
Recent Developments in Voice Biometrics: 
Robustness and High Accuracy 

Nicolas Scheffer, Luciana Ferrer, Aaron Lawson, Yun Lei, Mitchell McLaren 
Speech Technology and Research Laboratory (STAR) 

SRI International 
Menlo Park, CA 

{nicolas.scheffer, luciana.ferrer, aaron.lawson, yun.lei, mitchell.mclaren}@sri.com 
 

 
Recently, researchers have tackled difficult voice biometrics 
problems that resonate with the defense and research 
communities. These problems include non-ideal recording 
conditions that are frequently found in operational scenarios, 
such as noise, reverberation, degraded channels, and compressed 
audio. In this article, we highlight SRI’s innovations that resulted 
from the IARPA Biometrics Exploitation Science & Technology 
(BEST) and the DARPA Robust Automatic Transcription of 
Speech (RATS) programs, as well as SRI’s approach for codec-
degraded speech. We show how these advancements support the 
case for the biometrics community adopting the use of speaker 
recognition. 
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I. INTRODUCTION 
During the previous few years, voice biometrics technology 
(aka speaker recognition) has overcome many obstacles that 
prevented its wide, trusted use. In particular, the research 
community has tackled difficult speaker biometrics problems in 
the context of defense and intelligence research programs. In 
this paper, we review the latest innovations in speaker 
recognition that resulted from two programs and show how 
these advancements support the case for adopting the use of 
speaker recognition by the community of biometrics users. 

SRI has a long and successful track record in speaker 
recognition, both for its academic performance and for its many 
pioneering innovations, like using higher-level features such as 
prosody or employing speech content to improve the accuracy 
of speaker recognition. 

In this work, we highlight SRI’s innovations achieved 
during recent defense- and intelligence-related programs. For 
example, we review the robustness of systems to noisy and 
reverberant environments, as well as total language 
independence as demonstrated under the IARPA BEST 
program. Further, we show how speaker recognition 
technology has overcome the very hard challenges posed by the 
DARPA RATS program, which is focused on achieving high-
accuracies for speaker- and language-identification problems in 
extreme channel-degraded environments, such as that of push-
to-talk radios. We then highlight our pioneering work in 

mitigating the effect of audio compression on speaker 
recognition, showing results on a variety of codec families.  

We conclude by giving a peek at the future of speaker 
recognition, the challenges, and the technologic advancements 
that will enable broadly using speaker identity in biometrics 
and other possible applications. 

II. SPEAKER RECOGNITION  

A. Overview 
The core speaker recognition task is usually defined as a 
detection problem (i.e., determining whether a specified target 
speaker is speaking during a given segment of speech). More 
explicitly, one or more samples of speech data from a speaker 
(referred to as the “target” speaker) are provided to the speaker 
recognition system. These samples are the “training” data. The 
system uses these data to create a “model” of the target 
speaker’s speech. Then a sample of speech data is provided to 
the speaker recognition system. This sample is referred to as 
the “test” segment. Performance is judged according to how 
accurately the test segment is classified as containing (or not 
containing) speech from the target speaker. 

Metrics that reflect accuracy are related to a typical 
hypothesis test (i.e., based on false positives (referred to as 
false alarms) and false negatives (misses)). A specific version 
of Receiving Operator Curve (ROC) is usually used, called 
Detection Error Tradeoff curve (DET) [15]. In this work, we 
report equal error rates (EER), where false alarm and miss rates 
are equal, or the false alarm rate at a particular miss rate. 

B. Challenges 
As for any detection task, the main challenge of speaker 
recognition is extracting features that will represent a speaker 
in the same manner independently of variations that can occur 
in the observations. Minimizing the intra-class variability while 
maximizing the inter-class variability is our goal. 

