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Abstract

This paper addresses the issue of closed-set text-independent speaker identification from
samples of speech recorded over the telephone. It focuses on the effects of acoustic mismatches
between training and testing data, and concentrates on two approaches: extracting features
that are robust against channel variations, and transforming the speaker models to compensate
for channel effects.

First, an experimental study shows that optimizing the front end processing of the speech
signal can significantly improve speaker recognition performance. A new filterbank design is
introduced to improve the robustness of the speech spectrum computation in the front-end unit.
Next, a new feature based on spectral slopes is described. Its ability to discriminate between
speakers is shown to be superior to that of the traditional cepstrum. This feature can be used
alone or combined with the cepstrum.

The second part of the paper presents two model transformation methods that further
reduce channel effects. These methods make use of a locally collected stereo database to
estimate a speaker-independent variance transformation for each speech feature used by the
classifier. The transformations constructed on this stereo database can then be applied to
speaker models derived from other databases.

Combined, the methods developed in this paper resulted in a 38% relative improvement on
the closed-set 30-second training 5-second testing condition of the NIST’95 Evaluation task,
after cepstral mean removal.

!The authors are with the Speech Technology and Research Laboratory, SRI International, Menlo Park, CA.
Hema A. Murthy was on leave from IIT, Madras, India during this work.



I. INTRODUCTION

In many applications of automatic speaker recognition (ASR), a communication channel sep-
arates the user from the recognition system. This can, for example, be a telephone channel
(e.g. identity verification for banking transactions over the phone, voice recognition for smart
voice mail systems), or some type of microphone (e.g. voice identification for building access,
identification of specific speakers in multimedia recordings). In most cases, the communication
channel is allowed to change between different calls to the system, and the data samples col-
lected to train the speaker models are only representative of a small fraction of all the acoustic
conditions that can be met during testing. The resulting acoustic mismatches between training
and testing data greatly affect the performance of ASR systems.

In this paper, we focus on closed-set speaker recognition from data collected over the tele-
phone. The problem posed by acoustic mismatches can be tackled at different levels. In this
paper, we concentrate (1) on the extraction of robust speech features and, (2) on a transforma-
tion of the speaker models to reduce channel effects. Recently, acoustic mismatches have also
addressed at the classification level, by estimating which type of telephone unit is used in the
communication and by modifying the speaker classification algorithm accordingly[1], [2].

A. The Feature Fxtraction Problem

The exact factors in a speech signal that are responsible for speaker characteristics are not
exactly known, but it is a fact that humans are able to distinguish among speakers based on their
voices. Studies on inter-speaker variations and factors affecting voice quality have revealed that
there are various parameters at both the segmental and suprasegmental levels that contribute
to speaker variability [3], [4], [5], [6], [7]. Despite the fact that one cannot exactly quantify inter-
speaker variability in terms of features, current speaker identification systems perform very well
with clean speech. However, the performance of these systems can decrease significantly under
certain acoustic conditions, such as noisy telephone lines [8].

In the last few years, much of the speaker identification research has been devoted to mod-
eling issues (e.g. [9], [10], [11], [12], [13], [14]), and significant performance improvements have
been reported from developing sophisticated speaker models. Comparatively fewer papers have
addressed the equally important issue of robust feature extraction for the purpose of speaker
identification. Many current speaker recognition systems rely on spectral-based features, in par-
ticular the mel-cepstrum. A notable exception is the work by Janowski, Quatieri and Reynolds
[15], where a new set of features based on amplitude and frequency modulation of speech for-
mants and high-resolution measurement of fundamental frequency is used in addition to the
standard filterbank-based cepstrum to perform speaker identification over a degraded channel.
A drawback of this approach is that it requires an estimate of potential formant locations,
which can be problematic. In addition, the performance of the system improves only when the
new features are combined with the traditional mel-cepstrum.

In this paper, we first show experimentally that speaker recognition performance strongly
depends on the front-end unit that preprocesses the speech signal. We demonstrate that the
front end can be optimized to consistently and significantly improve the system performance.
We also describe a new filterbank design that improves the robustness of the speech spectrum
computation. We then derive a new feature based on spectral slopes that may be used ei-
ther individually or in combination with the mel-cepstrum. Numerical results are provided to
illustrate the performance gain brought by these algorithms.

B. The Model Transformation Problem

The second part of this work aims at developing transformation algorithms that render the
speaker models more robust to acoustic mismatches.
Many ASR systems rely on cepstral mean subtraction (CMS) [16] to compensate for channel



effects [17], [11]. It is well-known, however, that channel mismatches can still be a significant
source of errors after CMS. Preliminary experiments reported in Section III-B confirm this
point. For this reason, more sophisticated cepstrum transformation methods have been pro-
posed in the literature. In [18], [19], cepstral compensation vectors are derived from a stereo
database and applied to the training data to adjust for environmental changes. The compen-
sation vectors depend either on the SNR or on the phonetic identity of the frames. In [21], an
affine transformation of the cepstral vectors is estimated from a stereo portion of the database
under study, and then applied to the training data.

The effect of transmission channels on speech has also been addressed in the context of speech
recognition, where acoustic mismatches increase the confusability between phones and lead to
word recognition errors. However, few of the algorithms developed for speech recognition can
be readily applied to the problem of speaker recognition.

For example, adaptation algorithms that adjust the features or the models to better represent
the test data (e.g. [22], [23], [24], [25]) are hard to use in speaker recognition: if the speaker
models are adapted with the test data, they all eventually converge toward the same model,
and the speaker discrimination capability is lost. Other speech recognition algorithms have
addressed the mismatch issue by assuming that a priori knowledge about the mismatch is
available: some algorithms require stereo data representing both conditions (e.g. [26], [27]),
others need samples of similar sounds across different channels (e.g. [28]). These approaches
are hard to implement in speaker recognition because of the practical difficulty of requiring
each speaker to record large amounts of speech over multiple channels. In the case of telephone
speech, this problem could be alleviated by clustering the channels in two or three categories.
For example, a natural choice would be carbon button versus electret handsets [29]. The ASR
system would then require a handset detector in order to select one or the other transformation.
In this work, however, we prefer to assume that no a priori knowledge about the mismatch is
provided or extracted from the speech waveform, and we show that significant improvement
can be achieved without such knowledge.

The technique we propose compensates for channel mismatches by transforming the speaker
models. It makes use of an auxiliary database containing stereo recordings to compute what
we refer to as a synthetic variance distribution. This distribution can then be used to derive
a transformation that is applied to the variances of speaker models built with training data
from other databases. Two such transformations are proposed. They essentially increase the
variances of the speaker models by an appropriate amount to render the speaker models more
robust to channel effects. These transformations can be applied to different speech features,
and have been tested both with cepstrum-based models and with models based on the new
feature described in the paper.

The experiments reported in this paper are concerned with “closed-set” speaker recognition,
that is with the problem of recognizing a speaker among N known speakers. In the last section
of the paper, we show that the methods developed for closed-set ID also extend to “open-set”
speaker recognition, that is to the problem of determining whether a test speaker belongs to
the training set, and of identifying him if he does.

