithms can be used to compute the posteriorsP (SjF;W ) that incorporate all available knowledge.
This approach models the relationship between words and prosody at a
detailed level, but it does require the assumption that prosody and words
are conditionally independent given the labelsS. In practice, however,
this model often works very well even if the independence assumption
is clearly violated.

For a detailed discussion of these approaches, and results showing their relative
success under various conditions, see [12, 9, 15].

3. Applications. Having given a brief overview of the key ideas in our ap-
proach to computational prosody, we now summarize some applications ofthe
framework.

3.1. Sentence segmentation and disfluency detection.The framework
outlined was applied to the detection of sentence boundaries and disfluency inter-
ruption points in both conversational speech (Switchboard) and BroadcastNews
[12, 9]. The target classesS in this case were labels at each word boundary iden-
tifying the type of event: sentence boundary, various types of disfluencies (e.g.,
hesitations, repetitions, deletions) and fluent sentence-internal boundaries. The
prosodic model was based on features extracted around each word boundary, cap-
turing pause and phone durations, F0 properties, and ancillary features such as
whether a speaker change occurred at that location.

The LM for this task was a hidden event N-gram, i.e., an N-gram LM in
which the boundary events were represented by tags occurring between the word
tokens. The LM was trained like a standard N-gram model from tagged training
text; it thus modeled the joint probability of tags and words. In testing, we ran
the LM as an HMM in which the states correspond to the unobserved (hidden)
boundary events. Prosodic likelihood scoresP (F jS;W ) for the boundary events
were attached to these states as described above, to condition the HMM tagging
output on the prosodic featuresF .

We tested such a model for combined sentence segmentation and disfluency
detection on conversational speech, where it gave about 7% boundary classifi-
cation error using correct word transcripts. The results for various knowledge
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TABLE 2
Sentence boundary tagging error rates for two different speech corpora: Switchboard (SWB)

and Broadcast News (BN).

SWB BN
Model True words Rec. words True words Rec. words
LM only 4.3 22.8 4.1 11.8
Prosody only 6.7 22.9 3.6 10.9
Combined 4.0 22.2 3.3 10.8
Chance 11.0 25.8 6.2 13.3

sources based on true and recognized words are summarized in Table 1 (adapted
from [12]). For both test conditions, the prosodic model improves the accuracy of
an LM-only classifier by about 4% relative.

We also carried out a comparative study of sentence segmentation alone,
comparing Switchboard (SWB) telephone conversations to Broadcast News (BN)
speech. Results are given in Table 2 (adapted from [9]). Again the combination of
word and prosodic knowledge yielded the best results, with significant improve-
ments over either knowledge source alone.

A striking result in BN segmentation was that the prosodic model alone per-
formed better than the LM alone. This was true even when the LM was using
the correct words, and even though it was trained on two orders of magnitude
more data than the prosody model. Pause duration was universally the most use-
ful feature for these tasks; in addition, SWB classifiers relied primarily on phone
duration features, whereas BN classifiers made considerable use of pitch range
features (mainly distance from the speaker’s estimated baseline). We attribute the
increased importance of pitch features in BN to the higher acoustic quality of the
audio source, and the preponderance of professional speakers with a consistent
speaking style.

3.2. Topic segmentation in Broadcast News.A second task we looked at
was locating topic changes in a broadcast news stream, following the DARPA
TDT [3] framework. For this purpose we adapted a baseline topic segmenter
based on an HMM of topic states, each associated with a unigram LM that mod-
els topic-specific word distributions [17]. As in the previous tagging tasks, we ex-
tracted prosodic features around each potential boundary location, and let a deci-
sion tree compute posterior probabilities of the events (in this case,topic changes).
By resampling the training events to a uniform distribution, we ensured that the
posteriors are proportional to event likelihoods, as required for HMM integration
[9, 15].

The results on this task are summarized in Table 3. We obtained a large, 24-
27% relative error reduction from combining lexical and prosodic models. Also,
similar to BN sentence segmentation, the prosodic model alone outperformed the
LM. The prosodic features selected for topic segmentation were similar to those
for sentence segmentation, but with more pronounced tendencies. For example,
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TABLE 3
Topic segmentation weighted error on Broadcast News data. The evaluation metric used is a

weighted combination of false alarm and miss errors [3].

Model True words Recognized words
LM only 0.1895 0.1897
Prosody only 0.1657 0.1731
Combined 0.1377 0.1438
Chance 0.300 0.300

TABLE 4
Dialog act classification error on highly ambiguous DA pairsin the Switchboard corpus.

