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Abstract 

We describe a new approach to modeling idiosyncratic 
prosodic behavior for automatic speaker recognition. The 
approach computes prosodic features by syllable (syllable-
based nonuniform extraction region features, or “SNERFs”), 
and models the syllable-feature sequences (“SNERF-grams”) 
using support vector machines (SVMs). We evaluate 
performance on development data for a system submitted to 
the NIST 2004 Speaker Recognition Evaluation. Results show 
that SNERF-grams provide significant performance gains 
when combined with a state-of-the-art baseline system, as well 
as with both prosodic and word-based noncepstral systems.  

1. Introduction 

Recent research in modeling long-range stylistic features for 
speaker recognition has shown remarkable success [1,2,3,4,5]. 
So much so, that it has become increasingly challenging to 
come up with approaches that improve on the status quo—
particularly when training data for target speakers is limited. 
We describe a new approach to modeling idiosyncratic 
stylistic prosodic behaviors for automatic speaker recognition. 
The approach computes prosodic features associated with 
each syllable (syllable-based nonuniform extraction region 
features, or “SNERFs”), and then models those syllable-
feature sequences (“SNERF-grams”) using support vector 
machines (SVMs).  

We evaluate the approach on development data for a 
system submitted to the NIST 2004 Speaker Recognition 
Evaluation. The task is a speaker verification task, in which 
one side of a short telephone conversation is provided for 
training the speaker model, and another conversation side is 
provided for testing. 

 

2. Method 

2.1. Speech Data 
We used 2564 5-minute conversation sides from the Fisher 
corpus of two-party telephone conversations on various 
topics. We divided the set into three subsets containing no 
shared speakers, as shown in Table 1. 

As indicated in Table 1, we used only half the original 
conversation side length in our development sets; this is to 
better match the different data set in the NIST 2004 
evaluation, which contains shorter test lengths. 

2.2. Baseline System 

Our baseline cepstral Gaussian mixture model (GMM) system 
[6] uses a 300-3300 Hz bandwidth front end consisting of 19 
MEL filters. It computes 13 cepstral coefficients (C1-C13) 
with cepstral mean subtraction, and their delta and double 

delta coefficients, producing a 39-dimensional feature vector. 
The feature vectors are modeled by a 2048-component GMM. 
The background GMM is trained using gender- and handset- 
(electret, carbon and cell phone) balanced data. Target GMMs 
are adapted from the background GMM using MAP adaptation 
of the means of the Gaussian components. For channel 
normalization, the feature transformation described in [7] is 
applied using gender- and handset-dependent models that are 
adapted from the background model. Verification is performed 
using 5-best Gaussian components per frame, selected with 
respect to the background model scores.  

2.3. SNERF-Gram System 

2.3.1. Automatic speech recognition 

Conversation sides were segmented and decoded using SRI’s 
five times real-time conversational speech recognizer, which 
has a word error rate of approximately 20% on the 2003 Fisher 
evaluation test set. Acoustic models were trained on data from 
the Switchboard and CallHome corpora.  The language model 
was trained on additional data from broadcast news transcripts 
and online Web data. Note that no part of the recognition 
system was trained or tuned on the Fisher data itself.  

 
 Background 

Model 
Dev 
set 1 

Dev 
set 2 

Conversation sides 1128 734 702 
Unique speakers 1128 249 249 
Imposter trials - 13130 9153 
True speaker trials - 1508 1328 
Ave. orig. side length (min.) ~5  ~5 ~5 
Ave. side length used (min.) ~5  ~2.5 ~2.5 
 

Table 1: Statistics on Fisher data sets 

2.3.2. SNERF-gram features 

To obtain estimated syllable regions, we syllabified the output 
of the speech recognizer using ‘tsylb2’, a program that uses a 
set of human-created rules that operate on the best-matched 
dictionary pronunciation for each word. For each resulting 
syllable region, we obtain phone-level alignment information 
from the speech recognizer, and then extract a large number of 
features related to the duration, pitch, and energy in the 
syllable.  The duration features are obtained from recognizer 
alignments. Pitch is estimated using the get_f0 function in 
ESPS/Waves, and then post-processed using an approach 
adapted from [8].  The post-processing median-filters the 
pitch, then fits linear splines, and produces the posterior 
probability of pitch halving and pitch doubling for each frame 



using a log-normal tied-mixture model of pitch. The model 
also estimates speaker pitch range parameters used for 
normalization. Energy features are obtained using the RMS 
energy values from ESPS/Waves, and post-processed to fit one 
spline for each segment obtained from the pitch stylization.  