II. DaTaBasEs USED IN THIS STUDY

The focus of our effort is to ensure that the algorithms we develop are general and work on
different telephone databases. To establish that this is the case, we used several corpora in this
study. These corpora span different mismatch conditions, contain different amounts of training
and testing data, were collected by different institutions, and illustrate different kinds of speech,
from read digits to unconstrained conversational speech.



A. The Switchboard NIST 95 FEvaluation Database (NIST95)

This database is a subset of the Switchboard corpus [30], collected by the Linguistic Data
Consortium. It consists of conversational telephone speech and was used as a benchmark for
the NIST’95 (National Institute of Standards and Technology) Evaluations [31]. The database
consists of 26 speakers, 13 male and 13 female. We experimented only with the 30-second
training, 5-second testing condition. The training data consists of three 10-second segments
taken from different conversations. The test data consists of 36 5-second segments per speaker.
The 36 segments were taken from 6 different conversations. About 50% of the conversations
from which the test data were extracted were conducted on the same telephone handset as the
training conversation. We used this database as a benchmark throughout our work.

B. The Switchboard-45 Database (SB45)

We assembled the Switchboard-45 database from the Switchboard corpus by choosing 45
speakers, 19 male and 26 female, who were not in the NIST95 database. The training data
varies from 20 to 40 seconds per speaker and the testing data consists, for each of the speakers,
of approximately 100 segments of lengths greater than 2 seconds. The test data were extracted
from different conversations than the training data.

C. The SRI-Digits Database

The SRI-digits database contains the voices of 10 male SRI employees. The text of the data
consists only of spoken digits. The data were collected from 20 to 23 telephone handsets, all
connected to the same internal telephone line. Six sets of three calls were made from each
handset. The three calls in each set contain repetitions of the same number.

This database provides a lot of flexibility for designing experiments to test our system on
different training environments. We set up four different training conditions, namely, train
on one handset (SRI-1), train on all handsets (SRI-2), and train on multiple handsets (SRI-3,
SRI-4). The test data were kept identical throughout the experiments. For each speaker, 180
test segments are available. Except for the dataset SRI-2, the telephone units used in training
were never used in testing.

D. The Stereo-ATIS Database

The Stereo-ATIS database contains read sentences concerning flight-related issues. The sen-
tences were recorded simultaneously with a Sennheiser close-talking microphone and over a local
telephone line. The database was collected at SRI and contains the voices of 13 male speakers.
Each speaker read 10 sets of about 30 sentences. Each set of sentences was recorded with the
same telephone line but with a different handset. Sentences are on average four seconds long.
The amount of data used for training and testing was varied according to the experiments.
Because it contains stereo speech, this database is ideally suited for controlled experiments. It
was extensively used in the development of the channel compensation algorithms.

E. The NIST 96 Evaluation Database (NIST96)

This database is a subset of the Switchboard corpus. It contains the 156 male speakers to be
recognized in the NIST’96 Evaluation task (target speakers). We consider only the following
condition: The training data for each speaker consists of 2 minutes of speech extracted from a
single conversation, the test data consists of a total of 1357 segments of 30 seconds each (8.7 seg-
ments per speaker, on average). The test segments were extracted from conversations recorded
over telephone channels not seen in training. This is thus a highly mismatched database. It
was used to check the performance of the model transformation method with a large pool of
speakers.



III. BASELINE SYSTEM AND PRELIMINARY EXPERIMENTS
A. Description of the Baseline System

The speaker recognition system used as a baseline for this work consists of a series of Gaus-
sian mixture models (GMMs) modeling the voices of the speakers to be identified, along with
a classifier that evaluates the likelihood of unknown speech segments with respect to these
models. In closed-set problems (speaker identification), the classifier hypothesizes the identity
of an unknown test speaker by determining which model maximizes the likelihood of the test
utterance. In open-set problems, the classifier compares the likelihood scores to some threshold
to reject the test segments that poorly match all the trained models, and otherwise hypothesizes
speaker identities based on likelihood maximization.

In both training and testing, the speech waveforms are digitized and preprocessed by a front-
end unit that extracts a set of N. mel-frequency cepstral coefficients from each frame of data.
The parameters that control the front-end processing (e.g. frequency range, filter shape, filter
resolution) are set a priori but can be modified if desired. Cepstral mean subtraction can be
applied (optionally) to each utterance to eliminate some of the spectral shaping occurring in
the communication channel.

For each speaker, a GMM is built using the speaker’s training data to estimate the prior
probabilities, means, and variances of the Gaussians. The number of Gaussians, Vg, is the
same for each speaker, and is chosen depending on the amount and nature of the training and
testing data. The generation of a GMM starts with the choice of a random vector quantization
(VQ) codebook. The codebook is then iterated on, using the Lloyd algorithm [32]. At each
VQ iteration, the Gaussians containing the largest number of data points are split, and the
Gaussians containing the fewest data points are eliminated. After convergence of the VQ
codebook, Gaussians are fitted to the codewords, and their parameters are adjusted using a few
expectation-maximization (EM) iterations [32].

When presented with a speech segment from an unknown speaker, the classifier scores all
the sufficiently high energy frames of the segment against all speaker models, accumulating the
log-likelihoods of the speech frames for each model. A hard decision is then made as to which
model summed up the highest log-likelihood, and this model is hypothesized as belonging to
the speaker who uttered the test segment.

B. Preliminary Fxperiments

Preliminary experiments were performed with the baseline system to measure the effect of
channel mismatches and cepstral mean subtraction on speaker recognition error rates. These
experiments are performed wit a 16-coeflicient mel-cepstrum feature.

Using the Stereo-ATIS database described previously, a set of 64-Gaussian GMMs was built
with 40 seconds of Sennheiser-recorded speech per speaker. The system was then tested with
4-second Sennheiser utterances (lines 3 and 4 in Table I) and with the telephone recordings of
the same utterances (lines 1 and 2). For comparison, 10 sets of 64-Gaussian GMMs were built
with speech recorded from 10 different telephone units, and the models were tested with speech
from the same telephone units. The performances of these 10 matched telephone-telephone
systems were averaged and reported in line 5 of Table I.

The results reported in the table show that although CMS reduces the error rate significantly
in the mismatched system (from 33% to 16%), its error rate with CMS remains more than three
times higher than that of the corresponding matched Sennheiser system (16% vs. 5%). Other
researchers (e.g. [33], [34]) have reported similar results: CMS eliminates convolutional effects
but it does not eliminate additive noise and does not take into account channel nonlinearities
and nonstationarities.

In addition, CMS can eliminate some of the speaker characteristics as exemplified by the
matched Sennheiser experiments (lines 3 and 4). This result, which may be attributed to the



cancellation of vocal-tract information by the high-pass filtering in CMS, is to be expected also
from techniques such as RASTA preprocessing [33].

