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Abstract— We summarize recent progress in automatic speech-

to-text transcription at SRI, ICSI, and the University of Wa shing-

broadcast news

ton. The work encompasses all components of speech modeling

found in a state-of-the-art recognition system, from acousc fea-
tures, to acoustic modeling and adaptation, to language mading.
In the front end, we experimented with nonstandard features
including various measures of voicing, discriminative phae
posterior features estimated by multilayer perceptrons, ad a
novel phone-level macro-averaging for cepstral normalizéon.
Acoustic modeling was improved with combinations of front eds
operating at multiple frame rates, as well as by modificatios to
the standard methods for discriminative Gaussian estimatin. We
show that acoustic adaptation can be improved by predicting
the optimal regression class complexity for a given speaker

I. INTRODUCTION

CCURATE transcription of speech into text (speech-to-

text, or STT) is a prerequisite for virtually all other
natural language applications operating on audio sources. Sup-
ported by the DARPA EARS program, a team of researchers at
SRI International, the International Computer Science Institute
(ICSl), and the University of Washington (UW) developed
a system to produce “rich transcripts” from conversational
telephone speech (CTS) and broadcast news (BN) sources, that

Language modeling innovations include the use of a syntax- IS, transcripts containing not just streams of words, but also

motivated almost-parsing language model, as well as pringled
vocabulary-selection techniques. Finally, we address ptability
issues, such as the use of imperfect training transcripts, ral
language-specific adjustments required for recognition ofArabic
and Mandarin.

Index Terms— Speech-to-text, conversational telephone speech,
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structural information corresponding to sentence boundaries
and disfluencies. The methods used to recover information
“beyond the words” are described in a companion paper for
this special issue [1]. This article focuses on the prerequisite
for rich transcription, namely, accurate word recognition. We
describe a series of new techniques that were developed and
tested on CTS and BN data, spanning the major trainable
components of a speech recognition system: feature extrac-
tion front end, acoustic models, and language models. In
the front end, we experimented with nonstandard features,
including various measures of voicing, discriminative phone
posterior features estimated by multilayer perceptrons, and a
novel phone-level macro-averaging for cepstral normalization.
Acoustic modeling was improved with combinations of front
ends operating at multiple frame rates, as well as by modi-
fications to the standard methods for discriminative Gaussian
estimation. We show that acoustic adaptation can be improved
by predicting the optimal regression class complexity for a
given speaker. Language modeling innovations include the
use of a syntax-motivated almost-parsing language model, as
well as principled vocabulary selection techniques. Finally,
we address portability issues, such as the use of imperfect
training transcripts, and language-specific changes required for
recognition of Arabic and Mandarin.

Il. RECOGNITION SYSTEM

To provide the necessary background, we give a brief
description of SRI's CTS recognition system, which served
as the basis of most of the work described here. It is depicted
in Fig. 1. An “upper” (in the figure) tier of decoding steps is
based on Mel-frequency cepstral coefficient (MFCC) features;



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSEY VOL. 14, NO. 5, SEPTEMBER 2006 2

MFC
nonCW

Thin i
latticeg /{7

3xRT
QOupu

Fig. 1. SRI CTS recognition system. Rectangles represerudiiey steps. Parallelograms represent decoding outatticéls or 1-best hypotheses). Solid
arrows denote passing of hypotheses for adaptation or bufashed lines denote generation or use of word latticesdéooding. Crossed ovals denote
confusion network system combination. The two decodingsste light gray can be run by themselves to obtain a “fasttespsusing about 3xRT runtime.

a parallel “lower” tier of decoding steps uses perceptual linearThe entire system runs in under 20 times real time (20xRT)
prediction (PLP) features [2]. The outputs from these two tiem a 3.4 GHz Intel Xeon processor. For many scenarios it is
are combined twice using word confusion networks (denotedeful to use a “fast” subset of the full system consisting of
by crossed ovals in the figure). Except for the initial decodingsist two decoding steps (the light-shaded boxes in Fig. 1); this
the acoustic models are “cross-adapted” to the output offast system runs in 3xRT and exercises all the key elements
previous step from the respective other tier using maximurof the full system except for confusion network combination.
likelihood linear regression (MLLR) [3]. The initial decodingThe baseline system structure is the result of a heuristic
steps in each tier also use MLLR, though with a phone-logptimization (which took place over several years) that aims
model as reference. to obtain maximal benefit from system combination and cross-
Lattices are generated initially to speed up subsequetaptation, while staying within the 20xRT runtime constraint
decoding steps. The lattices are regenerated once laterimposed by the DARPA CTS STT evaluation.
improve their accuracy, after adapting to the outputs of the firstFor BN recognition the system was further simplified to run
combination step. The lattice generation steps use noncrdssunder 10xRT. In this case only two recognition stages are
word (nonCW) triphone models, while decoding from latticegsed (nonCW and CW), and both are based on a PLP front
uses crossword (CW) models. The final output is the result okad. Final LM rescoring uses 5-gram LMs.
three-way system combination of MFCC-nonCW, MFCC-CW,
and PLP-CW models. Each box in the diagram corresponds m
to a complex recognition step involving a decoding run to
generate either lattices ov-best lists, followed by a rescoringA. \oicing Features

of these outputs with higher-order language models, durationg first strategy to improve the front end is to augment

models, and a pause language model [4]. the cepstral feature representation with phonetic features com-
The acoustic models used in decoding use standard normijted using independent front ends. The parameters from each
ization techniques: cepstral mean and variance normalizatigignt end specific to a phonetic feature are optimized to im-
vocal tract length normalization (VTLN) [5], heteroscedastigrgye recognition accuracy. While this is a general framework
linear discriminant analysis (HLDA) [6], [7], and speakerfor multiple phonetic features, our present approach explores
adaptive training based on constrained MLLR [8]. All acoustihe yse of just voicing features, since voicing is highly relevant
models are trained discriminatively using the minimum phongy phone discrimination.
error (MPE) criterion [9] or variants thereof (as described The first voicing feature used in this paper is the traditional
below). The baseline language models (LMs) are bigrams (ig§rmalized peak autocorrelation. The second voicing feature
lattice generation), trigrams (for lattice decoding), and 4-grajiied is a newly defined entropy of the high-order cepstrum.

LMs (for lattice andN-best rescoring). The CTS in-domaingg, the time-windowed signat(t) of durationT the high-
training materials are augmented with data harvested from §\@jer cepstrum is defined as

web, using a search engine to select data that is matched for ‘
both style and content [10]. C = IDFT(log(|DFT (w(t) - z(t))[*)) (1)

. FEATURE EXTRACTION FRONT END
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where w(t) is the Hamming window of duratiod’. Zero multilayer perceptron (MLP) was the key workhorse method-
padding is used prior to the computation of the DFT. Thelogy, performing nonlinear discriminant transformations of
entropy of the high-order cepstrum is computed as followsthe time-frequency plane. In the work reported here, we
extended these approaches to large-vocabulary speech recog-

H(C) = - ZT P(C(r)log(P(C(r)) (2 pition. Here we found that we could also achieve substantial
PC() = C(r) 3) gains with these features, despite potential overlap with other
>, C") techniques incorporated in the full system, such as linear

i , : . discriminative transformations and discriminative training of

where the indices andr’ correspond to a pitch region fromthe HMMs.

