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ABSTRACT

It has been shown that standard cepstral speaker recaognital-
els can be enhanced bggion-constrained models, where features
are extracted only from certain speech regions defined ik
tic or prosodic criteria. Such region-constrained modals capture
features that are more stable, highly idiosyncratic, opgmmomple-
mentary to the baseline system. In this paper we ask if anothgr
class of speaker recognition models, those based on MLL&kspe
adaptation transforms, can also benefit from region-caim&d fea-
ture extraction. In our approach, we define regions basedhon p
netic and prosodic criteria, based on automatic speeclymnéamn
output, and perform MLLR estimation using only frames selddy
these criteria. The resulting transform features are ajgzbto those
of a state-of-the-art MLLR speaker recognition system antly
modeled by SVMs. Multiple regions can be added in this fashio
We find consistent gains over the baseline system in the SRE20
speaker verification task.

Index Terms— Speaker recognition, MLLR-SVM, region-
constrained speaker modeling.

1. INTRODUCTION

One of the recurring ideas in speaker recognition is theia|ies-

tion of feature extraction or modeling to specific speechtsuor

regions that can be consistently defined. The rationalehisrep-
proach is that the resulting models can be more stable veli
nuisance variation (less intra-speaker variability), enfircused on
speaker-specific properties (more inter-speaker vaitighibr sim-

ply sufficiently uncorrelated with the baseline model soagive

valuable complementary information about speaker idengarly

experiments along these lines generally used cepstralrésaaind
standard speech units, such as phone classes [1] and whrd¢of2l

constraints have also been employed for phone N-gram nmgp@]

and prosodic features [4].

A recent generalization of this approach uses region caingsr
that can be based on complex combinations of phonetic, dexic
prosodic and other criteria, such as “syllables contaimagals”,
or “regions of falling pitch” in work orregion-constrained cepstral
models [5, 6, 7].
cepstral models can yield complementary combination when ¢
strained by suitable region constraints. The improvenerealized
by combining the baseline and constrained models at the ezl

This prior work naturally leads to the question of whethéreot
types of speaker models can also benefit from generalizegljititi-
cally motivated region constraints applied to featureaotton. An-
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Fig. 1. Region-constrained MLLR speaker modeling

other commonly used speaker modeling paradigm is that barsed
maximum likelihood linear regression (MLLR) speaker adéipn
transforms [8]. This paper investigates the use of regmmstrained
MLLR transforms, i.e., transforms estimated from a subsspeech
frames selected by phonetic and prosodic criteria, as tbic Fig-
ure 1. Defining these regions requires access to automatechkp
recognition output, but such output is already being corbdor
our state-of-the-art baseline MLLR system. We evaluatéouar
region-constrained MLLR systems on the most recent NISRafsgre
Recognition Evaluation (SRE) dataset, SRE2010.

Note that the notion of “constraint” used here has no refetiio
the concept of “constrained MLLR”, whereby the same tramsfo
is applied to both means and variances [9]. The MLLR trams$or
used here apply to model means only, and we use the term fregio
constrained MLLR” to avoid confusion.

2. METHOD

2.1. Data and error metrics

These studies have shown that state-of-the-arty |\ cotis the NIST SRE 2010 extended core evaluatiofieet

phonecalls-over-microphone and interview sessions wethesee-
cently released wide-band (sampled at 16 kHz) version oftitta,
as it avoids some significant issues with lossy waveform @ingo
that affect speaker recognition systems based on autosyiech
recognition (ASR) in particular [10]. Table 1 summarizes tffer-
ent evaluation conditions.
We report results according to three metrics: the tradition

equal error rate (EER), which constrains false alarm and mis



The MLLR estimation algorithm was modified to collect stttis
8nly from the selected frames.

As an expedient, we chose regions based largely on priorexpe
iments with constrained cepstral systems [5, 6]. Three tcainss

Table 1. SRE2010 evaluation set statistics, numbered according t
NIST conditions. phn = phonecall, int = interview, mic = plecall-
over-microphone, nve = normal vocal effort, Ive = low vod. dive

= high voc. eff. — . . that had given among the best gains when combined with aibasel
Train-test condition| Target trials| Impostor trials cepstral system were
0l.int-int.same-mic 4,304 795,995 -
02.int-int_diff-mic 15,084 2789534 e Nasal syllables—syllables containing one of the phones
03.int-nve.mic-phn 3,989 637,850 [m.n,ng]
04.int-nve.mic-mic 3,637 756,775 e [a] syllables—syllables containing the phone [a]
05.nve-nve.phn-phr| 7,169 408,950 e Syllable nuclei—the nuclear phone within a syllable
8?2&:2&2&'}2&?{2 4%3; 43;;1:53? e Falling energy—syllables over which the smoothed energy