Speech is a complex signal, and many possible variations of 
that signal exist for the same individual. During the previous 
few years, the community has tackled the problem of extrinsic 
variability and how to factor out extrinsic variability from the 
speaker model (sometimes referred to as channel compensation 



in articles). This kind of variability is detrimental to high 
accuracy speaker recognition. Indeed, recorded speech varies 
as a function of many factors that are not a function of the 
speaker’s identity, including: 

• Acoustic environment (e.g., background noise) 
• Channel (e.g., microphone, handset, recording equipment) 
• High signal-to-noise ratio (SNR) 
• Audio degradation through compression  
• Speaker’s physical condition (emotion, intoxication, 

illness) 
• What is said (text-independent versus text-dependent) 
• Speaking context (level of formality, planning, language) 

C. SRI Approach for Mitigation and High Robustness 
SRI’s approach to these challenges is to handle the problem at 
every step of the speaker recognition pipeline, and to make 
each pipeline stage robust to undesired variations.  

SRI’s system uses multiple types of features extracted 
from speech, which are then modeled using advanced machine 
learning. The systems are then optimally fused by also 
accounting for meta-information automatically extracted from 
the audio signal. We briefly present these steps below, but 
their combined use is what achieves maximum accuracy, as is 
demonstrated later in this document. 

1) Feature Diversity 
A successful approach to speaker verification is to combine 
different knowledge sources by separately modeling them and 
by fusing them at the score level to produce the final score that 
is later thresholded to obtain a decision. Combinations of 
systems are most successful when the individual systems 
being combined are significantly different from each other.  

Prosody—the intonation, rhythm, and stress patterns in 
speech—is not directly reflected in the spectral features. SRI 
has pioneered the use of this information, showing great effect 
in combination with traditional features [16]. The state-of-the-
art approach to extracting prosodic features is to compute the 
pitch and energy contour in the signal using Legendre 
polynomial coefficients. 

We also use spectral-based features, many of which were 
developed specifically for noise-robustness under the RATS 
program. These include perceptual linear prediction (PLP) 
features and mel-frequency cepstrum coefficients (MFCC)— 
the standard features used in speech recognition. In addition, 
we use medium duration modulation cepstrum (MDMC) 
features [2], which extract modulation cepstrum-based 
information by estimating the amplitude of the modulation. 
Power-normalized cepstral coefficient (PNCC) features use a 
power law to design the filter bank as well as a power-based 
normalization instead of a logarithmic one. Mean Hilbert 
envelope coefficient (MHEC) features [4] use a gammatone 
filter bank instead of the Mel filter bank, and the filter bank 
energy is computed from the temporal envelope of the squared 

magnitude of the analytical signal obtained using the Hilbert 
transform. Subband autocorrelation classification (SACC) [5] 
provides a pitch estimate from an estimator that is trained 
using a multilayer perceptron. These features are referred to as 
PROSACC in this article.  

Please note that not all features are used in the experiments 
to follow in the next section. 

2) Advanced Modeling 
Recently, the speaker-verification community has enjoyed a 
significant increase in accuracy from the successful 
application of the factor analysis framework. In this 
framework, the i-vector extractor paradigm [1] along with a 
Bayesian backend is now the state-of-the-art in speaker 
verification systems. An i-vector extractor is generally defined 
as a transformation where one speech utterance with variable 
duration is projected into a single low-dimensional vector, 
typically of a few hundred components. 

The low rank of the i-vector itself opened up new 
possibilities for the application of advanced machine-learning 
paradigms that would have been otherwise too costly with the 
very high dimensionality used by most earlier systems. 
Probabilistic linear discriminant analysis (PLDA) [2, 3] has 
proved to be one of the most powerful techniques for 
producing an acceptable verification score. In this model, each 
i-vector is separated into a speaker and a channel part, 
analogous to the formulation in the Joint Factor Analysis 
framework [4]. 

SRI uses this state-of-the-art technology in its standard 
pipeline, but also pioneered its use for robustness against 
highly degraded conditions, such as additive noise [17]. 

3)  Metadata Extraction 
SRI’s pipeline can account for metadata information about the 
audio recording. Instead of relying on annotated data, or 
developing specific systems, we proposed a universal audio 
characterization system that extracts metadata information 
based on the i-vector [18]. We can thus detect if an audio 
recording contains certain kinds of noise, channels, or the 
speaker’s gender. The fusion process will adapt to the detected 
conditions in making its verification decision. 