80 Hz to 450 Hz. For robust voicing detection, both voicing : N
features are used together, since they have complement(ar9ur'.n.tent was o do system combmaﬂ_o nat the feature level
strengths at different pitch values [11] in"addition to a}nother system combination being dpne at the
We explored several alternatives for integrating the voici ord level Igter in the propess). We have found t.hat’. In contrast
4 the requirements for high-level system combination, feature

features into the CTS recognition system [11]. In an initi binati benefit f tivel K A
system, we first concatenated the voicing features with t gmoination can benetit irom comparatively weak components

standard Mel cepstral features and optimized the temporal wi they are suﬁ|C|er_1tIy complementary. For the purpose of _th's
dow duration for the voicing feature front end. We extende St then, we incorporated three feature components:
the window duration beyond the traditional 25 ms, and foundl) a temporally oriented set of long-time (500 ms) MLP-
that the voicing activity was captured more reliably with a  based features, derived from log critical band energies;
longer time span. 2) a set of moderate-time (100 ms) MLP-based features,

We then explored the integration of the voicing features in  derived from 9 frames of PLP cepstra and 2 derivatives;
a more complex recognition system with Mel cepstral fea-3) PLP or MFCC features and 3 derivatives, transformed
tures augmented with third differential features, reducing the and dimensionally reduced by HLDA.

dimensionality with HLDA. Different integration approache he first two features were combined at the level of the

were evaluat.ed in this §y_stem, revealing the “Seflﬂ'”ess OMitp outputs, which could be interpreted as posteriors due
multiframe window of voicing features. We foundaflve-fram@o their training with 1/0 targets indicating the phonetic

window to be apimal in r_ec_(l)gnltlonr.] “fast” . ¢ th labels that were obtained from a previous forced alignment

A twq-sta_\ge system similar to the "fast” version o t .J15]. The posteriors were combined additively, with weights
system in Fig. 1 was designed to evaluate the effect of voici Arived from the inverse of the entropy function computed
features on word error rate (WER). Both stages used non(.“fygm the posteriors themselves; thus, MLP “decisions” with

gender-dependent triphone models trained with maximum "k&'rong certainty were more heavily weighted [16]. During our

lihood on approximately 400 h of the Switchboard, Ca”Homgevelopment, we found this method to be roughly comparable

Erjglish, and Switchboard Cellular databases. We. then tesfsq'nore straightforward approaches (e.g., summing weighted
this system on the NIST RT-02 CTS database, which conta 3 probabilities with empirically determined weights), but it

approximately five hours of speech from 120 speakers. T s both automatic and more reliable in cases where one of the

WER refsults after key decodir(;g_ stepsl pass, with aRd With%rature streams was badly damaged. The logs of the combined
voicing egtures, are prese_nte in Table (IJ We see t_ a_t VO'C'BQSteriors were then processed with principal component anal-
features give a relative gain of around 2%, and a similar ga;'/gis (PCA) for orthogonalization and dimensionality reduction,

is preserved after r_escoring and MLLR. and then appended to the more traditional PLP or MFCC
In another experiment, we used the complete CTS evalLf@étures

tion system and tested the effect of voicing features just prior.l_he 500 ms features used techniques based on the original

to the final NV-best rescoring stage. The acoustic models Hﬂ

this case are CW-word triphone models trained with maximume.VEIOpment called TempoRal Patterns (TRAPS) [14]. In the

mutual information estimation (MMIE). The relative WERorlglnaI approach, MLPs were trained on log critical energies

reduction using the voicing features, from 25.6% to 25 1(yvith phonetic targets, and then further combined with a larger
was again around 2% ' ' ““RLP that was also trained on phonetic targets. In the variant

developed for our task, we used the critical band training
o ] . to derive input-to-hidden weights for the MLPs, and then
B. Discriminative Features Estimated by Multilayer Percep-  combined the hidden layer outputs with the broadband MLP
trons as before. We named this modified version of the features
Many researchers have found that incorporating certdifidden Activation TRAPs, or HATs. The motivation for this
types of acoustic information from longer time ranges thanodification was that the individual critical bands were only
the typical short-time (25 ms or so) analysis window can hbearginally effective in 46-category phonetic discrimination;
helpful for automatic speech recognition; examples includ# the other hand, we noted that the input-hidden connections
cepstral mean subtraction [12] or RASTA [13]. It was showappeared to be learning common temporal patterns as part of
that the incorporation of long-time (as long as 1 s) acoustach full MLP’s attempt to discriminate between the phones
information directly as observed features for a hidden Mark¢¥7]. We further determined that the critical band networks
model (HMM) could lead to substantial improvements onould work well with relatively small hidden layers (40 to
speech recognition for small vocabulary tasks [14], where t68 hidden units), while the combining networks benefited
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TABLE |
RECOGNITIONWERS WITH AND WITHOUT VOICING FEATURES, TESTED ON EVAL2002 CTS ESTSET. RELATIVE PERCENTAGEREDUCTIONSARE
GIVEN IN PARENTHESES

Step No voicing features| With voicing features
Phone-loop adapted, bigram LM 38.6% 37.8% (-2.1%)
4-gram and duration rescored| 33.6% 32.5% (-3.3%)
MLLR to first recognition output| 30.6% 30.0% (-2.0%)

TABLE Il
RESULTS WITHMLP FEATURES ONRT-04F CTS DEVELOPMENT AND
EVALUATION SETS

testsets is identical, 9.9% (2.0% absolute on the evaluation
set). However, we also observe that the improvement is almost
twice as big for female speakers as for males. This imbalance

RT-04F Dev RT-04F Eval needs further investigation and points to a possible improve-
System Male | Female| All | Male | Female| Al ment of the system (by improving accuracy specifically on
Baseline 181 | 162 | 172 202 | 204 | 203

WIMLP feats. | 168 | 142 | 155 | 190 | 177 | 18.3| Male speakers).
Rel. change (%)| -7.2 -12.3 -9.9 -5.9 -13.2 -9.9

C. Macro Normalization of Features

. Current recognition systems perform a variety of feature
from a large number of parameters, particularly for the task o L . .
: ; normalizations to reduce the variations in speech due to differ-
incorporating 2000 h of speech.

For the larger task, four full-band MLPs needed to pances in channel, speaker, and environment. Examples of these

L - rl(ormalizations include feature mean removal [19], feature
trained: for each gender, there was a HATs combining network; . o o
riance normalization [20], vocal tract length normalization

! . . Vi
3?%‘13;?2? E:ISN%E 'morgorﬁﬂ%% va;-i?:eg/v Ii?hpuz;{sialrzﬁ’ and model-based normalizations like HLDA [6], [7] and
gnly g gspeaker-adaptive training (SAT) [8]. While these normalization

hidden layer, typically 10,000 to 20,000 units wide, WherFechniques produce significant gains in recognition accuracy,

each hidden unit incorporated a sigmoidal nonlinearity). Givgﬁey suffer from one weakness: the estimates of the normal-

the large number (360 million) of frames used for each_: : o
- . Jization parameters are affected by the relative distribution
training, the computational load presented a huge practic .
of the speech frames among phone classes. To redress this,

problem. Straightforward extrapolation from previous smaller investigated a new approach to feature normalization that

expe_rlments_ suggested a runtime of 18 mont_hs for the .fl\gﬁimates the parameters independent of the distribution of the
training. This results from an almost quadratic complexit

%’peech among the phone classes.

since it requires a roughly linear growth in the number o 1) Algorithm Consid it f K
parameters to optimally benefit from the increase in the size of ) Algorithm: Consider an utterance from a speaker rep-

the training set. The complexity is not quite quadratic becaurseeseme‘j by a sequence of feature vectarsLet IV be the

there is a modest decrease in the number of training epog}[é"ll number of such features extracted from the utterance(s).
|

required for convergence (as assessed on an independent ¢ g%gmeththa}t V\t/e have :n r?hgnm(lant for the (;Jttergntc):e asf;o—t
validation set). Fortunately, we were able to significantl ating the features and phone classes (produced by a firs

reduce training time by a combination of software speedu cogm:l_on tpatss)-fLGIE be the num(tj)er O_f phon$ cliihsses. we
and algorithm heuristics. The most important heuristic was en estimate the feature mean and variance (for the purposes

do early training epochs with fewer patterns and fairly Iarg% hormalization) as

learning rates. The learning rates were gradually decreased, L N ) LN )
while the amount of data used was gradually increased. He = N, Z Tie; O™ = N, . (Tie = Hte)

