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Abstract

We describe a new approach to modeling idiosyrerati

prosodic behavior for automatic speaker recognitidhe
approach computes prosodic features by syllabldafdg-
based nonuniform extraction region features, or EBNs"),
and models the syllable-feature sequences (“SNERBm))
using support vector machines (SVMs).
performance on development data for a system stéamib

the NIST 2004 Speaker Recognition Evaluation. Reslilow

that SNERF-grams provide significant performancenga
when combined with a state-of-the-art baselineesysas well

as with both prosodic and word-based noncepstsiésys.

1. Introduction

Recent research in modeling long-range stylistatures for
speaker recognition has shown remarkable succes8 4,5].
So much so, that it has become increasingly chgitiento
come up with approaches that improve on the stqtos—
particularly when training data for target speakisrémited.

We describe a new approach to modeling idiosyrerati

stylistic prosodic behaviors for automatic speakeognition.
The approach computes prosodic features associaitid
each syllable (syllable-based nonuniform extractiegion
features, or “SNERFs”), and then models those Isigla
feature sequences (“SNERF-grams”) using supportovec
machines (SVMs).

We evaluate the approach on development data for a

system submitted to the NIST 2004 Speaker Recagniti
Evaluation. The task is a speaker verification taskwhich
one side of a short telephone conversation is geavifor
training the speaker model, and another conversaide is
provided for testing.

2. Method

2.1. Speech Data

We used 2564 5-minute conversation sides from ibkeF
corpus of two-party telephone conversations on oueri
topics. We divided the set into three subsets @oin no
shared speakers, as shown in Table 1.

As indicated in Table 1, we used only half the ioad
conversation side length in our development séis; is to

better match the different data set in the NIST 4200

evaluation, which contains shorter test lengths.

2.2. Baseline System

Our baseline cepstral Gaussian mixture model (GMi4tem
[6] uses a 300-3300 Hz bandwidth front end conmsistf 19
MEL filters. It computes 13 cepstral coefficient81¢C13)
with cepstral mean subtraction, and their delta dodble

We evaluate

delta coefficients, producing a 39-dimensional deatvector.
The feature vectors are modeled by a 2048-compdaikiil.
The background GMM s trained using gender- anddkan
(electret, carbon and cell phone) balanced dataet&MMs
are adapted from the background GMM using MAP aatapt

of the means of the Gaussian components. For channe

normalization, the feature transformation described7] is
applied using gender- and handset-dependent midisre
adapted from the background model. Verificatiopesformed
using 5-best Gaussian components per frame, seéledté
respect to the background model scores.

2.3. SNERF-Gram System

23.1.  Automatic speech recognition

Conversation sides were segmented and decoded 8RHg
five times real-time conversational speech recagniwhich
has a word error rate of approximately 20% on ®@32Fisher
evaluation test set. Acoustic models were trainedata from
the Switchboard and CallHome corpora. The languagedel
was trained on additional data from broadcast rteavsscripts
and online Web data. Note that no part of the reitimg

system was trained or tuned on the Fisher dati itse

Background | Dev Dev
Model setl | set2
Conversation sides 1128 734 70p
Unique speakers 1128 249 249
Imposter trials - 13130 9159
True speaker trials - 1508 132
Ave. orig. side length (min. ~5 ~5 ~5
Ave. side length used (min. ~5 ~25 2|5

Table 1: Statistics on Fisher data sets

23.2.  SNERF-gramfeatures

To obtain estimated syllable regions, we syllabifiee output
of the speech recognizer using ‘tsylb2’, a progthat uses a
set of human-created rules that operate on thenhetsthed
dictionary pronunciation for each word. For eackuténg
syllable region, we obtain phone-level alignmerfoimation
from the speech recognizer, and then extract & lamnber of
features related to the duration, pitch, and endrgythe
syllable. The duration features are obtained frecognizer
alignments. Pitch is estimated using thet fO function in

ESPS/Waves, and then post-processed using an approa

adapted from [8]. The post-processing medianrfiltéhe
pitch, then fits linear splines, and produces tlustgrior
probability of pitch halving and pitch doubling feach frame



using a log-normal tied-mixture model of pitch. Thedel
also estimates speaker pitch range parameters fmed
normalization. Energy features are obtained ushe RMS
energy values from ESPS/Waves, and post-processadhe
spline for each segment obtained from the pitclizsityon.