Finally, comparing lines 3 and 5 in Table I confirms that, more than the presence of a
telephone unit between the speaker and the ASR system, it is the possible mismatch between
training and testing conditions that results in poor speaker-1D performance.

In another series of experiments with the Stereo-ATIS database, we measured the average dis-
tortion between Sennheiser-recorded cepstral coefficients and their telephone stereo recordings.
The distortion measure for cepstral coefficient k, dy is defined as

<(cf —cb)>
dp = —— 571
OOk
where cf and c{ denote, respectively, the k" cepstral coefficients of a frame of Sennheiser-
recorded data and of its telephone stereo-recording; and O']? and U;{ denote the standard devia-
tions of the Sennheiser and telephone cepstral coefficients. The average < . > is taken over all
the telephone units and all the speakers in the database, and is estimated from all the frames
of several sentences of each speaker-telephone combination. Fig. 1 shows the average distortion
dj. versus the cepstral coeflicient index k, with and without cepstral mean subtraction. Again,
cepstral mean subtraction helps decreasing the effects of the channel, although the distortion
remains significant after CMS. The figure also shows that the channel effects are more notice-
able on higher-order cepstral coefficients. This may be due to the fact that the overal speech
energies in these coefficients are lower than those in lower-order cepstral coefficients, and that
noise effects are therefore relatively more important.

Because this work focuses on speaker recognition under mismatched conditions, CMS was sys-
tematically applied throughout the paper (unless otherwise specified) as a first step to eliminate
channel effects.

IV. FEATURE EXTRACTION FOR SPEAKER IDENTIFICATION

In this section, we discuss some issues regarding the extraction of features for speaker recog-
nition. We show that the performance of an ASR system depends strongly on the parameters
describing the front-end unit that processes the incoming speech. To make the front end more
robust over a large range of parameters, we redefine the filterbank based on which the cepstrum
feature is computed. We then demonstrate experimentally that a large performance improve-
ment can be obtained by optimizing the front-end parameters. We report detailed experimental
results and suggest intuitive explanations wherever possible.

We then introduce a new feature: the spectral slope. We show that the spectral slope (after
re-optimization of the front-end parameters) discriminates better between speakers than the
cepstrum. In addition, we argue that the two features contain relatively orthogonal information,
and we show that combining them further improves the system performance.

A. Description of the Baseline Front End

The baseline front end used in this work first transforms the speech signal to the frequency
domain via a fast Fourier transform (FFT). The frequency scale is then warped according to
the mel-scale to give a higher resolution at low frequencies and a lower resolution at high
frequencies. Specifically, we implemented the bilinear transformation proposed by Acero[20],

L9 at F,stnw
Whew = W atan———
new 1 — F,cosw’
where the constant F,, € [0, 1] controls the amount of warping. The frequency scale is then
multiplied by a bank of N, filters whose center frequencies are uniformly distributed in the
interval [Ming, Max¢], along the warped frequency axis. The width of each of these filters



ranges from the center frequency of the previous filter to the center frequency of the next filter.
The filter shape is trapezoidal, and can vary all the way from triangular to rectangular. The
shape of a particular set of filters is encoded in a constant T, that measures the ratio of the small
to the large side of the trapezoid (7, = 0 means triangular filters, 7, = 1 means rectangular
filters). The filterbank energies are then computed by integrating the energy in each filter, and
a discrete cosine transform (DCT) is used to transform the filterbank log-energies into cepstral
coeflicients. Cepstral mean subtraction is applied to each training and testing utterance.

B. Perceptually Motivated Filterbank Design

Because the bandwidths of the mel-warped filters are chosen based on the number of filters,
the filterbank energy estimates can be very poor at certain frequencies when the frequency
scale is warped, especially if the number of filters is large. Ideally, one should nonuniformly
sample the Fourier transform during the computation of the FFT to compensate for the warped
frequency scale. Alternatively, one can make the bandwidth of each filter a function of frequency
(as opposed to a function of the distance between center frequencies of adjacent filters as in the
baseline design). The question is how this function should be chosen.

In [35], Klatt proposed a bank of 30 filters based on auditory perception criteria. Because
Klatt’s parameters are derived for a fixed filterbank size, his design could not be ported directly
to our system. Instead, we approximated Klatt’s coefficients with the function given in Table II.
To provide more flexibility to the system, an additional parameter, the bandwidth scale B,
was introduced in the front end to uniformly scale the filter bandwidths, i.e.

Bwyew = Bs Bw,
where Bw is the bandwidth specified in Table II.

C. Optimization of the Front-Fnd Parameters for the Filterbank-Based Cepstrum

A number of parameters affect the computation of the cepstrum. These are:

N, - number of cepstral coefficients

Ny - number of filters in the filterbank

Min y- Maxy - effective voice bandwidth

Fy - frequency warping constant: -1.0 to +1.0

T, - shape of the filters: 1.0 (rectangle), 0.0 to 1.0 (trapezoid), 0.0 (triangle)
By - scale factor for the bandwidth: 0.0 to 1.0

From a signal processing perspective, N. defines the resolution that is required in the cepstral
domain, N defines the resolution that is required in the frequency domain, Min; and Max;
define the effective voice bandwidth, F,, defines the resolution at different frequencies, and T
defines the shape of the filters. But how do these parameters affect the classifier performance?

A series of preliminary experiments showed that the values of most front-end parameters had
a large impact on the classifier performance. For example, varying the filter shape while keeping
the other parameters constant would make the error rate vary between 26% and 29%. Other
researchers observed similar results (e.g. [36] describes an experimental study on the influence
of filterbank design and parameters on isolated word recognition).

Since it is not clear how each individual front-end parameter affects the classification error
rate, we performed an extensive optimization of all the front-end parameters, using the NIST95
database. To ensure that the optimized parameters were not specific to that database, we
collected the sets of parameters that gave the best performance on NIST95 and tested them
on a series of other databases. The front-end parameters that resulted in the best performance



across all the databases were then chosen as the new front-end for the speaker-identification
system using that feature.

The optimization method we used is based on successive line searches. At each iteration, all
the parameters but one are held constant, and the speaker classification error rate is evaluated
for different values of the remaining parameter (line search). The value that leads to the
lowest error rate is retained. The optimized parameter is then fixed, and the next parameter is
optimized. The procedure continues until the error rate reaches a local minimum. The front-end
parameters used to initialize the optimization procedure (see Table III) resulted from partial
optimizations done previously in our laboratory. These initial parameters were those used in
the baseline system.

Table IV gives the list of experiments that were conducted to evaluate the performance of
the system for different front-end parameters. The filterbank used in these experiments is that
described in the previous section.

Fig. 2 illustrates the performance of the system for different parameter values. Each figure
shows the speaker-ID error rate as a function of one parameter. For each value of this parameter,
a series of experiments was performed by varying the other parameters and measuring the
resulting speaker-1D error rates. The lowest error rate over each set of experiments was retained
and plotted against the parameter of interest. From Fig. 2(a), we observe that the performance
is best for By ranging from 0.8 to 1.0. It was also observed in the experiments on B, that the
performance was uniformly poor for Fy, > 0.2 and 7, < 0.5 (not displayed in Fig. 2).