We then create a number of duration, pitch, and energy 
features, as follows.  The motivation for computing features 
that are highly correlated (differ for example only in 
normalization, binning, or N-gram length, as described below) 
is that we will be able to view the usefulness of a specific 
feature in the SVM modeling. Since the SVM model does not 
suffer (too greatly) by having a large set of features, this 
allows us to inspect the feature weights and discover which 
normalizations, binnings, and so on, are best for which types 
of features.  

For duration features, we use five different regions in the 
syllable: onset, nucleus, coda, onset+nucleus, nucleus+coda, 
and the full syllable. We obtain the duration for that region, 
and normalize it using three different ways of computing 
normalization statistics based on background model data. We 
use instances of the same phone sequence anywhere, instances 
of the same phone sequence in the same position, and 
instances of the same triphone anywhere.  We use four 
different types of normalization: no normalization, division by 
the distribution mean, Z-score normalization ((value-
mean)/st.dev), and percentile.  

For pitch features, we use two different regions: voiced 
frames in the syllable, and voiced frames ignoring any frames 
deemed to be halved or doubled by the pitch post-processing 
described earlier. The pitch output in these regions is then 
used in one of three forms: raw, median-filtered, or stylized 
using the linear spline approach mentioned earlier.  For each 
of these pitch value sequences, we compute a large set of 
features: maximum pitch, mean pitch, minimum pitch, 
maximum – minimum pitch, number of frames that are 
rising/falling/doubled/halved/voiced, length of the first/last 
slope, number of changes from fall to rise, value of 
first/last/average slope, and the maximum positive/negative 
slope. These features are normalized by five different 
approaches: no normalization, divide by mean, subtract mean, 
Z-score normalization, and percentile value.  

For energy features, we use four different regions: the 
nucleus, the nucleus minus any unvoiced frames, the whole 
syllable, and the whole syllable minus any unvoiced frames.  
These raw energy values are then used to compute features in a 
manner similar to that just described for pitch features.  

Because we use count-based features in the SVM 
modeling, we discretize the features described above. Since 
we do not know a priori where to place thresholds for binning 
the data, we try a small number of different total bin counts. 
In each case, we discretize evenly on the rank distribution of 
values for the particular feature, so that resulting bins contain 
roughly equal amounts of data. We use four different bin 
counts per feature: 2, 3, 5, and 10 bins. 

Each resulting feature is then also modeled in three ways: 
unigram (current syllable only), bigram (current syllable and 
previous syllable or pause), and trigram (current syllable and 
previous two syllables or pauses). Pauses present an 
interesting case in this approach. Although they do not contain 
pitch or energy information, we do not want to ignore them.  
They provide useful conditioning information when present in 
the longer N-grams, and provide the priors for pause 
occurrence when used as unigrams. We thus needed to come 

up with a binning approach for pauses. We used one set of 
hand-chosen threshold values (6, 15, and 30 frames) to divide 
pauses into four different lengths. This approach was used 
across all features (note that each feature may combine with a 
pause for N-gram lengths larger than 1).  

The resulting number of different observed N-grams 
(where an N-gram is a sequence of specific bin values of a 
specific feature) is large—on the order of 200,000. For each 
N-gram, we count the number of appearances of that N-gram 
and normalize that count by the total syllables in the 
conversation side.  The resulting values are provided to the 
SVM. 

2.3.3. SVM modeling 

An SVM [9] is used to separate true and imposter speakers.  
Each training or test conversation side is assumed to provide a 
single point in the hyperspace, whose coordinates are given by 
the feature vector described in the previous section. For  
practical reasons, we do not use the complete set of features. 
Instead, we select the 10,000 most frequent N-grams occurring 
in the background model training data. 