We then create a number of duration, pitch, andgsne
features, as follows. The motivation for computilegtures
that are highly correlated (differ for example onlig
normalization, binning, or N-gram length, as ddsedi below)
is that we will be able to view the usefulness o$peecific
feature in the SVM modeling. Since the SVM mode¢sioot
suffer (too greatly) by having a large set of feasy this
allows us to inspect the feature weights and discavhich
normalizations, binnings, and so on, are best foickvtypes
of features.

For duration features, we use five different regiam the
syllable: onset, nucleus, coda, onset+nucleus,ense¢coda,
and the full syllable. We obtain the duration fbatt region,
and normalize it using three different ways of coitipy
normalization statistics based on background mdd&. We
use instances of the same phone sequence anywistagces

of the same phone sequence in the same positioh, an
We use fo

instances of the same triphone anywhere.
different types of normalization: no normalizatiativision by
the distribution mean, Z-score normalization ((ealu
mean)/st.dev), and percentile.

For pitch features, we use two different regionsiced
frames in the syllable, and voiced frames ignoang frames
deemed to be halved or doubled by the pitch pastgssing
described earlier. The pitch output in these regianthen
used in one of three forms: raw, median-filtered stylized
using the linear spline approach mentioned earlieor each
of these pitch value sequences, we compute a lsegef
features:

rising/falling/doubled/halved/voiced, length of tHest/last
slope,
first/last/average slope, and the maximum positiegative
slope. These features are normalized by five differ
approaches: no normalization, divide by mean, sgbimean,
Z-score normalization, and percentile value.

For energy features, we use four different regidahs:
nucleus, the nucleus minus any unvoiced frameswihele
syllable, and the whole syllable minus any unvoifegnes.
These raw energy values are then used to compatieés in a
manner similar to that just described for pitchiiees.

Because we use count-based features in the SVM

modeling, we discretize the features described eb&ince
we do not knova priori where to place thresholds for binning
the data, we try a small number of different tdisl counts.
In each case, we discretize evenly on the rankildigion of
values for the particular feature, so that resgltims contain
roughly equal amounts of data. We use four differeim
counts per feature: 2, 3, 5, and 10 bins.

Each resulting feature is then also modeled inethvays:
unigram (current syllable only), bigram (currentlayle and
previous syllable or pause), and trigram (currefiakle and
previous two syllables or pauses).
interesting case in this approach. Although theydbcontain
pitch or energy information, we do not want to igmaehem.
They provide useful conditioning information wheregent in

the longer N-grams, and provide the priors for paus

occurrence when used as unigrams. We thus needeahie

maximum pitch, mean pitch, minimum pitch,
maximum — minimum pitch, number of frames that are

number of changes from fall to rise, value o

Pauses present a

up with a binning approach for pauses. We used satieof
hand-chosen threshold values (6, 15, and 30 fratoediyide
pauses into four different lengths. This approacs wsed
across all features (note that each feature maypicenwith a
pause for N-gram lengths larger than 1).

The resulting number of different observed N-grams
(where an N-gram is a sequence of specific bineslof a
specific feature) is large—on the order of 200,080r each
N-gram, we count the number of appearances ofNhgtam
and normalize that count by the total syllables the
conversation side. The resulting values are pealitb the
SVM.

2.33.  SVYM modeling

An SVM [9] is used to separate true and imposterakprs.
Each training or test conversation side is assumgdovide a
single point in the hyperspace, whose coordinatgiaen by
the feature vector described in the previous sectigor
practical reasons, we do not use the completefdetatures.
Instead, we select the 10,000 most frequent N-gaosrring
in the background model training data.