The overall performance of the system uniformly improves as the number of cepstral coeffi-
cients increases, up to 17. Beyond N, = 17, the error rate begins to increase (Fig. 2(b)). It is
likely that for low orders of cepstral coefficients, speaker information dominates in the repre-
sentation but, as the number of cepstral coeflicients increases, the channel information begins
to dominate (see Section III).

Fig. 2(c) shows the result of varying N; with N, fixed at 17. Although the accuracy of the
estimates of the cepstral coefficients depends upon the number of filters used in the computation
of the filterbank energy coefficients, the error rate does not vary significantly with N;. This
may be because the filter bandwidths are independent of the number of filters; adding more
filters is thus equivalent to interpolating the filterbank log-energies and does not add to the
resolution of the spectrum.

From Fig. 2(d), we observe that the performance of the system is quite sensitive to Ming
and Maxy. The error rate is uniformly high when the effective voice bandwidth is decreased
significantly.

Table V gives the parameters of the best front end using the cepstrum feature, for the NIST95
database. Comparing Table III and V, we see that the improvement in error rate due to the
parameter optimization and to the modification of the filterbank computation is 25.6% relative.

Since the performance of the system varies significantly with the choice of front-end parame-
ters, the next test that must be performed is to determine whether this performance gain holds
up on different databases. From the set of experiments performed in Table IV, approximately
50 of the best systems were chosen and the performance of these systems was evaluated on
the SRI-digits and Switchboard-45 databases. The parameter values that resulted in the best
performance varied across the different databases. The system that resulted in the best average
performance was chosen as the new front end for the speaker-1D system using the cepstrum as
a feature. The front-end parameters for this system happen to be identical to those obtained

for NIST95 alone (Table V).

D. Filterbank-Based Spectral Slope Along Frequency

We have discussed in a previous section how we computed the filterbank-based cepstrum.
The information contained in the cepstrum corresponds to the overall shape of the spectrum.
It is likely to be dominated by the first formant since the first formant has the highest energy,



due to the effect of the glottal roll-off. It is well known that formants and their transitions are
very important for the perception of speech. In psychophysical studies performed by Klatt [37],
it was observed that when formant locations are changed, the sounds perceived by listeners
are different from what was intended. The same study shows that humans perceive the same
sound when the relative amplitudes of the formants are modified in different instantiations of
the sound.

Although various algorithms have been developed to estimate formant frequency locations
in running speech (e.g. [38], [39], [40]), the formant-extraction problem is nontrivial. Machines
tend to make gross errors in estimating formant locations: spurious peaks are introduced and
true peaks are often missed. We therefore looked for a new measure that would emphasize the
locations of formants without actually estimating them.

Filterbank-based spectral slope is a metric that can do this. When comparing the slopes of
two spectra of the same sound, the amplitude differences are not captured, while the locations
and bandwidths of resonances are captured. The spectral slope can also be related to the shape
of the glottal pulse. If we assume a source-system model for speech production, the spectra
corresponding to the system ride on top of the spectra corresponding to the source. Even if the
peak locations are the same for different speakers, the slope information can give information
about the tilt in the spectrum, the spectral tilt being related to the shape of the glottal pulse.

A spectral slope metric was suggested by Klatt [37] and used by Hanson and Wakita [41]
for isolated word recognition. In the latter study, the slope is computed indirectly, using the
relationship between the derivative of the spectrum and the weighted cepstrum. This principle
can be applied to the filterbank-based cepstra only when the number of filters is infinite (and
nonoverlapped) and the number of cepstral coefficients is infinite. Neither of these conditions
is true in practice. We therefore propose a technique based on the metric suggested by Klatt
[37] but where the slopes are computed differently.

As with the cepstrum feature, the speech signal is transformed to the frequency domain via
an FFT, and the frequency scale is warped. The spectrum is then multiplied by a bank of
filters similar to that used for the baseline cepstrum. In a first implementation, the spectral
slope was computed as the difference between the log-energies of two consecutive filters. The
best performance with this system on the NIST95 database resulted in a 31.7% error rate.

This system was then improved in three ways. First, the original filterbank was replaced with
the perceptual filterbank of Section IV-B. Then, CMS was introduced in the filterbank slope
computation to reduce channel effects. This was done by taking the DCT of the filterbank
log-energies, eliminating the first cepstral coeflicient, ¢, and computing the inverse DCT of the
remaining cepstral coefficients. The spectral slopes were then computed from the transformed
filterbank. Last, the slope computation was made more robust to small variations in the
filterbank log-energies by using a 3-point regression technique instead of a simple difference
between adjacent filters. This new system was optimized as detailed below.

E. Optimization of the Front-Fnd Parameters for the Spectral Slope

The front-end parameters were reoptimized for the spectral slope feature and tested on all
the databases. In the context of the spectral slope, we also found that the performance of the
system varied significantly with the choice of front-end parameter values. Again, successive line
searches were performed on the NIST95 database (Table VI) to select the best front end. Fig. 3
shows the optimization of the front end for different parameters. From the experiments on B,
(Fig. 3(a)) we notice that the performance of the system is uniformly good for a choice of B,
between 0.6 and 1.0.

Fig. 3(b) shows the results of the optimization of Ny. From Fig. 3(b), it appears that the
system with 28 filters works best for B; = 1.0. The parameters of the system that worked best
on the NIST95 database are given in Table VII. We did not perform experiments on Miny
and Max; since the results on the cepstrum did more or less indicate that the entire voice



bandwidth is important. We tested the performance of approximately 50 of the best systems
on the SRI-digits and Switchboard-45 databases. The system that resulted in the best average
performance was identical to the best NIST95 system.

F. Discussion

The experiments we have described indicate that the performance of the speaker-1D system
fluctuates significantly with the choice of the front-end parameters. This fluctuation could be
due to one of two reasons: (1) the features are very sensitive to the front-end parameters, and
(2) the models generated are sensitive to small changes in parameter values. It is possible that
the probability density functions used to represent the features are not Gaussian. However,
given that each element of the feature is represented by a Gaussian-mixture density function,
a poor fit between the model and the data is unlikely. The variation across databases should
thus be attributed to the variation in channel characteristics across the different databases and
to the sensitivity of the front-end parameters to the channel characteristics. The new features
with the new front end are still sensitive to channel variations. In Section V we address this
issue from a modeling point of view, and show that the new features along with modified models
can significantly improve the performance of the system.

G. Combining Different Features

In most of the experiments we performed on speaker identification, using of the cepstrum
or the spectral slope resulted in similar performance. If the two features carry complementary
information, their combination can be expected to perform better than either feature alone.
To verify this hypothesis, we combined the two features by taking, for each test utterance, a
simple average of the normalized log-likelihoods of the observations obtained for each feature
individually. The normalization factor for each feature is simply the length of the feature vector.
This prevents the feature vector with the highest number of components from dominating the
overall score.