During training, each true speaker vector is assigned to the 
class "+1", and each imposter is assigned to the class "-1".  
The score assigned to any particular test trial is then calculated 
as the Euclidean distance from the separating hyperplane to 
the point that represents the particular trial, with negative 
values indicating imposters. We used the SVMLite toolkit 
[10] by Thorsten Joachims to induce SVMs and classify 
instances. We used a linear kernel and imposed a bias of 500 
against misclassification of positive examples, a number that 
we obtained empirically through experimentation. The scores 
obtained in this manner were then normalized using TNORM 
[11]. 

An important advantage of this approach (over, for 
example, GMMs) is that if one uses a linear kernel, the 
induced SVM provides a way to infer the contribution of 
individual features to overall performance.  By examining the 
hyperplane, one can determine the importance of a feature by 
looking at the angle it forms with the hyperplane. The more 
discriminative the feature, the more orthogonal the angle with 
the hyperplane. Intuitively we may say that the rate at which 
one approaches the hyperplane and crosses over to the other 
side by moving along the axis of any particular feature is 
directly representative of the importance of that feature in 
classifying the sample. Note that for this to be true, features 
must be normalized so that they have comparable standard 
deviations. Accordingly, we use the cosine of the angle 
between the normal to the hyperplane and the axis of interest 
as a measure of the importance of each feature in the 
classification task.  

 In future work we plan to use this measure to aid feature 
selection, rather than basing selection only on feature 
frequency as we do now. We also expect that information on   
feature usage will lead to the discovery of better features. 
Perhaps most important: the study and interpretation of such 
feature weights should lead to progress in our fundamental 
scientific understanding of speaking behavior.  

2.4. Other Noncepstral Systems 

The true test of the utility of the SNERF system is to see 
whether it provides complementary information beyond that 
already modeled by a number of successful systems developed 



in past work.  We have previously developed three types of 
systems, aimed at capturing long-range features for speaker 
verification. All systems use the same speech recognition 
output as described earlier for the SNERF-gram system. 

2.4.1. Word N-grams SVM system 

The word N-gram based SVM system consists of a linear-
kernel SVM where the coordinates of the point are determined 
by the relative frequencies of word N-grams in the 
conversation sides.  All orders of N-grams from 1 to 3 are 
chosen as potential candidates for input space dimensions. The 
particular N-grams to model are chosen based on their 
frequency: all sequences that appear more than once in the 
background model set are included in the feature vector. This 
way, around 150,000 N-grams are included, but in this case 
this size is not problematic because only a few of them occur 
on each conversation side.  As for the SNERF-gram system, 
we used a linear kernel with a bias of 500 against 
misclassification of positive examples. These scores are also 
TNORMed. 

2.4.2. Duration systems 

This system [2] models a speaker's idiosyncratic temporal 
patterns in the pronunciation of individual words, phones, and 
states, inspired by previous work on similar features for 
conversational speech recognition. Three different models are 
created: (1) word models that contain the sequence of phone 
durations in the word; (2) phone models that contain the 
duration of context-independent phones; and (3) state-in-
phone models that contain the sequence of HMM state 
durations in the phones. Speaker models obtained through 
MAP adaptation of means and weights of a background model 
are used to score test conversations. This score is normalized 
by the score obtained using the background model on the same 
test sample. The score is further normalized using TNORM. 

2.4.3. GMM-based NERF system 

This system models another class of nonuniform extraction 
region features (NERFs). In this case, the region is not a 
syllable but rather stretches from one pause to the next pause 
(using a pause duration threshold of 500 ms). One feature 
vector comprising various F0, energy and duration features is 
extracted per region.  Features are modeled using GMMs after 
whitening. Scores are then obtained as for the duration system. 
The details of this approach are explained in [4]. 

2.5. System Combination 

All systems are combined using LNKNet software. A neural 
network with no hidden layer and sigmoid output nonlinearity 
is used as a classifier. The combiner is trained on dev set 2 and 
applied to dev set 1 to obtain the final scores. 

3. Results and Discussion 

We report results using two error metrics: equal error rate 
(EER) and minimum detection cost function (min DCF, used 
by NIST).  The equal error rate is the probability of miss 
detections (MD) when this value is equal to the probability of 
false alarms (FA). DCF is computed using four quantities: 1) 
MD probability, 2) FA probability, 3) cost for 
misclassification (CMD and CFA), and 4) target prior (Ptgt) with 

the following formula: 

DCF = CMD Ptgt PMD + CFA (1-Ptgt) PFA 

In the results presented here, parameters are set to: CMD=10, 
CFA=1 and Ptgt=0.01.  