After solving the practical issues with MLP training, we &t &t
tested the features in the full CTS system. We investigated: = ¢ 21 pe; o = & 21(0c2 + (e = p1)?)-

various options for augmenting the various models used by
the system with MLP features. A detailed account of theselt can be seen that our technique results in estimates that
investigations can be found in [18]. The outcome was thate independent of the distribution of the features among
the best strategy is to add MLP features only to the MFCG@he different phone classes. The traditional (micro-averaging)
based models used in the architecture depicted in Fig. 1, aslimation corresponds to the case of a single class.
to leave the PLP-based stages unchanged. This makes sen@ne problem with our technigue is that if a class has no
in that the resulting subsystems are more differentiated, aindmes assigned to it, it is not used in the estimation. In
therefore give better results upon combination. other words, the estimates are not robust to missing classes
Table Il summarizes the results with and without MLRclasses with no frames). To overcome this, we compute
features on the RT-04F CTS development and evaluation tgkibal estimates on the training data for each class and use
sets. (The system including MLP features represented these estimates to smooth the speaker-level estimates for the
official submission by the SRI/ICSI/UW team to the RT-04Bame class. We use linear interpolation to smooth the speaker
CTS evaluations.) The overall relative WER reduction on bo#fstimates with the global estimate for the same class.
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TABLE Il

done in our feature mean and variance estimation (using macro
WERRESULTSWITH AND WITHOUT MACRO-NORMALIZATION ( g

statistics). In line with our approach, we are modifying the

Word Error Rate adaptation algorithms to utilize macro statistics (instead of
Step Baseline [ _Macro-normed models micro statistics). Preliminary results with macro-normalized
Unsmoothed] Smoothed HLDA t thi
Unadapted Recog | 34.3 33.7 335 support this.
HYP Adapt+Recog 32.2 31.7 31.9

IV. ACOUSTICMODELING

2) Experiments To evaluate the performance of our nevf Multirate Recognition Models for Phone-Class-Dependent

feature mean/variance normalization technique, we perform%[db‘aSt List Rescoring
speech recognition experiments using the SPINE (Speech iModeling of speech with fixed-rate front ends and HMMs
Noisy Environments) databases and the Fisher CTS corptlies a constant rate of information accumulation. In this
available from the Linguistic Data Consortium (LDC). Théramework, frames of a fixed length are scored uniformly to
SPINE corpus experiments were focused on finding the agompute the likelihood that a given sequence of feature vectors
timal phone classes to use for estimating the normalizati@produced by the model. The common fixed frame length of
parameters. To find the optimal phone classes, we compugio 30 ms represents a fundamental time-frequency tradeoff
feature mean and variance normalizations using 1, 2, 3, 7, ithe speech representation. For example, vowels can result in
and 47 phone classes. We then trained acoustic models anlatively stationary harmonic structure that can be sustained
tested on the SPINE 2001 evaluation set. We used the sa@mehundreds of milliseconds, whereas stop consonants can
setup as used in the first recognition step in our 2001 SPIMave landmark transients that last no more than 10 ms. In
evaluation system [21]. For both training and testing, we us@dconstant frame length front end, transient phenomena are
the same number of phone classes. We observed that the bgsiided with the context, decreasing the sharpness of the
performance improvements were obtained for the 47-phomdels that account for information-bearing discontinuities.
class case (which corresponds to a single phone per classyherefore, frame scores with particularly relevant information,
The Fisher corpus is substantially larger than the SPINdtich as those of stops, are washed out in the statistics of phone
corpus and has over 2000 h of acoustic CTS data. To tracores that span many more frames, such as those of vowels.
acoustic models, we used a subset of approximately 18Qnorporation of information from acoustical phenomena tak-
of the data containing about 203 K utterances for 2589 makey place at different rates has received significant attention
speakers. For testing, we used the male portion of the Rii-the speech recognition literature; a brief overview can be
04F development testset, containing 1474 utterances fromfddnd in [22].
speakers. MFCC features augmented with voicing features (a$Ve present a method that aims to incorporate information
described above) and reduced by HLDA to 39 dimensiofi®m multiple time-frequency tradeoffs by projecting the vari-
were used. A bigram LM was used in recognition. able frame problem at the front end to the back end through
3) Results: Table Ill compares the baseline, macro-normedescoring ofN-best lists generated by a fixed-rate recognizer
and smoothed macro-normed models. We show the resultsvigth a normalized rate-dependent score. In our approach, the
the first recognition pass with unadapted models, and rectypotheses generated by the fixed-rate recognition engine are
nition results after adaptation with MLLR. For all modelsin effect used to parse the incoming speech into phones, which
the recognition hypotheses from the first recognition passbsequently determine the most likely rate model through the
with baseline models were used as adaptation referenadafinition of a mapping from phone classes to the available
We observe that our normalization technique outperforms teet of multiple rate models. The final scores are obtained
baseline before and after adaptation. We find that the improwkrough rescoring oiV-best lists by phone-dependent multiple
ment from smoothing with global estimates is small. Thisate model scores, a common way of incorporating other
may be because the Fisher corpus has more data per speakiarmation sources. The scoring has two important aspects
resulting in less smoothing. We also find that adaptatidhat differentiate our approach: (i) the normalization with
reduced the performance gains from macro-normalization. respect to dynamic range of scores of models at different rates,
The results of our experiments show that our new approashich is carried out by normalizing with the likelihood of all
based on estimating feature normalization parameters frée phones in the same phone context at the same resolution,
macro-averages results in a reduction in WER. Smoothiagd (ii) averaging of the frame-level scores to produce a
the class estimates for a speaker with global estimates ngle score for each phone state in the hypotheses. Resulting
that class reduces the WER further. We also find that tHdone-class-dependentscores are treated as knowledge sources
WER reduction drops significantly after adaptation. As cuand combined into a linear model, parameters of which are
rent speech recognition systems employ multiple adaptatioptimized to minimize the WER.
steps, one can argue that the technique may produce onl{t) Approach: Our technique involves choosing a small set
marginal improvement in the overall system performance. Vi rates and training acoustic models at those rates. After
believe that the performance loss occurs primarily because tfenerating N-best lists using a standard rate model, we
adaptation algorithms rely on statistics that weight all framasore the/N-best hypotheses using different rate models and
equally (micro statistics), thereby negating the compensatioombine the scores to minimize the WER.
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TABLE IV
ESULTSWITH MULTIRATE PHONE-CLASS-BASEDRESCORING ON THE

The likelihoods computed using different acoustic modeIFZ
' NIST RT-02 CTS ESTSET

cannot be combined, as they use different features. The so
tion we propose is to use a normalized phone class likelihood
ratio for frame-level scores. Specifically, the normalized score

WER(%) for #Phone Class

for feature vector; at triphone-stat¢p_,pp, 1) is computed Model T 3 vi
by Tune | Held | Tune | Held | Tune | Held
A P(zilp_1ppss) Baseline | 39.9 | 39.9 | 39.9 | 39.9 | 39.9 | 39.9
S(ai,p) = log ilP—1PP+ 4) +2.0rate | 39.2 | 39.4 | 38.8 | 39.1 | 38.6 | 39.2
> Plxilp—1prp41) +0.67 rate | 39.3 | 39.1 | 389 | 39.0 | 38.9 | 389
+0.67 +2.0| 39.3 | 39.4 | 38.7 | 39.1 | 38.6 | 38.9

where p represents the center phone gnd, and p,; rep-
resent the preceding and succeeding phone contexts. Given
the normalization in Eqg. 4, each frame score can now be
regarded as independent of the rate of the model by which
it was generated. With the normalized scores, we comput
sentence-level scores for each phone cl&ss,using Eq. 5.