The performances of the systems using each of the features individually and the combined
features across all databases are shown in Table VIII. Note that the combined systems did
work uniformly better than either feature alone, except on SRI-3 where the spectral slope could
not benefit from the additional information brought by the cepstrum.

H. FExtension to Speech Recognition

The techniques described in the previous sections were tested on a speech recognition task. We
determined two new sets of front-end parameters for speech recognition by Viterbi aligning the
transcriptions of a few hours of Switchboard speech, modeling each context-independent phone
with a GMM, and finding the front-end parameters that minimized the phone classification
error rate for the cepstrum and spectral slope features. These front ends were then used to
perform a speech recognition experiment on the 1995 development set of the Large Vocabulary
Continuous Speech Recognition (LVCSR) Evaluation on the Spanish Callhome database[42].
Cepstral mean subtraction was applied at the sentence level, in all the experiments. Results
are summarized in Table IX.

Table IX shows that optimizing the front-end parameters brought a 3.6% absolute reduction
in word error rate over a state-of-the-art speech recognizer, which is a significant improvement
given the difficulty of the task. However, the improvement brought by the spectral slope in
speaker recognition problems does not carry over to the context of speech recognition. This
confirms a posteriori that the spectral slope conveys information that is specific to the speaker,
e.g. the glottal roll-off (see Section IV-D), rather than to the speech.



V. MoDEL-BASED CHANNEL COMPENSATION METHODS

In the previous section, we addressed the problem of acoustic mismatches between training
and testing data from a feature-extraction viewpoint. In this section, we propose a model-
based channel compensation method that aims at reducing remaining channel effects. The
framework for which this method was developed assumes that —as in many speaker identification
applications — training data are collected from only a few telephone units, whereas the system
is expected to recognize the speaker’s voice from many other handset-line combinations.

In terms of Gaussian mixture modeling, a change in acoustic environment translates into a
modification of the means and variances of the clusters of features representing the speaker’s
voice. As a consequence, the speaker’s test data are not well modeled by the Gaussians built
to fit the training data, and speaker misidentifications are likely to occur.

Deriving model transformations that counteract these parameter changes is made difficult by
the fact that collecting data from many different telephone lines for each speaker in the database
is often impractical. Whereas in speech recognition a large variety of acoustic environments
can be obtained by pooling speech from different speakers using different units, in speaker
recognition each model must be trained with data from only one speaker. In this context, a
more practical approach is to collect multi telephone data from a few patient speakers, analyze
these data, and try to apply the resulting observations to other databases.

The method we propose essentially performs channel compensation, as opposed to channel
adaptation. It aims at rendering the speaker models more robust to channel mismatches by
appropriately increasing their variances while keeping their means unchanged. The variance
increases are different along each cepstral coefficient. They are meant to account for the un-
known shifts in the means occurring with the features when the channel changes, as well as
for possible variance modifications. Fig. 4 illustrates this conceptually in a two-dimensional
feature space. If G1 is a cluster of features observed on the training data collected from a given
telephone unit, the same speech frames transmitted by another unit might look like G2 or G3
or G4. Since our baseline system uses Gaussian mixture models, we can think of G1 as one
Gaussian of a speaker’s GMM. The exact mean and variance changes from G1 to G2, G3, or G4
are generally unknown at the time of testing. Instead of trying to estimate them from the data,
we replace G1 with G, a Gaussian that “covers” the possible regions where we may expect the
data to lie when transmitted by different telephone lines. The variances of the G clusters of all
the speaker models form what we refer to as a synthetic variance distribution. This variance
distribution can then be used to derive variance transformations for other databases.

As argued in the next section, this approach can also to some extent compensate for two
other factors: the typically limited amount of training data and the limited size of the speaker
models.

A. Amount of Training Data and Model Size

In matched conditions, the performance of a speaker identification system largely depends on
the amount of training data available: the more data there are, the better the speaker’s voice
can be modeled, and the lower the error rate is. This observation also holds for mismatched
systems as illustrated in Fig. 5. In this experiment, we used increasing amounts of Sennheiser
data from the Stereo-ATIS database to build four GMMs having, respectively, 64, 128, 256,
and 512 Gaussians. We then tested the models with two sets of data: one contained Sennheiser
utterances, the other contained the stereo recordings of the same sentences, recorded from
various telephone units. The two test sets were kept unchanged as the amount of training
data increased. Fig. 5 compares the performance of the matched and mismatched systems and
shows that even if mismatched with the test data, more training data significantly decreases
the speaker-ID error rate. It also shows that larger amounts of training data allow models with
more Gaussians to outperform smaller models.



The amount of data used to build a GMM and its number of Gaussians is directly reflected
by the variance distribution of the Gaussians. For illustrative purposes, we computed, for
each GMM built in the previous experiment, the average along each cepstral coefficient of the
variances of the Gaussians in the GMM. The averages along ¢y are plotted in Fig. 6. The figure
shows that, for a given amount of data, the Gaussians of large GMMs have lower variances since
they model fewer data points. It also shows that, for a given model size, the average variance
increases with the amount of training data. This occurs because the EM algorithm effectively
tries to minimize the variances of the Gaussians in the model, which can better be achieved
when there are fewer data points per Gaussian.

This observation suggests that artificially increasing the variances of GMMs may be useful
to compensate for the lack of training data, and to allow larger models to be built. We will see
this assumption verified in our experiments.

B. Synthetic Variance Distribution

Using the Stereo-ATIS database, which (see Section II) contains Sennheiser-recorded speech
and telephone-transmitted speech recorded in stereo mode, a synthetic variance distribution can
be computed as illustrated in Fig. 4. The Sennheiser utterances of the database are used to
build the G1 clusters, and their telephone stereo recordings are used to estimate the variances
of the G clusters. Because lower-order cepstral coefficients typically have a larger dynamic
range than higher-order coefficients, the variance distribution is estimated separately for each
direction of the cepstral feature space.

The algorithm for computing the synthetic variance distribution can be summarized as fol-
lows:

1. Set apart a few Sennheiser sentences from each speaker and build with them a set of

Ng-Gaussian GMMs that will be used as frame classifiers.

2. For each speaker in the database:

(a) Use the speaker’s GMM to label each frame of the speaker’s remaining Sennheiser data
with the index of the Gaussian that maximizes its log-likelihood, that is, classify the
Sennheiser frames into N, clusters.

(b) For each Gaussian in the GMM (for each cluster):

i. Compute the mean, pg, and the variance, 0%, of the Sennheiser frames clustered by
this Gaussian.
ii. Compute the variance, o%, of the stereo recordings of these frames. These stereo
recordings comprise frames recorded on various telephone units (10 in total in Stereo-
ATIS). To compensate for the shift in the means occurring between the Sennheiser
and telephone data, the variance o3 is computed with respect to the mean pg of the
Sennheiser frames rather than with respect to the mean of the telephone frames, pr.
The variances, 0%, form the desired synthetic variance distribution.
We used boldface symbols for the means and variances to emphasize that these are vectors of
N, (the number of cepstral coefficients) elements. The synthetic variance distribution is thus
N.-dimensional.