’ : ’ contour had negative slope

08.nve-lve.phn-phn 3,821 404,848 .
09.nve-lve.mic-mic 200 70,500 Two gender-dependent transforms were estimated for each of

these constraint regions (as for the baseline phone ckassforms).
The resulting transform coefficients were then appendeuetbase-
ror rates to be the same, the old (pre-2010) detection castituin line MLLR feature vectors. Note that more than one constrain
(oDCF), which weighs false alarm errors as ten times asycastl specific transform can be concatenated in order to combifoe-in
miss errors, and the new (2010) detection cost function (PC mation from multiple constraints. This feature-level canabion
which weighs false alarm errors as 1000 times more costlyitias ~ method is different from the score-level combination exptbso
errors. Old and new DCF values are scaled to make chanceaateor far for region-constrained cepstral systems. In prelimjirexperi-
equal to 1. ments we found that score-level combination of multiplestmined
MLLR-SVM systems, or score-level combination with the Wi

) was not effective.
2.2. Baseline MLLR-SVM system

Our baseline MLLR-SVM system is identical to the one fielded a 2-4. Speech recognition systems

part of the 2010 SRI SRE system [11], modulo the use of widerhe \ | R estimates used in our system rely on phone alignment

band microphone recordings and ASR (as described belowalstle generated by a word-ASR system. We used two systems, for tele

dropped the ZT score normalization step to expedite ex@aiation  hone and microphone audio recording, respectively. Tieleg ses-

and since it was not adding significantly to performance. sions were transcribed by the ASR system used in SRE2008 and
An MLLR-SVM system uses speaker adaptation transformsgre2010 and described in [11]. This system uses acoustielsiod

such as used by ASR systems, as features for speaker verificgained exclusively on telephone speech, and runs in taagration

tion [8]. A total of 16 affine39 x 40 transfo_rms is used to map passes, for purposes of unsupervised adaptation. We reelasard

the Gaussian mean vectors from speaker-lnde_pendent t@espea grror rate (WER) on transcribed portions of the Mixer corjgiging

dependent speech models; 8 phone-class specific transétoenes- 23 09 for native speakers and 36.1% for nonnatives (all SRE2

timated relative to male-only recognition models, anotBérans-  yatais English).

forms are computed based on female-only models (regardless  For microphone (including interview) sessions, we utiiza

speaker sex). The transforms are estimated using MLLR Hi®),  stripped-down version of the SRI/ICSI NIST RT-07 meetingog:

can be viewed as a text-independent encapsulation of tksf®  pjtion system [14]. It is similar to the telephone systemtimicture

acoustic properties. Speech features are 39-dimensiene¢pual  gpq modeling algorithms employed, but uses a combinati@kbfz

linear prediction (PLP) cepstra. The transform coeffi@elorm @ and 16 kHz acoustic models, trained on both near-field artdrtis

39 x 40 x 8 x 2 = 24,960-dimensional feature space. Each fea- microphone meeting recordings, with telephone and bredeavs

ture dimension is rank-normalized, replacing the valudw# rank  4ata used as background training, respectively. This sybt@s a

in the background data, and scaling ranks to lie in the ialef  \WER of 36.1% on single-distant-microphone test data froer2007

1]. Finally, nuisance attribute projection (NAP) [13] isdied to re-  Rjch Transcription evaluation.

move intra-speaker variability. The within-speaker vaciawas es- In developing the MLLR-SVM system on telephone data, we

timated on SRE04 telephone data, SREO5 microphone daté)8REfqynd the hypotheses from the first recognition pass mostefe.

and SRE10 sample data, and an SREO8 subset designatedrfor tragqg, consistency with the telephone system we adopted the sam

ing. The resulting normalized feature vectors are then theddey strategy for the wide-band ASR system. However, we alwags us

SVMs using a linear kernel. The impostor (background) data f g final recognition output (the one with lowest WER) for gart
SVM training comes from SREQ6 telephone and microphone sesng the constraint regions.

sions, as well as SREQ0S8.

3. EXPERIMENTS AND RESULTS

2.3. Region-constrained MLLR S ] )
We start by evaluating individual constraint regions. €blshows

To extend the notion of region-constrained feature extvacto results for the baseline and MLLR-SVM systems based on each
MLLR speaker models, we first define regions in terms of pHonet of the four regions defined earlier, as well as the percentdge
syllabic, and prosodic constraints, based on alignmendsS& out-  speech frames selected by the respective constraints tersnileed

put to the waveform, as well as energy and pitch tracks. S®R¥Ys by alignment of ASR hypotheses). To reduce the number of re-
gemy prosodic engine then computes a set of start/end frameeisdic sults we focus on the telephone-telephone train-test tiondif the

for each waveform, defining the regions where the consgaintain. SRE2010 data.