e1) Phone-Lattice-Based Discriminative Training: The stan-
A dard MMI and MPE training procedures use word lattices to
S(P,) = Z S(zi,p)I[p € Pyl (5) represent competing hypotheses. Phone boundaries are marked
i in the word hypotheses to constrain and speed up search during
Finally, we combine the phone-class dependent scores withining. Alternatively, in arimplicit-lattice method for MMI
the baseline acoustic and language model scores througtraining [25], lattices are generated on the fly by decoding a
linear combiner and optimize the linear combination weightighly compact decoding graph compiled from a pronunciation
to directly minimize the WER. Details may be found in [22]dictionary. This approach can save a lot of disk space for lattice
2) Experiments: In our experiments, we used the threstorage at the cost of increased computation.

models: _ . . .
1) a baseline model at standard rate (100 fps, 25.6-ms|nth's work, we aim to speed up both the lattice generation

window)! and statistics collection procedures, and therefore propose

: ... phone-lattice-based discriminative training, which is applica-
2) asl te model at/3 of the baseline (15 ms shift, P a 1ng, which
) gssﬁmesrvr/?n(ejor\r/]v())' el al/3 of the baseline (15 ms shi ble to both MMI and MPE. Similar to implicit-lattice MMI,

3) a faster rate model at twice the baseline (5 ms shift 104e compile all dictionary pronunciations into a determinized
ms window) "7 7and minimized [26] finite-state phone network, with both

The acoustic training data were the male subset of our RT_glg)nunmatlon and unigram language model probabilities em-

CTS training set (about 140 h). The features were 13 MFC eQded: Using this finite-s_tate networ_k, we generate ph(_)ne
(including Co) and their first and second time derivativesatlces in a very fast decoding pass, using an algorithm similar
. v . - to that described in [27]. In a phone lattice, each real arc
We trained nonCW triphone models containing 2400 98NN bresents a phone, with start and end time information. Null
(state clusters) with 64 Gaussians per genone. As in the firep . n : '
stage of our full system, the models were adapted to a phor%gs are mtroduced_ to red_uce the number of real arcs, and thus
loop (using MLLR) befc;re recognition size and computation. With a forward-backward search pass

3) Results We used the NIST RT-02 male testset (308 onstrained by the timing of the phone arcs, statistics for both

utterances) in our experiments. This set was partitioned i | and MPE can be collected in the standard manner [9)].

two parts; a tuning set containing about 1400 utterances & 8mpared to word Iatt!ces, phor_1e lattices are much fast_e rto

a heldout set containing the rest. The tuning set was useog%]er?te' as the decoding gra_ph is much more compa_c'_[ W'th.OUt

optimize the weights for different scores. These weights WeWé)rd mfo_rmatlon. Phone "'%“'CE_S are also more eﬁ_'c'ef“ n

then applied to the heldout set and the WER was comput presenting .hypotheses with d'ﬁere”t. phones (whichis all

Table 1V shows the results from different model combination .at matters in phone-based HMM training), and as a result
The results on RT-02 confirm that our rescoring approa@r‘?ed less storage space.

results in a significant reduction in the WER, with the best re- Based on the phone lattices, we can easily apply both MMI
duction of 1.0% absolute for the slower rate model. Increasiagd MPE training. Recent research showed that I-smoothing
the number of classes reduces the WER for the tuning set Qih different prior models can help boost the effectiveness
not on the heldout set. For finer phone sets, it seems that f&iscriminative training [9]. We found that alternating MMI
may need a larger tuning set to properly estimate the weighdgid MPE criteria during discriminative training can help to
L - reach the best model accuracy with the least number of
B. Improved Discriminative Training training iterations. For odd-numbered iterations, estimate the
Discriminative training criteria, such as maximum mutualiPE model with MMI prior; for even-numbered iterations,
information (MMI) [23] and minimum phone error (MPE)estimate the MMI model with MPE prior. The prior models

[24], have shown great advantage over the traditional makemselves are I-smoothed with ML models. We call this
imum likelihood (ML) training in large-vocabulary speechapproach MPE+MMI.

recognition. Our contribution to this work addresses the chal-
lenge brought by vast amounts of training data, and to obtain2) Minimum Phone Frame Error (MPFE) Criterion:
accuracy gains over the standard MPE and MMI training. In the standard MPE criterion, the correctness measure,
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TABLE V TABLE VI
EFFECT OFDIFFERENTDISCRIMINATIVE TRAINING CRITERIA ON RESULTS(WER) FORSPEAKER-DEPENDENTMLLR REGRESSIONCLASS
VARIOUSCTS BVALUATION TESTSETS (WER%) PREDICTION, ON NIST RT-04F CTS EALUATION TESTSET
RT-04F (Eval) RT-03 RT-02 Hub-5 2001 Default | Rec. independenf{ Rec. dependen{ All Oracle
MLE 24.5 25.3 26.7 26.1 18.6 18.3 18.2 183 | 174
MPE+MMI 22.6 23.7 24.9 24.4
MPFE+MMI 22.4 23.1 24.5 24.0

to use for a speaker by using speaker-level acoustic and
recognizer attributes [30]. This procedure improved system
performance compared to the popular approach where only
—142e if g is correct in label (©6) the amount of adaptation data is used to control adaptation
—1+e otherwise complexity [31], [3], [32].
The motivation for this approach is based on analysis of
e%/tstem performance in offline experiments for six different
sizes of regression class trees that included the possibility of

using unadapted speaker-independent models. By choosing the

PhoneAcc(q), of a phone hypothesigis defined as
PhoneAcc(q) = {
wheree is the overlap ratio betweep and its corresponding

phone in the reference transcription. We propose a differ
phone accuracy definitioR hone FrameAcc(q):

end(q) oracle regression class tree size for each speaker, we observed
PhoneFrameAcc(q) = Z P(S; € S(q)]W,0) (7) that for the recent NIST CTS test sets (from 1998 through
t=start(q) 2004), we could achieve a 1% absolute improvement in WER

where ¢ is the phone hypothesis under studj(q) denotes ON average.

the set of HMM states associated with this phomeyrt(q) - Prediction of Tree Szes: To capitalize on this obser-
and end(q) represent the start and end timesqofn frame vation, we developed an automatic procedure that classified

units; P(S; € S(q)|W,0) is the posterior probability of the each speaker into one of six possible regression class tree

HMM state belonging tc5(¢) at time¢ given observation® sizes using standard statistical learners that were trained on

and transcriptioV, which can be obtained with the standar@coustic and speaker-level information observed in adaptation
forward-backward ’algorithm that is widely used in HIledata. Speaker-level features that were investigated include
training. both recognizer-independent features (seconds of adaptation