We built such a synthetic variance distribution from the Stereo-ATIS database, keeping 30
sentences from each of the 13 speakers in the database to train a set of 64-Gaussian GMM classi-
fiers, and using the other 270 sentences per speaker to derive the synthetic variance distribution.
The feature used was the 17-dimensional cepstrum.

Fig. 7 displays pairs of variances (o4, %) computed along two different cepstral coefficients,
¢1 and ¢y7. Each plot contains 13 x 64 points (the number of speakers in the database times
the number of Gaussians in the speaker GMM). The data points in each plot were normalized
to have zero mean and unit variance.

Fig. 7 shows that (1) as we expected, most of the telephone variances are larger than the
corresponding Sennheiser variances, and (2) the variances along ¢;7 show more dispersion than



those along ¢q. This is not unexpected since we have observed in Section III that higher-order
cepstral coefficients are more sensitive to channel effects.

C. Affine Transformation of the Variances

In first approximation, the data points in each plot of Fig. 7 can be fitted with a straight
line. The coeflicients of these straight lines define an affine transformation of the Sennheiser
variances onto the telephone variances. Speaker models trained from databases containing
speech collected from a single acoustic environment (single handset, single telephone line) can
benefit from this transformation to modify their variances and increase their acoustic coverage.

Expressing the affine transformation as y = m;x +t;, where ¢ refers to the cepstral coefficient
¢;, and z and y represent, respectively, the variance of a cluster of Sennheiser frames and the
variance of the corresponding telephone frames, the parameters m; and t; can be estimated
from the data, using a least mean squares fitting:

me = < 02T7p7j(i) >< 0'257p7j(i) > - < aé,p,j(i)asz,j(i) >
" _= A . b
(<0o%,; (1)) >)P= < (a5, (i) >

t, = < 0'%«7])7]‘(2.) > —my; < O'QS,p,j(i) >

where azsp ;(2) and a%p ;(i) denote, respectively, the variance of the Sennheiser and telephone

data for the 7' Gaussian of speaker p’s model, along cepstral coefficient ¢;, and where < - >
indicates the average over p and j, i.e. over all the Gaussians of all speakers.
The variance transformation equations are then described by

N A .
o-gfmed,q,l(l) = my; 0'371(2) + 1,

where 0'3 ;(7) represents the variance to be transformed (more specifically the variance of the
[ Gaussian of speaker ¢’s model, along ¢;), and o-%fmedq ;(7) represents the same variance after

transformation.

C.1 Results of Experiments

The affine transformation developed on Stereo-ATIS was applied to the SRI-digits database
described in section II. Gaussian mixture models were trained with 1 minute of speech collected
from one telephone line (line 1 or line 2) and tested with multi line data. Table X compares the
error rates with and without variance transformation for different model sizes. (The last two
lines in Table X will be explained in Section V-D). Although the transformations were derived
from Stereo-ATIS, they significantly improved the performance on this new database. As we
argued in Section V-A, increasing the model variances also allowed us to increase the model
sizes.

One problem with the affine transformation method is that it implicitly assumes that training
data are provided by a single acoustic environment. If; instead, training data are collected from
a few different telephone lines, one might expect these data to cover more of the feature space
and the reduced mismatch to require a different variance transformation. As stereo data are
hard to collect from two or more telephone units simultaneously, another method must be
developed to deal with this situation.

D. Translation to a Fized Target

For analysis purposes, the affine transformation can be simplified into a scaling part modeled
by the slope m; or a translation part modeled by the offset t;. Table X shows the error rates
obtained by setting the slope m; to one and estimating the offset using the least means squares,
and the error rates obtained by setting the offset to zero and estimating only the scaling part of
the transformation. The table shows clearly that the most significant part of the transformation



is due to its additive offset component. This can be justified intuitively: in first approximation,
the speech coming out of a telephone line can be represented in the cepstral domain as a
random process resulting from the sum of a clean speech contribution and a channel effect.
Since the signals are additive, so are their variances. Thus, the translation term in the variance
transformation corresponds to an estimate of the average channel variance. The full affine
transformation, with its scaling term, refines this model by taking into account nonadditive
effects.

The translation to a fized target method takes advantage of this observation to simplify and
generalize the variance transformation and allow it to deal with multi line training and, as a
by-product, to compensate for limited amounts of training data.

In this method, the synthetic variance distribution is seen as a “fixed target” to be reached
by the variances of the speaker models. The variances of the speaker models are translated by
an amount such as to make their mean equal to the mean of the synthetic variance distribution.
Mathematically, the transformation can be described as

N A .
o-gfmed,q,l(l) = 0'371(2) + 1,

where
ti=<ar,(i)>—- <ol (i)>.

Provided that the synthetic variance distribution is computed with a large amount of training
data (i.e. large enough to reach the asymptote in Fig. 6), the translation term ¢; also corrects
the speaker model variances, 0'371(2'), for being underestimated because of a lack of training
data.

In addition to its capability of compensating for small amounts of training data, this method
extends easily to training conditions including more than one line since it does not make any
assumption about the training conditions (as opposed to the affine transformation method).

D.1 Results of Experiments

The affine transformation and fixed target translation were compared in a set of experiments
performed on the SRI-digits database, with one- and two-line training conditions. The fixed
target translation method consistently outperformed the affine transformation method. Results
are summarized in Table XI.

Next, a series of experiments was performed to check that the improvement brought by the
fixed target translation holds for larger sets of speakers. We used to this effect the NIST96
database (see Section II), which contains mismatched data from 150 male speakers. Speaker-
ID experiments were performed with 10, 25, 50, 100, and 150 speakers, with and without
variance transformation. Whenever possible, we averaged the outcomes of several experiments
to improve the precision of the error rate estimates. (For example, 15 10-speaker experiments
were averaged to obtain the 10-speaker error rate. For the 25-, 50-, 100-, and 150-speaker
error rates, respectively 6, 3, 1, and 1 experiments were performed and averaged. This way,
all the training and testing sentences were used exactly once to determine the error rate for
each number of speakers.) The results of these experiments are displayed in Fig. 8. The figure
shows that the improvement brought by the variance transformation is essentially independent
of the number of speakers. Transforming the model variances improves the match between the
speaker models and the test data, irrespectively of the number of speakers to be in the database.