During training, each true speaker vector is agsigo the
class "+1", and each imposter is assigned to thsscl-1".
The score assigned to any particular test triliés calculated
as the Euclidean distance from the separating pjqee to
the point that represents the particular trial,hwitegative
values indicating imposters. We used the SVMLitelkid
[10] by Thorsten Joachims to induce SVMs and dassi
instances. We used a linear kernel and imposeasadi500
against misclassification of positive examples,uaber that
we obtained empirically through experimentatione ®tores
obtained in this manner were then normalized uINORM
[11].

An important advantage of this approach (over, for
example, GMMs) is that if one uses a linear kerreg
induced SVM provides a way to infer the contribotiof
individual features to overall performance. By mi@ng the
hyperplane, one can determine the importance eatufe by
looking at the angle it forms with the hyperplai&e more
discriminative the feature, the more orthogonaldhgle with
the hyperplane. Intuitively we may say that thee rat which
one approaches the hyperplane and crosses ovhe tottier
side by moving along the axis of any particulartdea is
directly representative of the importance of theatfire in
classifying the sample. Note that for this to heetrfeatures
must be normalized so that they have comparabledatd
deviations. Accordingly, we use the cosine of thegla
between the normal to the hyperplane and the dxisterest
as a measure of the importance of each featurehén t
classification task.

In future work we plan to use this measure tofeature
selection, rather than basing selection only ontufea
frequency as we do now. We also expect that infoomeon
feature usage will lead to the discovery of befeatures.
Perhaps most important: the study and interpretatiosuch
feature weights should lead to progress in our dumehtal
scientific understanding of speaking behavior.

2.4. Other Noncepstral Systems

The true test of the utility of the SNERF systemtassee
whether it provides complementary information beydhat
already modeled by a number of successful systavslaped



in past work. We have previously developed thygeed of
systems, aimed at capturing long-range featuresspeaker
verification. All systems use the same speech mtiog
output as described earlier for the SNERF-gramesyst

24.1.  Word N-grams SVM system

The word N-gram based SVM system consists of aatine
kernel SVM where the coordinates of the point atnined
by the relative frequencies of word N-grams in
conversation sides. All orders of N-grams fromol3t are
chosen as potential candidates for input spacerdiimes. The
particular N-grams to model are chosen based oir the
frequency: all sequences that appear more than intiee
background model set are included in the featuotoveThis
way, around 150,000 N-grams are included, but is dase
this size is not problematic because only a fewthefn occur

on each conversation side. As for the SNERF-grgstes,

we used a linear kernel with a bias of 500 against
misclassification of positive examples. These ss@e also
TNORMed.

the

24.2.  Duration systems

This system [2] models a speaker's idiosyncratiopteal
patterns in the pronunciation of individual worgsones, and
states, inspired by previous work on similar feasurfor
conversational speech recognition. Three differaatiels are
created: (1) word models that contain the sequehgeone
durations in the word; (2) phone models that contdie
duration of context-independent phones; and (3)esta
phone models that contain the sequence of HMM state
durations in the phones. Speaker models obtainezlgh
MAP adaptation of means and weights of a backgrounadel
are used to score test conversations. This scarerisalized
by the score obtained using the background modéh@isame
test sample. The score is further normalized uSM@RM.

2.43.  GMM-based NERF system

This system models another class of nonuniformaektin
region features (NERFs). In this case, the reg®mat a
syllable but rather stretches from one pause téhe pause
(using a pause duration threshold of 500 ms). Quaufe
vector comprising various FO, energy and durateatures is
extracted per region. Features are modeled usvil§after
whitening. Scores are then obtained as for thetiduraystem.
The details of this approach are explained in [4].

2.5. System Combination

All systems are combined using LNKNet software. dural
network with no hidden layer and sigmoid output lireearity
is used as a classifier. The combiner is trainedenset 2 and
applied to dev set 1 to obtain the final scores.