Substituting thePhone Frame Ace(q) for PhoneAce(q) in speech, VTLN factor, a normalized energy measure, and rate

the MPE criterion, we obtain the MPFE criterion. Because §f SPeech) and features that would depend on the recognition
the similarity in definition, MPFE can use the same algorithr‘ﬁUtp_Ut (pre-adaptation a_coustlc scores and average W(_)r_d-based
as MPE except for the difference of measuring the hypothegﬁnf'dence scores). Using anfold cross-validation training

accuracy. Since all the competing hypotheses in a lattice h&@2adigm and these speaker-level features, an ensemble of

the same number of frames, MPFE does not have a Systemgll:f)ésifiers was designed and combined by averaging their class

bias favoring deletion error. We also observed that the MPFp@steriors to form a stacked Iez_irng_r. Decision trees were found
occupancies have values similar to those of MM occupanciég.perform best, though not significantly better compared to
This may make MPFE more robust than MPE when dealiﬁé’pport vector machlngs, k-nearest neighbor ap_d multlnomlal
with a small amount of data. neural network classifiers. The overall classification error
Table V compares two English CTS crossword gende‘i’-b'[alned Wa_s_ in the ra_lnge of 55% to 64%. . )
dependent models trained on about 1400 h of Switchboard and) Recognition Experiments: Various system configurations
Fisher data, with MPE+MMI and MPFE+MMI, respectively.f"md feature sut_)set combmauons were eyqluated in predu;t—
A 39-dimensional feature vector obtained from MFCCs arll9 the regression class tree size for individual speakers in
voicing features by HLDA projection and SAT transformatiof’® NIST RT-04F test set. The main results, using the full
was used for training. A bigram language model was first uséd S_recognition system, are shown in Table VI, with more
to generate, and then a 4-gram language model to rescofiailed res_ults_and analysis in [30]. Recognlzer-d.eplendent
lattices. Final hypotheses were generated from consensus Y recognizer-independent feature subsets gave similar per-
coding [28], [29]. LM weight, word penalties, and so on werfPrmance gains, but no additional gain was observed by
optimized in the RT-04F development test set, and applied §8MPining them. The result for the oracle case shows that
the NIST 2001 Hub-5, RT-02, RT-03, and RT-04F evaluatigif€re is still much room for improvement.
test sets. As can be seen, the MPFE+MMI approach has a
small but consistent advantage over MPE+MMI on different V. LANGUAGE MODELING
test sets, ranging from 0.2% to 0.6% absolute. A. SuperARV LM

o . Structured language models (LMs) have recently been
C. Speaker-Dependent Variation of Adaptation shown to give significant improvements in large-vocabulary
Next we describe an automatic procedure for online comecognition relative to traditional wordv-gram models. In
plexity control of the acoustic adaptation parameters. The idg38], we developed an almost-parsing language model based
is to choose the best number of MLLR regression classes the constraint dependency grammar (CDG) formalism.
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Here we summarize the basics of the LM and the approach ee to the lack of large CDG treebanks, we have developed a
developed for adapting and applying the LM in SRI's Englismethodology to automatically transform context-free grammar
BN and CTS STT systems. (CFG) constituent bracketing into CDG annotations [35]. In
The SuperARV LM [33] is a highly lexicalized probabilisticaddition to generating dependency structures by headword
LM based on syntactic information expressed in CDGs [34)ercolation, our transformer utilizes rule-based methods to
It tightly integrates multiple knowledge sources, such as wotkktermine lexical features and need role values for the words
identity, morphological features, lexical features that have syim- a parse. Although these procedures are effective, they
ergy with syntactic analyses (e.g., gap, mood), and syntaat@nnot guarantee that the CDG annotations generated are
and semantic constraints at both #rewledge representation completely correct. In [36], the impact of errorful training
level andmodel level. data on the SuperARV LM was investigated on the Hub4 BN
At the knowledge representation level, integration weSTT task. Two state-of-the-art parsers were chosen based on
achieved by introducing a linguistic structure, called a supatcuracy, robustness, and mutual consistency to generate CFG
abstract role valueSuperARV), to encode multiple knowl- parses [36]. The resulting CFG treebank was then transformed
edge sources in a uniform representation that is much meseCDG parses for training the SuperARV LM. We found
fine grained than parts-of-speech (POS). A SuperARV is &mat the SuperARV LM was effective even when trained on
abstraction of the joint assignment of dependencies forirconsistent and errorful training data. In spite of these results,
word, which provides a mechanism for lexicalizing CDGve improved the CFG parser accuracy and investigated the
parse rules. A SuperARYV is formally defined as a four-tupleffect that had on SuperARV LM performance.
for a word, (C, F, (R,L,UC,MC)+,DC), where C is the  The second research issue for SuperARVs was the tradeoff
lexical category of the wordf' = {Fname, = Fvalue;, between generality and selectivity. To this end, we investigated
..., Fnamey = Fualuey} is a feature vectorKname; is the effect of tightening the constraints by adding lexical
the name of a feature arfdvalue; is its corresponding value), features related to the dependents, so-called “modifiee con-
(R,L,UC,MC)+ is a list of one or more four-tuples, eachstraints” (which are in addition to the SuperARV structure
representing an abstraction of a role value assignment, wheh@wn in [33]).
R is a role variable (e.g., governot),is a functionality label  The third research issue is the implementation of an effi-
(e.g., np),UC represents the relative position relation of @ient approach for integrating the SuperARV LM into SRI's
word and its dependent (i.e., modifiee)/C is the lexical multipass BN and CTS decoding systems. Full evaluation
category of the modifiee for this dependency relation, amd the SuperARV would be computationally expensive and
DC represents the relative ordering of the positions of difficult for lattice rescoring purposes, given that a dynamic
word and all of its modifiees. Hence, the SuperARV structuggrogramming algorithm has to be carried out from the start of
for a word provides an explicit way to combine informationhe sentence.
about its lexical features with one consistent set of dependencyVe therefore opted for an approximation whereby Super-
links for the word that can be directly derived from its pars@RV probabilities are only computed over the span of a
assignments, providing admissibility constraints on syntacktandardV-gram LM, and the conditional SuperARV proba-
and lexical environments in which a word may be used. bilities for a limited set ofNV-grams are encoded in a standard
Model-level integration was accomplished by jointly estitM, and used in the standard manner in lattice aviebest
mating the probabilities of a sequence of woret$ and their rescoring. For this approximation to be effective the selection

SuperARV membershipg: of the N-gram set is critical. Initially, we experimented with a
N static selection method, whereby a large numbeNe§rams
P(w{"t{v) = H P(witi|w§*1t§*1) selected based on training data is included in the approximate
i=1 SuperARV N-gram LM [37]. However, we found that this
N o o approach does not always generalize well; for example, we
= HP(tilwfltlfl) - P(w;wi ). found that it worked quite well on the RT-04F CTS devel-
i=1 opment test set, but gave no improvement on the evaluation