3.1. Two-way Combinations with Baseline 

To provide an idea of how much complementary information 
the SNERF system provides beyond that from the baseline 
system, relative to the other noncepstral systems developed in 
prior work, we ran all two-way combinations of noncepstral 
systems with the baseline. Results are shown in Table 2. In all 
results shown in this paper, the three duration systems are 
combined into one system (which, as would be expected,  
performs better than any single duration system alone). 
 

 EER  
(%) 

Min DCF 
(x102) 

Baseline only 8.95 2.83 
Baseline + 3 Duration systems 7.03 2.13 
Baseline + SNERF-grams 7.36 2.31 
Baseline + Word N-grams 7.82 2.21 
Baseline + P2P NERFs 8.02 2.51 

Table 2: Equal error rate and detection cost function 
for all two-way combinations of baseline system with 
noncepstral systems 

All noncepstral systems improve performance over the 
baseline (all are statistically significant). The best system in 
combination is the three-part duration system developed in 
earlier work. The SNERF-gram system is next best in terms of 
EER, but only third best in DCF.  Since the SNERF-gram 
system includes duration information, the next obvious 
question is whether or not it will provide additional 
(complementary) information when combined with the 
duration system.  

3.2. Three-way Combinations with Baseline and SNERFs 

To investigate the question of information added beyond that 
in the duration system, we ran a three-way combination with 
the baseline, the three-part duration system, and the SNERF-
gram system. We also ran the combination for the word and 
NERF systems, respectively. As shown in Table 3 (cf. Table 
2), the SNERF-gram system combines well with other 
systems. In particular, it provides a gain significant at the .01 
level when combined with the duration system. 

 

Baseline + SNERF-grams + 
EER  
(%) 

Min DCF 
(x102) 

Duration 6.50 1.89 
Word N-grams 7.16 1.90 
P2P NERF 7.49 2.29 

Table 3: Equal error rate and detection cost function 
for three-way combinations 

3.3. Multisystem Combination 

To assess the contribution of the SNERFs system when all 



other systems are present, we ran two further combinations, in 
which all noncepstral systems were included with and without 
SNERFs. Results are shown in Table 4. As indicated, the 
SNERF-gram system continues to provide a highly significant 
gain (again at the .01 level) even when all other systems are 
present.  Detection error tradeoff curves are shown for these 
systems in Figure 1. 

 EER 
(%) 

 Min DCF 
(x102) 

Baseline  8.95 2.83 
All systems except SNERFs 7.29 1.96 
All systems including SNERFs 6.43 1.68 

Table 4: Equal error rate and detection cost function 
for multiway system combinations 

 

 Figure 1: Detection error tradeoff curves for baseline and 
multiway combinations 

3.4. Feature Usage 

Using the “cosine of theta” measure described earlier, we can 
compute the usage of each feature in the model.  Note however 
that the measure is also affected by the manner in which we 
choose the features to include in the SVM. Since currently we 
base this decision on frequency, features that occur rarely may 
be excluded from the model (even if discriminative), because 
they suffer from high inherent variance.  Nevertheless, the 
measure provides a way to rank the importance of the many 
types of frequently occurring features retained in the SVM.  
We find that longer N-grams were generally more useful than 
shorter N-grams, and that the SNERF-gram system appears to 
make ample use of pitch and energy information (not just 
duration). This is consistent with the finding noted earlier that 
SNERFs can combine well with duration systems.     

4. Conclusions 

SVM modeling of SNERF-grams appears to be a valuable 
knowledge source for speaker recognition. Even if training 

data is limited to a few minutes of speech, SNERF-grams 
provide significant performance gains when combined with a 
variety of other systems. Because results reported here have 
not yet been optimized with respect to feature selection (a 
process that could be informed by feature weights in the 
SVM) there is room for further improvement.  Taken 
together, these findings suggest that—despite the moniker—
SNERF-grams are nothing to sneeze at.  
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