4) System Fusion and Calibration 
Fusion of systems is performed either at the score level or at 
the i-vector level. At the score level, system fusion is 
performed using logistic regression with a cross entropy 
objective [6], the standard fusion approach in speaker 
recognition. This approach offers the benefit of producing 
calibrated scores, treatable as log-likelihood ratios, which are 
ideal for forensic comparisons and decisions. 

As mentioned in [18], we developed a component that 
takes into account the metadata extracted from the universal 
audio characterization system. A modified version of the 
logistic regression fusion algorithm is used so that log-



 

  
Figure 2.  SRI speaker recognition system results on the IARPA BEST variations of interest. Up to 10x imporvements can be observed after enabling 
multiple SRI’s innovation compared to the baseline. 

 

likelihood ratios are still produced but are biased depending on 
the mismatch in metadata between the enrollment and test 
utterances. 

III. ROBUSTNESS TO DEGRADED AUDIO RECORDINGS 
In this section, we highlight the impact of SRI’s approach for 
different types of degraded audio conditions and other extrinsic 
variations. We look at experimental results first in the IARPA 
BEST program for noise and reverberant speech as well as 
cross-language trials. We then show results on highly degraded 
channels from the RATS program. We conclude by showing 
our systems performance on compressed audio waveforms. 

A. Noise, Reverb, and Cross-Language Verification 
The IARPA BEST program1 significantly advanced the state-
of-the-science for biometrics technologies. Under this program, 
the speech track was focused on substantially improving the 
accuracy of speaker recognition under non-ideal conditions.  

Figure 1.  Variations of interest in the IARPA BEST program. 

The variations of interest are depicted in Figure 1, and fall 
into three categories: 

• Intrinsic: Vocal effort, Speech style. 
• Extrinsic: Channel, Noise, Reverb, ...  
• Parametric: Language, Age, Duration, … 

To evaluate speaker recognition accuracy on multiple 
variations, SRI created the PRISM dataset [19], building on 
data previously collected by LDC. The PRISM corpus 
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http://www.iarpa.gov/Programs/sc/BEST/best.html 

emulated conditions of interest to the BEST program by 
creating trials from waveforms degraded by adding noise or 
reverberation2. 

In Figure 2, we show the benefit of SRI’s comprehensive 
approach by showing the increase in speaker recognition 
accuracy for every step of the pipeline. 

The conditions defined in the PRISM set and represented 
in the horizontal axis of the figure are:  

• telphn: telephone calls 
• intmic: microphone recordings in an interview setting 
• telall: telephone calls over landline but also 

microphones 
• voc: vocal effort: low and high 
• lang: Trials made of languages other than English 
• noise: Clean signals degraded with real noise samples 

at different SNR levels ranging from 20 dB to 6 dB. 
• reverb: Clean signals degraded with artificial reverb at 

reverb times (RT) of 0.3, 0.5, and 0.7 seconds 
The baseline system is SRI’s standard recognition pipeline 
without the mitigation mechanism for the variations of 
interest. 

The robust system uses an enhanced i-vector PLDA model 
designed to be robust to the variations of interest in BEST. 
Improvements are highly significant, reducing error by a 
factor of 10 times on the noise condition while also improving 
results for “cleaner” conditions like telephone calls. 

The robust + prosody system is a system fusion of low-
level features used in the baseline and robust systems with a 
speaker recognition system based on prosodic information. We 
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The PRISM data set is available online at https://code.google.com/p/prism-
set/ 

 



see that an additional improvement can be observed, 
especially in the language and vocal effort condition.  

Finally, we enable metadata extraction and handling in the 
robust + prosody + metadata system to obtain additional 
improvements for the noise and reverb condition (note that the 
metadata extractor was designed to extract only the noise and 
reverb characteristics in the signal). 

To summarize, we have shown how SRI tackled the 
challenging problem in the BEST program of mitigating the 
effect of multiple, undesired variations. We succeeded by 
making every step of our pipeline more robust so that the 
compounding effect would benefit all conditions in ensemble. 