Note that the SuperARV LM is fundamentally a class-basext. Consequently, we adopted a dynamiegram selection
LM using SuperARVs as classes. Because the SuperARyethod for the results reported here. After generating the first
LM models the joint distribution of classes and words, datget of lattices (see Fig. 1)y-grams with the highest posterior
sparseness is an important issue just as for standard Werdexpected counts are extracted, and an approximate SuperARV
gram LMs. In [35], we evaluated several smoothing algorithni$-gram LM is constructed specifically for the given test set.
and how to interpolate with, or backoff to, lower-ordérgram That LM is then used just as a standard LM in all subsequent
probability estimates using a combination of heuristics amtecoding steps.
mutual information criteria to globally determine the lower- Tables VII and VIII show recognition results with dynam-
order N-grams to include in the interpolation, as well as theically approximated SuperARV LMs on CTS and BN data,
ordering [35]. respectively. The baseline results correspond to a standard
In the process of adapting the SuperARV LM techniqueackoff LM with modified Kneser-Ney smoothing [38]. For
originally developed on newswire text to the BN and CTETS (Table VII) the effects of improved parse quality and
STT tasks, we explored three major research issues. First, dteled modifiee constraints are also demonstrated. Both factors
SuperARV LM must be trained on a corpus of CDG parsesanslate into WER reductions, and are partly additive. Overall,
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we observe between 3% and 8% relative error reduction wipnocedure is effective in rapidly computing the values of the
dynamic SuperARV approximation. Aj.
We compared the ML vocabulary selection technique
B. Vocabulary Selection against the baseline of counting each word occurrence equa!ly
» ) _ regardless of source, as well as several other more sophis-
~ The vocabulary of a speech recognition system is a signjfzated techniques, as described in [39]. We evaluated the
icant factor in determining its performance. We thus investhoy rates on heldout BN and CTS data sets as a function of
gated the problem of finding an optimal way to selectrilget \qcahulary size. A pilot study was conducted on the English
words. The problem can be briefly summarized as followgy task, where a small amount of hand-corrected closed-
We wish to estimate the true vocabulary counts of a partialgéptioned data, amounting to just under 3 h (about 25,000
visible corpus of in-domain text (which we call the heldo%ords), drawn from six half-hour broadcast news segments
set) when a number of other fully visible corpora, possibly,, January 2001, was used as fhetially visible heldout
from different dqmains, are avail_able on which to train_. Thgata to estimate the two mixture weights and )\.. This
reason for learning the in-domain counts of wordsw; IS he|dout data is part of the corpus released by the LDC for
that the words may be ranked in order of priority, enabling yse pDARPA-sponsored English topic detection and tracking
to plot a curve relating a given vocabulary size to its out-OfTpT.4) task. There are two distinct corpora for training: an
vocabulary (OOV) rate on the heldout corpus. Therefore, it i 5.million-word corpus of English newswire data covering
sufficient to learn some monotomp functionof in place of he period of July 1994 through July 1995, and a 2.5-million-
the actualr;. Leta; be some functior® of the known counts \yorq corpus of closed captioned transcripts from the period
ni,; of wordsw;, for 1 < j < m for each ofm corpora. Then, of November through December 2000 from segments of the
the problem can be restated as one of learminom a set TpT.4 dataset released by the LDC, a closer match to the
of examples where target domain. On testing, we found that for small vocabularies
there exist obvious differences in the performance of a number
of different vocabulary selection methods including the one
For simplicity, let ® be a linear function of the:; ; and introduced herein. But for large vocabularies, all methods yield
independent of the particular word,. Then, we can write  about the same OOV rates.
On the English CTS task, we conducted a full evaluation,
®(ni, e 1im) = Z/\jmj‘ 8) by using all the available LM training data resources and an
J unseen heldout data set, the RT-04F English CTS development
The problem transforms into one of learning the Our test set. We observed that the ML method outperformed all
investigations showed that a maximum likelihood based cousther methods with a prominent margin, for vocabularies of
estimation procedure was optimal in terms of selecting tlsize 1,000 to 90,000 words.
best vocabulary for a domain given limited visibility into its
test corpora. In ML count estimation, we simply interpret the VI. PORTABILITY ISSUES
normalized counts:;; as probability estimates ab; given . )
corpus j and the \; as mixture coefficients for a linear” Flexible Alignment for Broadcast News
interpolation. We try to choose thg; that maximize the  The majority of the English BN acoustic training data con-
probability of the in-domain corpus. The iterative procedurssted of quickly transcribed (QT) speech. QT speech, typically

i =P, Nim)-

used to compute thg; is shown below. closed captioned data from television broadcasts, usually has
1 a significant number of deletions and misspellings, and has
Aj o= = (9) a characteristic absence of disfluencies such as filled pauses
m v O wn) (such asamanduh). Errors of these kinds lead to inaccurate or
M\ As [Timy Plwili)™ (10) failed alignments. At best, the erroneous utterance is discarded
’ Dok Ak HLQ P(w;] k) (w) and does not benefit the training procedure. At worst, it could
5 ,\;_ -\ (11) misalign and end up sabotaging the models. We developed
N, e /\;_ (12) a procedure called flexible alignment that aims cteanse

quick transcriptions so that they align better with the acoustic
) evidence and thus yield better acoustic models.
Repeat from (10) it > some threshold.  (13) oy approach is characterized by a rapid alignment of the

The \; are reestimated at each iteration until a convergen@eoustic signal to specially designed word lattices that allow
criterion determined by some threshold of incremental chantq the possibility of either skipping erroneously transcribed
is met. The likelihood of the heldout corpus increases mon@t Untranscribed words in either the transcript or the acoustic

tonically until a local minimum has been reached. The iteratidnal, and/or the insertion of an optional disfluency before the
onset of every word. During the flexible alignment, we process

1The mechanics of the parse processing, SuperARV extractioBvery transcript to generate a hypothesis search graph that has

model training and evaluation are quite complex and ndatriv the following properties: every word is made optional; every
to reproduce. We have therefore made a software toolkit and

documentation for these steps available for download; sé’t\;‘ord is precedeq by either an optiorgiirbage WO.I’d, which
http://www.speech.sri.com/people/wwang/html/sofevhatml. we call the @reject@ word, or one of a certain humber of
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TABLE VI
WER (%)ON THE RT-04F CTS EVELOPMENT AND EVALUATION TESTSETS FORBASELINE SYSTEM AND DYNAMICALLY APPROXIMATED
SUPERARV LM S. THE VALUES IN PARENTHESES ARE THEABSOLUTEWER REDUCTIONSOVER THE BASELINE.

WER (%)(absolute reduction)
dev04 eval04
SARV factors Baseline] SARV Baseline]  SARV
standard 155 14.6 (-0.9) 18.4 17.8 (-0.6)
+ better CFG trees - 14.5 (-1.0) - 17.6 (-0.8)
+ modifiee constraints - 14.6 (-0.9) - 17.8 (-0.6)
+ better CFG trees + modifiee constrain{s - 14.3 (-1.2) - 17.5 (-0.9)

TABLE VIII
WER (%)ON THE RT-04F BNDEVO04,LDC-DEV04,AND EVAL04 TESTSETS FORBASELINE AND DYNAMICALLY APPROXIMATEDSUPERARV LM s.
THE VALUES IN PARENTHESES ARE THEABSOLUTEWER REDUCTIONS OVER THE BASELINE

WER (%)(absolute reduction)
dev04 [dc-dev04 eval04
factors Baseline]| SARV Baseline] SARV Baseline] SARV
standard 13.0 | 12.3 (-0.7) 184 | 17.7 (-0.7) 15.2 | 14.8 (-0.4)
standard + better CFG treg$ - 12.1 (-0.9) - 17.6 (-0.8) - 14.7 (-0.5)
+ modifiee constraints

TABLE IX
COMPARISON OFWERS WITH DIFFERENTMETHODS FORTRAINING ON
QuICKLY TRANSCRIBEDBN SPEECH

participants (denoted dev2003 and dev2004) and the NIST RT-
03 BN STT evaluation data (denoted eval2003). Besides the
TDT-4 reference and acoustic data, the data used for acoustic
model training includes 1996 and 1997 Hub-4 English BN

Vethod TDT data (n) | dev2003 evai2003 devzoor SPe€ech (146 h). The recognition system used was the first stage
Baseline 0 17.8 14.9 of the full BN system (decode and LM rescore). Details of the
LDC-raw 249 16.8 14.7 189 | experiment can be found in [41].

LDC-hand-corrected 184 15.9 13.9 18.1 . .

CUED-recognized 245 15.9 14.0 18.2 As Table IX shows, the flexible alignment model produced
Flexalign 248 15.8 14.4 18.0 | the lowest WER after first-pass decoding on both the Hub4

Baseline: only Hub4 transcripts (no TDT-4 data); LDC-Raiesed-captioned Broadcast News 2003 and 2004 TDT-4 development test set
transcripts as is, with unalignable portions discardedCtitand-corrected: and the lowest WER on all test sets. On the eval2003 test set,
transcripts corrected by human transcribers CUED-reeghi transcripts the performance of the Flexalign model is still Competitive
from biased recognizer developed at Cambridge University. . . .
with the performance of the two best models. Considering
that the flexible alignment approach represents the fastest of
) - ) ) the methods for generating suitable training transcripts (short
disfluencies; and every word is followed by an optional paugg ysing the original QT transcripts), these results make our

of variable length. method quite attractive for large-scale use.
Our experiments were based on BN data from the TDT-