E. Variance Transformation with Multiple Features

So far, we assumed that the cepstrum was the only feature used for speaker identification. The
following experiment shows the performance on the NIST95 database of a system combining
the optimized features from Section IV with the fixed target variance transformation. Two



64-Gaussian GMMs were built from the cepstra and spectral slopes of the NIST95 training
data, using the optimized front ends summarized in Tables V and VII. Two sets of variance
transformations were computed for the same features and the same front ends, with Stereo-
ATIS data. The transformations were applied to the NIST95 GMMs, and testing was done
as described in Section IV-G, that is, by maximizing the sum of the normalized likelihoods
of the two classifiers. The results, summarized in Table XII, show that the combined system
reduced the error rate from 24.89% to 20.83%, a 16.31% relative error rate reduction (note
that the baseline for this experiment, 24.89% error rate, assumes that the front end is already
optimized).

F. Ezxtension to Open-set Speaker Recognition

All the results presented in this paper were for closed-set speaker identification. Another
important problem is that of open-set speaker recognition, where “target” speakers are to be
identified and “imposter” speakers are to be rejected. Open-set speaker recognition involves
many issues that are beyond the scope of this work, however we would like to close this paper
with the results of an experiment we made on open-set recognition, and which shows that the
performance improvement that we observed on closed-set identification holds up in the case of
open-set speaker recognition. This experiment was conducted on NIST95 and extends Table
XII to the case of open-set recognition. The target speakers for this experiment were the 26
speakers from the closed-set experiment. To these, 80 imposter speakers were added. The target
speakers were modeled with 64-Gaussian models. Two speaker-independent background models
were built (one computed from the cepstrum feature, the other from the cepstral slope feature)
with data from the SB45 database. These models had, respectively, 2400 and 800 Gaussians.
The likelihood scores produced by the target models where normalized by the likelihood scores
from the speaker-independent background model, and likelihood maximization combined with a
rejection threshold was used to identify or reject test utterances. The results of this experiment
are summarized in Table XIII, where properties such as the closed-set error rate, the miss rate
with a 3% false alarm rate, and the false acceptance rates with 10% and 1% miss rates are
reported. The combination of the modified features along with the variance transformations
significantly improved all the criteria that we evaluated.

VI. CONCLUSION

We have attempted to compensate for channel effects in speaker identification by optimizing
the front-end parameters, modifying our filterbank computation, introducing a new feature,
and transforming the speaker models. Although it has been shown that significant improve-
ments are obtained, we have only scratched the surface. In the context of feature extraction,
the performance gain is obtained by using only system features. There is a need to develop
robust source-feature extraction algorithms. In the context of model transformation, the fixed-
target compensation algorithm has resulted in a significant performance gain, but it has cer-
tainly not completely compensated for channel effects. This approach should be extended to
speaker-dependent and microphone-dependent transformations, which we expect to give further
improvements.
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Fig. 1. Average distortion between Sennheiser-recorded cepstral coefficients and their telephone stereo
recordings (Stereo-ATIS, 10 sentences per telephone unit and per speaker, 10 telephone units, 13
speakers).

| training | testing | CMS | % error |

Sennheiser | telephone ves 16.06
Sennheiser | telephone no 33.53
Sennheiser | Sennheiser | yes 5.22
Sennheiser | Sennheiser | no 3.85
telephone | telephone ves 5.81

TABLE 1
SPEAKER IDENTIFICATION ERROR RATES WITH MATCHED AND MISMATCHED DATA (STEREO-ATIS,
40-SECOND TRAINING, 4-SECOND TESTING, TELEPHONE EXPERIMENTS PERFORMED WITH 10
DIFFERENT HANDSETS).

center-frequency( f.) | bandwidth(Bw)
(Hz) (Hz)
f. < 1000 137.5
1000 < f. < 2000 L1 (f)07
£.> 2000 10.84 (f,)04
TABLE 11

BANDWIDTHS OF THE FRONT-END FILTERS AS A FUNCTION OF THE FILTER CENTER-FREQUENCIES.
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TABLE III
FRONT-END PARAMETERS FOR THE MEL-CEPSTRUM FEATURE, BEFORE OPTIMIZATION, FOR THE
NIST95 DATABASE (30-SECOND TRAINING, 5-SECOND TESTING).

I. Experiments on B,

N¢=20,N,=17,B, =40.2,0.4,0.5,0.6,0.8,0.9, 1.0},

F, ={0.0—-0.5in steps of 0.1},7, = {0.0 — 1.0 in steps of 0.1},
Min; = 300 Hz, Max; = 3100 Hz.

II. Experiments on N,

N¢={20,24}, N, = {10,14,17},{10,14,17,18,22}, B, = 0.8,
F, ={0.0 - 0.2 in steps of 0.1},7}, = {0.5 — 1.0 in steps of 0.1},
Min; = 300 Hz, Max; = 3100 Hz.

III. Experiments on Ny

N¢={20,24,28,32}, N. = 17, B, = 0.8, F}, = {0.0 — 0.2 in steps of 0.1},
T, = {0.5— 1.0 in steps of 0.1}, Miny = 300H 2z, Max; = 3100H z.

IV. Experiments on Min; and Maxy

Ny =24, N.=17,B, =08, F, =02,7, = 0.9

Miny = {100 — 5004 z}, Maxy = {3000 — 33004 z}.

TABLE IV
EXPERIMENTS PERFORMED ON THE FRONT-END PARAMETERS FOR THE MEL-CEPSTRUM FEATURE
(NIST95, 30-SECOND TRAINING, 5-SECOND TESTING).

‘Nf‘NC‘Minf‘MaXf‘BS‘Fw‘TT H%error‘
|24 [17] 200 [ 3300 [0.8]0.2][0.9] 24.89 |

TABLE V
BEST FRONT END FOR THE CEPSTRUM FOR THE NIST95 DATABASE (30-SECOND TRAINING,
5-SECOND TESTING ).

I. Experiments on B

N¢=24,B,=1{0.2,0.4,0.6,0.8,1.0}, F,,, = {0.0 — 0.2 in steps of 0.1},
T, = {0.0 — 1.0 in steps of 0.1}, Miny = 100H 2z, Maxs = 3300/ =.

II. Experiments on Ny

N¢={20—-32},B,={0.8,1.0}, Miny = 100H z, Max; = 33004 z,
F,=4{0.0-0.2},7, ={0.0— 1.0}.

TABLE VI
EXPERIMENTS PERFORMED ON THE FRONT-END PARAMETERS FOR THE SPECTRAL SLOPE FEATURE
(NIST95, 30-SECOND TRAINING, 5-SECOND TESTING).
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Fig. 2. Optimization of the front-end parameters when varying (a) B,, (b) N., (¢) Ny, and (d) Ming
and Max; (NIST95, 30-second training, b-second testing).
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Fig. 3. Optimization of front-end parameters for (a) varying B, and (b) varying N; (NIST95, 30-second
training, 5-second testing).
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TABLE VII
BEST FRONT END FOR THE SPECTRAL SLOPE, FOR THE NIST95 DATABASE (30-SECOND TRAINING,
5-SECOND TESTING).