B. DARPA RATS: Speaker Identification in Noise and 
Channel Degraded Audio Conditions 

The DARPA RATS program aims at developing robust 
processing methods for speech acquired from highly degraded 
transmission channels. The four tracks pursued in RATS are 
(1) speech-activity detection, (2) keyword spotting, (3) 
language identification, and (4) speaker identification—the 
last of which is described in this section. Successful speaker 
identification in this environment required a robust system 
using multiple streams of noise-robust features that were 
combined at a later stage in an i-vector framework [20]. 

The audio recordings [3] used in the RATS program are 
severely degraded with additive noise, channel-convolved 
noise, bandwidth limitations, and frequency shifting. 
Telephone conversations are re-transmitted over eight 
different military transmitter/receiver combinations. All the 
data was retransmitted across all the channels and re-recorded, 
resulting in more than 100,000 files. The core languages from 
which speakers are selected are Levantine Arabic, Farsi, Dari, 
Pashto, and Urdu.  

The RATS SID task was defined as a speaker-verification 
task where each speaker model was trained using six different 

sessions. A trial was designed using one speaker model and one 
test session. The transmission channels of the six different 
sessions were picked randomly to have speaker models trained 
on multiple transmission types. Some of the trials were thus 
performed on the channels seen in enrollment, while others 
were not. The primary metric was defined as the percentage of 
misses at a 4% false alarm rate. Multiple duration 
configurations for the enrollment and tests were of interest in 
this evaluation. Eight conditions were formed with durations of 
3, 10, 30, and 120 seconds for the input files (Table 1). Note 
that an enrollment duration of 10 seconds denotes that speaker 
models were trained using six sessions, each with 10 seconds 
of nominal speech activity. 

TABLE I.  ENROLL AND TEST DURATION COMBINATIONS. 

Test (seconds) 

Enroll 
(seconds) 

3 10 30 120 

3 X X X  

10 X X X  

30   X  

120    X 

The system was composed of five different features: PLP, 
MDMC, MHEC, PNCC, PROSACC. For the i-vector 
framework used by all feature streams, we used universal 
background models (UBMs) with 2048 diagonal covariance 
Gaussian components trained in a gender-independent fashion. 
The PROSACC systems used 1024-component UBMs. The i-
vector dimensions of 400 were further reduced to 200 
dimensions by LDA (in the case of PROSACC, 200D i-
vectors were reduced to 100D), followed by length 
normalization and PLDA. 

Figure 3.  SRI speaker recognition system results on the DARPA RATS development set. 

 



 
Figure 5.  EER of clean and codec-degraded evaluation data using a clean 
speech PLDA model. 

 
Figure 4. EER of clean and codec-degraded evaluation data using a 
PLDA model trained on clean, noisy, reverberated and codec-degraded 
speech (overlaid on EER from the “unseen codec” PLDA). 

 The i-vector fusion consists of concatenating each i-
vector from each stream into a single vector before 
employing the PLDA backend. The i-vector dimensions are 
first reduced using LDA, and only after concatenation does 
a second dimensionality reduction shrink the total 
dimension to 200. Fusion of systems at the score level was 
performed using logistic regression and a binary cross-
entropy objective [6], the standard fusion approach in 
speaker recognition.  

 Results from four core conditions are provided in Figure 
3 above, showing the relative performance of the five 
acoustic features with both HMM and GMM SAD, as well 
as the gain from the final score plus i-vector fusion system 
(in dashed lines). For all durations, the MDMC and PNCC 
features with GMM SAD had the least errors. The fusion 
system was always significantly better than any single 
system, benefiting in particular from the PNCC features and 
substantially from the inclusion of PROSACC, despite the 
system’s low accuracy on its own.  

 Codec-degraded speech is commonplace in 
contemporary communications. The effect of transcoded 
speech on speaker identification and the mitigation thereof 
is necessary to sustain high identification performance. SRI 
has recently conducted some initial work to address these 
aspects [1].  