4 collection released by LDC. The LDC baseline transcripts . ] .
came from closed-captioned television shows. More recentfy, Porting the CTS System to Levantine Arabic
the LDC has released a manually corrected subset of thesgve found that most of the techniques developed for English
transcripts. These were used to gauge the improvement thadild be ported to the development of a Levantine Conversa-
can be obtained with automatic QT cleanup procedures, tional Arabic (LCA) system. We used, with few changes, the
spite of the fact that only about 73% of the TDT had been hagdme architecture as the English system. However, because the
corrected. As a further point of reference, we also tested TDffaining transcripts were in Arabic script and the amount of
4 transcripts that were automatically generated by Cambridgeta was limited, some techniques did not have the expected
University’s BN recognition system using a biased LM trainegffect. Here we describe the language-specific issues for this
on the closed captions. These automatic transcriptions wedgk and the effects these had on our modeling techniques.
generated by a fast, stripped-down version of the regularl) Data: We used a corpus of LCA data provided by the
Cambridge STT system that had the best performance in #hBC, consisting of 440 conversations (70 h of speech with
NIST RT-03 BN STT evaluations [40]. about 500 K words). The training corpus vocabulary consists
To measure the quality of these four sets of transcriptsf, 37.5 K words including 2.5 K word fragments and 8
we trained acoustic models (of identical size) with themonspeech tokens. About 20 K words were singletons. The
and evaluated the performance of resulting models on thmevelopment (dev04) testset consists of 24 conversations (3
different evaluation data sets, namely, the 2003 and 2004 TDil-of speech, about 16 K words). The OOV token rate for
4 development test sets defined by the DARPA EARS progrdhis set based on the training set vocabulary was 5.6%. The
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test set used for the RT-04 evaluations (eval04) consists of wads used as a hidden tag model to predict the missing vowels
conversations (1.5 h of speech, 8 K words). in all training data transcripts. That produced a vowelized text
The data was transcribed in Arabic script orthographwith about 7% character error rate.
which is phonetically deficient in that it omits short vowels and When compared with the baseline grapheme models, the
other pronunciation information. The pronunciation lexicomowelized models did not show any significant improvement,
was obtained by directly mapping the graphemes to phomasssibly because of the inaccuracy in the vowelization pro-
and applying certain pronunciation rules such as assimilatioedure. Nevertheless, these systems contribute to significant
of the “sun” letters and insertion of the appropriate shomnprovements when combined with grapheme-based models
vowel in the presence of hamzas. All the rest of the shat we will show in Section VI-B.7.
vowels were missing from the resulting pronunciations. We 6) Language Modeling: We used two different types of
also experimented with techniques to automatically insdenguage models in our system: standard word-based LMs and
the missing vowels in the transcription and train vowelizefhctored language models (FLMs) [45]. FLMs are based on a
acoustic models, as described below. representation of words as feature vectors and a generalized
2) Acoustic Modeling: Due to the lack of short vowels in parallel backoff scheme that utilizes the word features for more
the grapheme-based lexicon, each acoustic model implicitiybust probability estimation. The word features can be the
models a long vowel or a consonant with optional adjacestem, root, affixes, or a tag that represents the morphological
short vowels. NonCW and CW MFCC and PLP models (usingoperties of the word. The structure of the model, that
HLDA, but without MLP features) were trained with decisionis, the set of features to be used and the combination of
tree-based state clustering [42], resulting in 650 state clustpestial probability estimates from features, is optimized using a
with 128 Gaussians for each cluster. genetic algorithm [46]. By leveraging morphological structure,
3) Discriminative Training: We found that the effect of the FLMs improve generalization over standard word-based LMs,
discriminative training procedure MPFE (described in Sectiomhich is especially important given the scarcity of in-domain
IV-B) was smaller than in English. MPFE training for thistraining data, and the general lack of written LM training
task produced only a 2% relative improvement in the firghaterial in dialectal Arabic.
iteration, while subsequent iterations increased WER. It isin our previous work on ECA, where the morphological
likely that grapheme models cannot substantially benefit frofatures of each word were hand-annotated, factored language
the discriminative training procedure since each graphemmmdels yielded an improvement of as much as 2% absolute,
represents a class of heterogeneous acoustic models rafiben baseline with approximately 40% word error rate [47].
than one single model. Also, the high WER and the numerolisr our present LCA system, word morphological information
inconsistencies in the transcriptions can limit the effect of theas not available and had to be inferred by other means. Since
MPFE procedure, especially since it relies on accurate phaagomatic morphological analyzers do not currently exist for
alignments for discrimination. dialectal Arabic, we used a simple script and knowledge of
4) Crossword Grapheme-Based Models: We found that Levantine Arabic morphology to identify affixes and subsets
the performance of CW models was worse than that of the parts of speech from the surface script forms. We also
nonCW models, unless the word-boundary information wapplied a morphological analyzer developed for Modern Stan-
used during state clustering [43]. In English, word-boundadard Arabic [48] to obtain the roots of the script forms. Those
information improves the CW models, but in conversation&rms that could not be analyzed retained the original script
Arabic it turns out to be critical. This could be attributed tdorm as factors. It was found that this type of decomposition,
the fact that the nature of the hidden short vowels is differeatthough error-prone, yielded better results than using data-
at word boundaries compared to the within-word location. driven word classes. On the development set the perplexity
5) Modeling of Short Vowels: Since previous work on was reduced from 223 to 212.
Egyptian Colloquial Arabic (ECA) [44] has shown a signif- 7) Evaluation System: The processing stages of the full
icant benefit from using vowelized models versus graphenmsystem submitted for the RT-04 evaluation follow the setup of
based ones, we attempted to do the same for the LCA systéne English 20xRT CTS system describe in Section I, except
Unlike in our previous work, no vowelized data or lexicon wathat we used the PLP models for the lattice generation stages,
available for this task. and no SuperARV LM was used. Instead, an FLM was used for
In our first effort to use vowels in the LCA system wdattice rescoring (at the second lattice generation stage only).
generated word pronunciation networks that included ofthe N-best lists generated from these lattices used adapted
optional generic vowel phone in all possible positions iRLP and MFCC graphemic models.
the pronunciation. The possible positions were determinedin Table X we show the contribution of vowelized models in
using the Buckwalter analyzer from LDC. For the wordthis system. First we replaced the nonCW graphemic MFCC
where it failed (24 K out of 37 K vocabulary), we includednodel with one that used the generic vowel approach, getting
pronunciations that allowed an optional vowel between eve@y6% to 0.4% WER improvements. Then we added the MFCC
consonant pair. phonemic models that used the automatically vowelized data.
In our second approach we manually added the vowels We generated a third set of lattices using the vowelized LM,
a small subset of the training data (about 40 K words), whiatthich were used to obtain the vowelized MFCGbest lists
was selected to have high vocabulary coverage. We traineditgh nonCW and CW models. These models improve the final
4-gram character-based language model on this data, whighformance by 0.8% to 1.0% absolute over the grapheme-



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSEY VOL. 14, NO. 5, SEPTEMBER 2006 12

TABLE X TABLE XII
EFFECT OF THEVOWELIZED MODELS ON THELEVANTINE ARABIC CTS WORD PERPLEXITY AND CERON RT-04 CTS DXTA (AUTOMATICALLY
SYSTEMWER TOKENIZED)
LM Weight
dev04 evalo4
grapheme 3T 773 subHKUST CH+CF Web Web PPL CEI?
+ generic-vowel non-cw MFCQ 42.5 (-0.6) | 46.9 (-0.4) LMo 0.87 0.13 B N 269.3 38-8047
+ auto-vowel MFCC models | 42.1 (-1.0) | 46.5 (-0.8) LM, 0.65 0.05 030 - | 2022 36.4%
LM, 0.64 0.04 0.16 0.16| 192.6 | 36.1%
LM3 0.66 0.05 - 0.29| 193.5 | 36.1%
TABLE XI
EFFECT OF THEFACTOREDLM ON THE LEVANTINE ARABIC CTS
SYSTEMWER
in N-gram modeling. The rest of 226 phone calls (398 K
devod evalod words) were named subHKUST. CH+CF were used to train
No FLM 427 47.0 one trigram LM, subHKUST another. They were interpolated
N-best rescoring FLM1| 42.5 46.9 to create the baseline LM, M, with interpolation weights
lattice rescoring FLM2 | 42.1 (-0.6) | 46.7 (-0.3)

to maximize the probability of generating the heldout set. No
higher-orderN-gram LMs were trained.