\ Feature | NIST95 [ SRI— 1 [ SRI—2 [ SRI—3 [ SRI —4 [ SB45 |

cepstrum 24.9 26.9 8.2 17.5 17.9 45.11

spectral slope 24.15 27.1 8.28 13.06 16.06 | 44.81

combined features 23.4 25.4 7.5 13.45 15.94 42.9
TABLE VIII

PERCENT ERROR RATES WITH THE INDIVIDUAL AND COMBINED FEATURES ON DIFFERENT
DATABASES (NIST95: 30-SECOND TRAINING, 5-SECOND TESTING; SRI-1,2,3,4 1-MINUTE TRAINING,
3-SECOND TESTING (SRI-1: MISMATCHED, 1 HANDSET TRAINING, SRI-2: MATCHED, TRAIN ON ALL
HANDSETS, SRI-3,4: MISMATCHED, TRAIN ON MULTIPLE HANDSETS); SB45: 30-SECOND TRAINING,

2-SECOND TESTING).

‘ Feature ‘ WER in % ‘
cepstrum, non-optimized front-end 75.0
cepstrum, optimized front-end 71.4
spectral slope, optimized front-end 75.0

TABLE IX

PERCENT WORD ERROR RATES FOR THE DEVELOPMENT SET OF THE SPANISH CALLHOME
LVCSR’95 EVALUATION. DIFFERENT FRONT ENDS AND SPEECH FEATURES ARE COMPARED.

Fig. 4. Clusters of data points in a two-dimensional feature space.

32 Gaussians | 64 Gaussians | 128 Gaussians | 256 Gaussians

type of transformation | line 1 ‘ line 2 | line 1 ‘ line 2 | line 1 ‘ line 2 | line 1 ‘ line 2

none 26.67 | 43.10 | 25.72 | 42.4 | 27.2 | 43.83 | 29.56 | 44.1

LMS affine 23.17 | 38.22 | 22.11 | 36.89 | 21.28 | 37.45 | 21.22 | 36.72

translation only 22.89 | 38.72 | 22.5 | 37.61|21.72| 3845 | 21.95 | 37.45

scaling only 23.78 | 40.72 | 24.72 | 40.61 | 25.22 | 41.61 | 26.72 | 42.56
TABLE X

SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SIZES (SRI-DIGITS, 1-MINUTE
TRAINING ON ONE OF TWO TELEPHONE LINES, 4-SECOND TESTING ON 10 DIFFERENT LINES, 1800
TEST SEGMENTS TOTAL).
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Fig. 5. Speaker-ID error rate as a function of the amount of training data. (Stereo-ATIS, 4-second
testing). The upper four curves illustrate the Sennheiser-telephone system performance, the lower
four correspond to the matched Sennheiser-Sennheiser system (... = 64 G, -.-. = 128 G, - - = 256
G, — =512 G).
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Fig. 6. Average variance along ¢y of four Gaussian speaker models vs. the amount of data used to build

the models (... = 64 G, -.-. = 128 G, - - = 256 G, — = 512 G).
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Fig. 7. Pairs of normalized variances, o2 vs. ¢%, along ¢1 (left) and ¢17 (right)



training conditions no transformation affine transformation fixed target transf.
64 G [128G 256 G || 64 G [128 G[256 G || 64 G [ 128 G| 256 G
line 1 25.72 | 27.22 | 29.56 || 22.11 | 21.28 | 21.22 || 22.00 | 21.06 | 21.56
line 2 42.45 | 43.83 | 44.06 || 36.89 | 37.45 | 36.72 || 35.83 | 35.5 | 35.33
line 3 42.78 | 42.78 | 45.67 || 39.28 | 37.45 | 38.22 || 38.17 | 36.5 | 37.61
line 4 52.5 | 52.17 | 53.28 || 46.45 | 46.67 | 47.0 || 44.72 | 43.33 | 44.22
line 5 43.11 | 44.17 | 44.33 | 41.0 | 41.45 | 40.89 || 38.67 | 39.72 | 41.83
line 6 43.67 | 46.22 | 48.11 | 40.0 | 40.67 | 40.78 || 38.78 | 38.67 | 39.89
Average 41.70 | 42.73 | 44.17 || 37.62 | 37.49 | 37.47 || 36.36 | 35.79 | 36.74
lines 1 & 2 25.95 | 25.56 | 32.11 || 22.28 | 20.61 | 21.61 || 21.78 | 19.89 | 20.67
lines 2 & 3 31.5 | 31.61 | 39.60 || 31.0 | 30.39 | 27.83 || 30.11 | 30.22 | 28.33
lines 3 & 4 34.95 | 34.72 | 41.95 || 29.56 | 28.11 | 25.00 || 27.67 | 26.39 | 23.83
lines 4 & 5 31.17 | 31.39 | 36.45 || 28.39 | 28.39 | 27.61 || 27.95 | 27.72 | 27.45
lines 5 & 6 28.17 | 28.28 | 35.72 || 27.5 | 27.11 | 26.27 || 26.72 | 26.78 | 27.33
lines 6 & 1 20.06 | 20.83 | 28.50 || 19.28 | 18.56 | 20.11 || 18.89 | 18.56 | 20.33
Average 28.63 | 28.73 | 35.72 || 26.33 | 25.43 | 24.74 || 25.52 | 24.93 | 24.66

TABLE XI

SPEAKER-ID PERCENT ERROR RATE FOR DIFFERENT MODEL SIZES, WITH DIFFERENT VARIANCE
TRANSFORMATION SCHEMES (SRI-INTERNAL, 1-MINUTE 1-LINE TRAINING OR 2-MINUTE 2-LINE

TRAINING, 4-SECOND 10-LINE TESTING, 1800 TEST SEGMENTS TOTAL)
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Fig. 8. Speaker-ID error rate as a function of the number of speakers in the database, with and without
variance transformation (NIST96, 2-minute training, 30-second testing, mismatched training and

testing).




‘ cepstrum ‘ var. transf. H spectral slope ‘ var. transf. H % error ‘

v 22.54
v 20.83

v 24.89
v 24.15

v v 23.08
v v 22.44

J J 23.40

v v v 22.33

v v

v v

v

TABLE XII
COMPARISON OF SPEAKER-ID PERCENT ERROR RATE WITH DIFFERENT SYSTEMS, ON NIST95
(30-SECOND TRAINING, 5-SECOND TESTING, 64 (GAUSSIANS PER MODEL).

cepstrum | var. | spectral | var. || closed-set | 3% false | 10% miss | 1% miss
transf. slope | transf. %error alarm

V4 24.9 33.8 22.2 52.3

Ni 24.1 33.8 20.7 55.3
J J 23.1 34.3 20.9 475

V4 V4 22.4 31.0 19.2 48.6
Ni N 23.4 32.6 19.6 50.5
J J J 22.3 32.4 19.0 44.6
N N J 22.5 31.3 18.2 A7.6
N J N N 20.8 31.7 16.9 435

TABLE XIII

COMPARISON OF OPEN-SET SPEAKER RECOGNITION ERROR-RATE WITH DIFFERENT SYSTEMS, ON
NIST’95 (30-SECOND TRAINING, 5-SECOND TESTING)