 Codec experiments involved transcoding clean 
microphone speech from the NIST 2008 and 2010 Speaker 
Recognition Evaluation (SRE) dataset using seven different 
codecs with a range of coding parameters. The codecs 
included Advanced Audio Coding (AAC); the Adaptive 
Multi-Rate (AMR) codec; Global Systems for Mobile 
communications (GSM) 6.10; MPEG-2 Audio Layer III 
(MP3); RealAudio; Speex; and Windows Media Audio 
(WMA). Readers are directed to [1] for more details on the 
codecs and experimental configuration. 

In addition to evaluating the effect of transcoded speech 
on the state-of-the-art MFCC system, we evaluated two 
noise robust features—Power Normalized Cepstral 
Coefficients (PNCC) [2] and Medium Duration Modulation 
Cepstrum (MDMC) [3]—to observe whether noise-
robustness generalizes to codec-robustness for speaker 
identification. 

 As an initial experiment, we evaluated the effect of 
transcoded speech on a system developed using only clean 
speech data. Figure 4 illustrates the considerable 
degradation to speaker identification performance attributed 
to the transcoded speech. Interestingly, the noise-robust 
features provided improved performance compared to 
MFCC on the particularly detrimental codecs, where the 
average EER was MFCC (3.06%), MDMC (2.63%), and 
PNCC (2.76%). 

Next, noisy and reverberant data was added to the PLDA 
training dataset, and the PLDA model was retrained. Noisy 

data consisted of adding babble noise to 3000 segments at 
SNR levels of 8, 15, and 20 dB, while the reverberation 
RT60 times were 0.3, 0.5, and 0.7 seconds.  

 This experiment was designed to explore whether model 
robustness to noise and reverberant data generalized to 
robustness to transcoded speech. This was supported with 

results indicating a trend similar to that found in the noise 
experiments, with a general downward trend in average 
EER with MFCC (2.93%), MDMC (2.50%), and PNCC 
(2.61%). 

 We then exposed the PLDA model to transcoded data 
degraded using codecs not used for the test sample. This 
mimics the real-world condition of evaluating test data 
degraded by unseen codecs. Interestingly, no additional 
robustness was observed by this technique, thus indicating 
that degradations from each codec are not closely correlated 
to alternate codecs. 

 Finally, the PLDA model was retrained to include all 
transcoded training data, as in the optimistic case in which 
the test codec has already been observed by the system 
during development. Figure 5 illustrates results from the 



retrained PLDA overlaid on the “unseen codec” PLDA 
model.  

Significant improvements were found when examples of 
the codec used for model enrollment and testing were 
observed during system development. The average EER was 
for MFCC (1.74%), MDMC (2.02%), and PNCC (1.88%). 
In this case, MFCC was superior to the noise-robust features 
(with the exception of the severely degraded EERs from the 
AAC8 and RealAudio codecs). 

 Results from these experiments suggest that current 
state-of-the-art speaker identification technology is not 
sufficiently robust to codecs not observed during system 
training. Particularly severe degradations such as those 
caused by RealAudio and AAC8 codecs can be considerably 
reduced by including examples of the transcoded speech in 
system training data; however, knowing the codecs that will 
be encountered is often not possible. Given the ever-
changing nature of codec availability, SRI is currently 
researching techniques to improve speaker identification 
robustness to unseen codecs. 

IV. CONCLUSION 
In this work, we show the success of SRI’s approach to 
tackling non-ideal recording conditions for voice biometrics 
in multiple instances during the previous few years. We 
demonstrate that our comprehensive method can bring 
significant improvements in accuracy, whether dealing with 
noisy and reverberant conditions in IARPA BEST, highly 
degraded channels in DARPA RATS, or codec-degraded 
speech. SRI’s robust pipeline leverages feature diversity, 
advanced modeling, and system fusion based on audio 
metadata—key enablers of those accuracy improvements. 
Improvements in accuracy are seen with each approach 
employed in SRI’s pipeline but even more so when systems 
are combined and these techniques are used together. 
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