In addition, we harvested two separate corpora from the
based system. World Wide Web to augment LM training. Key differences

Table XI shows the contribution of the FLM to the finakelative to our English web text collection method are in the
system’s performance. To keep the runtime within 20XRExt cleaning and normalization, and in the method for topic-
we used only the generic vowel MFCC model for thesgependent text collection [51]. The first batch was to fetch data
experiments. We see that including a bigram FLM only fgp the style of general conversations by submitting the 8800
final V-best rescoring improves the result by 0.2% and 0.1fgost frequent 4-grams from HKUST data to the Google search
on the two testsets. Using a trigram FLM for all latticengine. The fetched data were then cleaned by removing pages
rescoring steps, we obtained improvements of 0.6% and 0.§th corrupted codes, removing HTML markers, converting

absolute, respectively. Arabic digits into spoken words, and so on. Finally, pages
with high perplexity computed by the baseline LM were
C. Porting the CTS System to Mandarin filtered such that 60% (100 M) of the total number of words

Porting to Mandarin required again very minor changes & the entire retrieved documents were retainéd/; was
the CTS system [49]. The core engine (the acoustic and I&feated by three-way interpolation of CH+CF, subHKUST,
guage training paradigms and the decoding structure) remaifé§ conversational web dat&l/eb.), again maximizing the
the same. The main differences were in the addition of toRgobability of the heldout set.
modeling with a tonal phone set, pitch extraction as part of the The second batch of web data collection focused on the 40
feature representation, word tokenization, and in the detailstepics given in the HKUST collection. We defined 3-word key

the web data collection. phrases for each particular topi¢as word sequenae; wyws
1) Data: Three speech corpora were used for trainind
acoustic models, all from LDC: Mandarin CallHome (CH), C(wiwyws|t) /oy

Mandarin CallFriend (CF), and the 58 h collected by Hong >0.3

Kong University of Science and Technology (HKUST) in
2004. CH and CF together comprise 46 h (479 K wordsynd if there are enough training data in subHKUST in topic
including silence. t. For rare topics, we manually designed key phrases based
The transcriptions associated with these three corpora were the brief descriptions that were provided to the subjects
all used to train word-based’-gram LMs. Because of the as part of the data collection protocol. After the key phrases
small size of the corpora, we also harvested web data wagre defined for all 40 topics, we then queried Google for 40
supplemental LM training data. collections of web pages. These 40 collections (a total of 244
2) Language Modeling: As there are no spaces betweeM words), Web,, were cleaned and filtered in the same way
written Chinese characters, there is no clear definition of words Web, and were combined to train a word-bas¥dgram,
in Chinese and thus character error rate (CER) is usualtybe used in the 4-way interpolation.
measured when evaluating systems. Using single-charactefhe LM interpolation weights for these training corpora are
words in the vocabulary is not a good idea because of thmelicated in Table XII. As one can see easily, SUbHKUST
short acoustic context and the high perplexity. Therefore, masatched the heldout set strongly as they were from the same
Chinese STT systems define words as their vocabulary. \d&ta collection effort. Additionally, the significant weights
used the word tokenizer from New Mexico State Universitgiven to web data and the perplexity reduction show that our
[50] to segment our text data into word units, resulting iweb query algorithm was effective, and that the web collection
22.5 K unique words in CH+CF+HKUST training data. Thdetter matches the target task than other conversational speech
HKUST corpus consisted of 251 phone calls. We randomtigat is not topically matched. Due to the lack of a Mandarin
selected 25 phone calls as a heldout set to tune parametmsbank and other resources, we did not build a Chinese

332, Clwrwaws|j)/a;
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TABLE Xl evaluation set.
MANDARIN CERS ON THEMANUALLY SEGMENTED DEVO4 CTS TEST

SET VIlI. CONCLUSIONS

We surveyed a number of recent innovations in feature
extraction, acoustic modeling, and language modeling, as used

Acoustic Model Sl SA

(1) PLP nonCW MLE, no pitch| 41.5% | 36.4% in the speech-to-text component of the SRI-ICSI-UW Rich
(2) PLP nonCW MLE 40.4% | 35.5% Transcription system. Substantial improvements were obtained
8; Eb‘; gw '\S’”A;EMLE gg-ggf’ gj-ng through trainable, discriminative phone-posterior features es-
(5) PLP CW SAT MPFE 35:302 32:90/2 timated by multilayer perceptrons, and modeling of syntactic
(6) MFCC CW SAT MPFE 36.2% | 33.4% word relationships in the SuperARV almost-parsing language
(7) MFCC nonCW MPFE 40.0% | 33.6% model framework. Smaller gains were achieved by adding a
Rover (5)+(6)+(7) - [ 31L.7% novel combination of voicing features to the front end, by im-

proving MPE-based discriminative training, and by predicting
the speaker-dependent optimal number of regression classes in
SuperARV language model. adaptation. Other techniques, while yet to be incorporated into

Recognition experiments were conducted on the 2-hodlff full system, show promise, such as the macro-averaging
Dev04 set, collected again by HKUST. For fast turnaroun@f frame-level statistics for more robust normalization, and the
these experiments were conducted using simpler acou&mbination of multiple front ends at different frame rates.
models and the 3xRT decoding architecture shown in Fig. 1. We also developed an efficient flexible alignment tech-
From Table XII, we chose the 4-way interpolated model/, Nidue for correcting and filtering imperfect, close-caption-
as our final model for evaluation. style speech transcripts, for acoustic training purposes. Finally,

3) Acoustic Modeling: We obtained our initial pronunci- W€ 9ained experience in porting STT technologies first de-
ation lexicon from BBN and reduced the phone set to 6¥¢loped for English to other languages, specifically, Arabic

plus additional phones for silence, noise, and laughter. TARM Mandarin. We foun_d_ that most techniques carry Ovef,
phone set is similar to IBM’s main vowel idea [52]. Tones ar@lithough language-specific issues have to be dealt with. In
associated only with vowels and the /ng/ phone Arabic, the lack of detailed phonetic information encoded in

Similar to the English system, the front end features inclufﬁlge script fprm of the '?‘”9“399 has to be overcome, and the
both fixed frame rate MFCC and PLP static, delta, and dou orphological complexity can be accounted for with factored

delta, with cepstra mean and variance removal, and VTLN. guage mOde"T‘g- Mandarin Chm_ese, on the chher_ hand,
equires automatic word segmentation, and modifications to

did not find HLDA helpful in our early systems and therefor . - .
decided not to incorporate it into the final Mandarin CT oth feature extraction and dictionary to enable effective
recognition of lexical tone.

system. In addition, we used the Entrogiet_fO program to
compute pitch features, reduced pitch halving and doubling
with lognormal tied mixture modeling [53], and then smoothed
pitch values for unvoiced sections in a way similar to [52]. The authors would like to thank their colleagues at IDIAP
Along with pitch delta and double delta, our Mandarin featurfer their prior work on discriminant longer-term features,
vector was 42 dimensional. Neither voicing features nor amyincipally, H. Hermansky and H. Bourlard. The authors would
MLP related features were incorporated because of time catso like to thank P. Woodland and Cambridge collaborators
straints. Both nonCW and CW triphones with decision-trdler making their training transcripts available for the authors’
clustered states were trained with MLE and MMIE+MPFRvork, and to BBN for sharing its BN training transcripts and
training. Questions for the decision tree clustering includédandarin dictionary.

those related to tone. Different state locations of the same
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