Table 2. Results for SRE2010 condition 5 (telephone-telephonenabvocal effort), for baseline and each of the region-t@iised MLLR
systems. Systems are ordered by their share of speech ftm@@sshown in the second column.

[ System | share of speech framef nDCF | oDCF | EER (%) |
Baseline 100% 4750 | .1804 4.66
[al-syl 79.1% 7830 | 3702 | 912
Eg-slope-neg 48.7% .7910 | .3890 9.35
Syl-nuclei 44.6% .6980 | .3080 7.20
Nasal-syl 25.4% .8800 | .5003 13.54

The individual regions yield EERs between 50% and 190%most variable) for nDCF.

worse than the baseline, which is expected since fewer Gaare
used and only two gender-specific transforms are employecope
straint (compared to 16 transforms in the baseline systd@img.re-
gions corresponding to nasal syllables perform the wordlevetiso

capturing only about half the amount of speech as the othiee th

constraints. Still, performance is not simply a functiorief amount
of speech used, as demonstrated by the fact that the syliableus
constraint ranks third in amount of speech frames, but pagdet-
ter than all other constraints.

In any case, performance of the constraints by themselvest is
what matters for our purposes, since the intent is to exspeaker
information that complements the baseline. Therefore, vatuate
each constraint in combination with the baseline MLLR feasy by
feature vector concatenation.

Table 3 compares Condition 5 results for the baseline with au

mented systems, where one, two, three, or four regionfpaeins-

Still, the results show clearly that regions defined in teohs
syllable structure and low-level prosodic features canrgwe per-
formance of a state-of-the-art MLLR system, combining edhs-
forms at the feature level. Unlike for constrained cepstnatels,
the baseline MLLR system already incorporates phonetiariné-
tion, through its use of phone-class specific transformpribr work
[8] we had found that the eight baseline phone classes wgtgyhi
optimized; in particular, splitting them further did nostdt in better
performance. It is therefore highly significant, and eneging for
future work, that the addition of regions that are not defipacely
in phonetic terms shows substantial gains.

We now have a matrix of acoustic speaker modeling techniques

that comprises both cepstral and MLLR-based approacheslbas
unconstrained and region-constrained versions of thgz@aghes.

The work so far has shown that combining just two modeling ap-

proaches from this 2-by-2 matrix leverages complementafyr-

forms have been added. The improvements in nDCF go up to 8%nation and leads to improvements over the baseline. A fuli-co
relative. Old DCF gains are larger, up to 18%, as are EER redugarison of all these systems was beyond the scope of this, Watk

tions, up to 22% relative. Generally speaking, each addgidme
improves the result, although for nDCF there is degradatitben
the third region is added.

The relative gains from adding one region-specific tramsftr
the baseline (Table 3) do not reflect the performance of thiems
by themselves (Table 2). In the latter case, syllables aunta[a]
give the second-best result; when added to the baselineatheally
produce a slight degradation (however, they do give a nigeaxre-
ment in combination with other region-specific constrginté/hat
these results highlight is that the selection of regionsdade be
jointly optimized, something we have not attempted yet ainétkv
will be computationally expensive.

Table 4 presents results for all evaluation conditionsngishe
baseline augmented by all four region-specific transforiee im-
provements for oDCF and EER are relatively consistent acros-
ditions, on the order of 13% relative for oDCF and around 16% r

ative for EER. New DCF improves around 7.5%, but the gaing var

greatly; presumably, many of the conditions lack sufficieiats to
estimate error rates at very low false alarm rates. (Thigi®blem
mainly for the conditions involving high/low vocal effort\s in the
earlier results, we find that relative gains are larger tovthe EER
operating point, and decrease toward the very low falseralagion
(nDCF).

4. CONCLUSIONS AND FURTHER WORK

We have investigated a further development of MLLR-SVMdahs
speaker modeling, incorporating the concept of regiorstamed
feature extraction, analogous to prior work on constraicepistral

speaker models. Results on the SRE2010 extended core d&ta sh

gains for all performance metrics, across all evaluatiomd@mns.
Gains are generally highest for EER, then DCF, and smaliest (

would clearly be of interest. Also, it remains to be seen if\we8/
or 4-way combination of modeling approaches would give ftit
ther improvements, and whether the gains are commensuitite w
the computational effort.

Furthermore, a number of other recent developments could be

applied to the region-constrained MLLR system. As in [6], wast
ask if language-independent constraints (e.g., based dinlmgual
phone recognition) perform similarly to MLLR based on Egpli

word recognition. Also, a new MLLR feature back end based on

factor analysis and iVector fusion [15] looks very promégsin con-
junction with region-constrained MLLR.
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