Classification task True words Rec. words
Knowledge source

Questions vs. Statements
LM only 14.1 24.6
Prosody only 24.0 24.0
Combined 12.4 20.2

Agreements vs. Backchannels
LM only 19.0 21.2
Prosody only 27.1 27.1
Combined 15.3 18.3

Chance 50.0 50.0

at the end of topic segments, a speaker tends to pause even longer and drop the
pitch even closer to the baseline than at sentence boundaries.

3.3. Dialog act labeling in conversational speech.The third task we
looked at was dialog act (DA) labeling. In this task the goal was to classify each
utterance (rather than each word boundary) into a number of types, such as state-
ment, question, acknowledgment, and backchannel. In [7] we investigated the
use of prosodic features for DA modeling, alone and in conjunction with LMs.
Prosodic features describing the whole utterance were fed to a decision tree. N-
gram language models specific to each DA class provided additional likelihoods.
These models can be applied to DAs in isolation, or combined with a statistical di-
alog grammar that models the contextual effects of nearby DAs. In a 42-way clas-
sification of Switchboard utterances, the prosody component improved the overall
classification accuracy of such a combined model [11]. However, we found that
prosodic features were most useful in disambiguating certain DAs that arepar-
ticularly ambiguous based on their words alone. Table 4 shows results for two
such binary DA discrimination tasks: distinguishing questions from statements,
and backchannels (“uh-huh”, “right”) from agreements (“Right!”). Again, adding
prosody boosted accuracy substantially over a word-only model. The features
used for these and other DA disambiguation tasks, as might be expected, depend
on the DAs involved, as described in [7].
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3.4. Word recognition in conversational speech.All applications dis-
cussed so far had the goal of adding structural, semantic, or pragmatic informa-
tion beyond what is contained in the raw word transcripts. Word recognition
itself, however, is still far from perfect, raising the question: can prosodic cues
be used to improve speech recognition accuracy? An early approach in this area
was [16], using prosody to evaluate possible parses for recognized words, which
in turn would be the basis for reranking word hypotheses. Recently, there have
been a number of approaches that essentially condition the language model on
prosodic evidence, thereby constraining recognition. The dialog act classification
task mentioned above can serve this purpose, since many DA types are charac-
terized by specific word patterns. If we can use prosodic cues to predict the DA
of an utterance, we can then use a DA-specific LM to constrain recognition. This
approach has yielded improved recognition in task-oriented dialogs [14],but sig-
nificant improvements in large-vocabulary recognition remain elusive [11].

We have had some success using the hidden event N-gram model (previously
introduced for sentence segmentation and disfluency detection) for word recog-
nition [13]. As before, we computed prosodic likelihoods for each event type at
each word boundary, and conditioned the word portion of the N-gram on those
events. The result was a small, but significant 2% relative reduction in Switch-
board word recognition error. This improvement was surprising giventhat the
prosodic model had not been optimized for word recognition. We expect that
more sophisticated and more tightly integrated prosodic models will ultimately
make substantive contributions to word recognition accuracy.

3.5. Other corpora and tasks. We have recently started applying the
framework described here to new types of data, including multiparty face-to-face
meetings. We have found that speech in multiparty meetings seems to have prop-
erties more similar to Switchboard than to Broadcast News, with respect toauto-
matic detection of target events [8]. Such data also offers an opportunityto apply
prosody to tasks that have not been widely studied in a computational framework.
One nice example is the modeling of turn-taking in meetings. In a first venture
into this area, we have found that prosody correlates with the location and form
of overlapping speech [8].

We also studied disfluency detection and sentence segmentation in the meet-
ing domain, and obtained results that are qualitatively similar to thosereported
earlier on the Switchboard corpus [1]. A noteworthy result was that event de-
tection accuracy on recognized words improved slightly when the models were
trained on recognized rather than true words. This indicates that there is system-
aticity to recognition errors that can be partially captured in event models.

4. Conclusions. We have briefly summarized a framework for computa-
tional prosody modeling for a variety of tasks. The approach is based on modeling
of directly measurable prosodic features and combination with lexical (statistical
language) models. Results show that prosodic information can significantly en-
hance accuracy on several classification and tagging tasks, including sentence
segmentation, disfluency detection, topic segmentation, dialog act tagging, and
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overlap modeling. Finally, results so far show that speech recognition accuracy
can also benefit from prosody, by constraining word hypotheses througha com-
bined prosody/language model.

More information about individual research projects is avail-
able at http://www.speech.sri.com/projects/hidden-events.html,
http://www.speech.sri.com/projects/sieve/, and http://www.clsp.jhu.edu/ws97/-
discourse/.
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