3. Results and Discussion

We report results using two error metrics: equabrerate
(EER) and minimum detection cost function (min D@Bed
by NIST). The equal error rate is the probabilitfyy miss
detections (MD) when this value is equal to thebpiwmlity of
false alarms (FA). DCF is computed using four qitiest 1)
MD probability, 2) FA probability, 3) cost for
misclassification (¢ and Ga), and 4) target prior ¢f) with

the following formula:
DCF = Gup Pigt Pup + Gea (1-Rgp) Pra

In the results presented here, parameters are:sés=10,
Cra=1 and R=0.01.

3.1. Two-way Combinations with Baseline

To provide an idea of how much complementary infation
the SNERF system provides beyond that from the linase
system, relative to the other noncepstral systegneldped in
prior work, we ran all two-way combinations of nepstral
systems with the baseline. Results are shown iteTabin all
results shown in this paper, the three duratioriesys are
combined into one system (which, as would be exsugct
performs better than any single duration systemeglo

EER Min DCF

(%) (X109
Baseline only 8.95 2.83
Baseline + 3 Duration systenjs 7.03 2.13
Baseline + SNERF-grams 7.36 2.31
Baseline + Word N-grams 7.82 2.21
Baseline + P2P NERFs 8.02 2.51

Table 2: Equal error rate and detection cost fomncti
for all two-way combinations of baseline systemhwit
noncepstral systems

All noncepstral systems improve performance ovee th
baseline (all are statistically significant). Thesb system in
combination is the three-part duration system dmped in
earlier work. The SNERF-gram system is next besgtims of
EER, but only third best in DCF. Since the SNER&ry
system includes duration information, the next ohbsi
question is whether or not it will provide additan
(complementary) information when combined with the
duration system.

3.2. Three-way Combinations with Baseline and SNERF

To investigate the question of information addeglone that

in the duration system, we ran a three-way comianatith

the baseline, the three-part duration system, hadSNERF-
gram system. We also ran the combination for thedvwand
NERF systems, respectively. As shown in Table 3 Teble

2), the SNERF-gram system combines well with other
systems. In particular, it provides a gain sigwificat the .01
level when combined with the duration system.

Baseline + SNERF-grams ¥ %!/50;? M(lQlI(D)Z():F
Duration 6.50 1.89

Word N-grams 7.16 1.90
P2P NERF 7.49 229

Table 3: Equal error rate and detection cost foncti
for three-way combinations

3.3. Multisystem Combination

To assess the contribution of the SNERFs systerm velle



other systems are present, we ran two further aoatibns, in
which all noncepstral systems were included witth aithout

SNERFs. Results are shown in Table 4. As indicated,
SNERF-gram system continues to provide a highlgiS@ant

gain (again at the .01 level) even when all othystesns are
present. Detection error tradeoff curves are shfomrithese
systems in Figure 1.

EER Min DCF

(%) (x10%)
Baseline 8.95 2.83
All systems except SNERFs 7.29 1.96
All systems including SNERFS 6.43 1.68

Table 4: Equal error rate and detection cost foncti
for multiway system combinations
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Figure 1: Detection error tradeoff curves for bameand
multiway combinations

3.4. Feature Usage

Using the “cosine of theta” measure described eranlve can
compute the usage of each feature in the modete MNawever
that the measure is also affected by the mannerich we

choose the features to include in the SVM. Singeectly we

base this decision on frequency, features thatraecely may
be excluded from the model (even if discriminativegcause
they suffer from high inherent variance. Nevemtiss| the
measure provides a way to rank the importance @fntlany
types of frequently occurring features retainedha SVM.

We find that longer N-grams were generally morefulsdan

shorter N-grams, and that the SNERF-gram systeraaappo
make ample use of pitch and energy information (ost

duration). This is consistent with the finding reb&arlier that
SNERFs can combine well with duration systems.

4. Conclusions

SVM modeling of SNERF-grams appears to be a vaguabl
knowledge source for speaker recognition. Everraining

data is limited to a few minutes of speech, SNER&s
provide significant performance gains when combingt a
variety of other systems. Because results repdrezd have
not yet been optimized with respect to feature ctigle (a
process that could be informed by feature weightshie
SVM) there is room for further improvement. Taken
together, these findings suggest that—despite theikar—
SNERF-grams are nothing to sneeze at.
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