Lecture Notes in Computer Science

5295

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Natarajan Shankar Jim Woodcock (Eds.)

Verified Software: Theories, Tools, Experiments

Second International Conference, VSTTE 2008 Toronto, Canada, October 6-9, 2008 Proceedings

Volume Editors

Natarajan Shankar SRI International Computer Science Laboratory MS EL256, 333 Ravenswood Avenue Menlo Park, CA 94025-3493, USA E-mail: shankar@csl.sri.com

Jim Woodcock University of York Department of Computer Science Heslington, York YO10 5DD, UK E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: 2008935491

CR Subject Classification (1998): B.6.3, B.2.2, D.2.4, D.4, F.3, G.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-87872-6 Springer Berlin Heidelberg New York ISBN-13 978-3-540-87872-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12532179 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the Second Working Conference on Verified Software: Theories, Tools, and Experiments held in Toronto during October 6–9, 2008. This followed a successful working conference held in Zurich in 2005, also published in *Lecture Notes in Computer Science* as volume 4171 (DOI 10.1007/978-3-540-69149-5). The second conference formally inaugurated the Verified Software Initiative (VSI), a 15-year, co-operative, international project directed at the scientific challenges of large-scale software verification. The scope of the cooperative effort includes the sharing and interoperability of tools, the alignment of theory and practice, the identification of challenge problems, the construction of benchmark suites, and the execution of large-scale experiments. The conference was open to everyone interested in participating actively in the VSI effort.

The scope of the VSTTE conferences includes all aspects of verified software, covering theoretical as well as experimental work:

requirements modelling

specification languagesspecification case studies

- formal calculi

programming languageslanguage semanticssoftware design methods

- software testing

- automatic code generation

- refinement methodologies

- type systems

computer security

- static analyzers

dynamic analyzersmodel checkers

theorem proverssatisfiability checkers

- benchmarks

- challenge problems

- integrated verification environments

The conference was addressed by four keynote speakers:

- John Reynolds (Carnegie Mellon University)
- Moshe Vardi (Rice University)
- Andreas Podelski (University of Freiburg)
- Sriram Rajamani (Microsoft Research)

Two invited tutorials were given by:

- Eric Hehner (University of Toronto) Practical Predicative Programming Primer
- Ernie Cohen (Microsoft Research) The Hyper-V Project
- Leonardo de Moura (Microsoft Research) SMT@Microsoft

The volume contains 16 rigorously referred papers on different topics covering the spectrum from theoretical results to verification experience reports. The conference also included a session of short presentations of ongoing work.

The main VSTTE 2008 conference hosted three specialized workshops on Theories, Tools, and Experiments for Verified Software.

VS-THEORY: Workshop on Theory for Verified Software

Dave Naumann (Stevens Institute)

Peter O'Hearn (Queen Mary, University of London)

Summary: Program verification has seen a worldwide renaissance, with many ongoing practical tool projects and experimental verification efforts. The current state of the field builds on fundamental theoretical advances of the past. Similarly, future advances on software verification will depend on developments in theory. This can range from the difficult and essential study of soundness of delicate proof methods, to the discovery of new specification techniques and proof methods, to dramatic simplification or unification of existing methods, to as yet unknown breakthroughs. The Verified Software Initiative (VSI) is envisaged as a 15-year Grand Challenge project to advance the state of software verification. Specific milestones and challenges of the VSI should often be concrete in nature, but advances beyond immediate progress will again depend on theoretical insights. The purpose of this workshop was to bring together theory and programming language researchers to discuss scientific challenges posed by software verification.

VS-TOOLS: Workshop on Tools in Verified Software

Daniel Kroening (University of Oxford) Tiziana Margaria (University of Potsdam)

Summary: The scope of the workshop included submissions of technical and position papers on all aspects of tools conducted relating to verified software. Paper-and-pencil proofs are error-prone and expensive. Program verification provides better value if proofs are checked by machine, and preferably generated automatically. The properties checked can range from light-weight control-flow properties to full specification. In order to demonstrate that machine reasoning can improve the quality and cost of artifacts of industrial software engineers, a substantial tool-building effort is required. This workshop brought tool-builders together in order to learn about

- Interfaces between tools (e.g., decision procedures and program verifiers)
- Tool integration platforms
- Case studies that particularly excite the tool aspect

VS-EXPERIMENTS: Workshop on Experiments in Verified Software

Rajeev Joshi (NASA/JPL Laboratory for Reliable Software) Joseph Kiniry (University College Dublin)

Summary: The scope of the workshop included technical and position papers on all aspects of experiments conducted relating to verified software. The organizers are especially interested in the reflective results of past challenges and ongoing experiments. Such projects include:

- The Mondex Case Study: vsr.sourceforge.net/mondex.htm
- The Verified File System: www.cs.york.ac.uk/circus/mc/abz
- Medical devices: www.cas.mcmaster.ca/sqrl/pacemaker.htm

 Verifying Free and Open Source Software, e.g., the Apache webserver and the KOA e-voting platform

This workshop was meant to be a *working* workshop. Participants were responsible for formulating action plans, based upon current experiences and best-practices, for tackling the challenges inherent in identifying, defining, promoting, executing, sharing, maintaining, and publishing the results of scientific experiments in verified software.

We would like to thank the following: the keynote speakers and tutors; the authors of all submissions; the members of the Programme Committee (95% of all reviews were received on time!); the workshop organizers and participants; Rick Hehner and his team for the local arrangements for the entire event; Richard Paige for conference and workshop publicity; and last—but not least—our Steering Committee, Jay Misra and Tony Hoare. We are also pleased to acknowledge financial support for VSTTE 2008 from US and UK funding agencies: the US National Science Foundation (NSF) (as part of Grant CNS-0627284) and EPSRC (as part of grant EP/D506735/1), and from Microsoft Research. The proceedings were assembled using EasyChair.

July 2008

Natarajan Shankar Jim Woodcock

Conference Organization

Steering Committee

Tony Hoare Microsoft Research Cambridge Jay Misra University of Texas at Austin

Programme Chairs

Natarajan Shankar SRI International Jim Woodcock University of York

Programme Committee

Egon Börger University of Pisa

Supratik Chakraborty Indian Institute of Technology, Bombay

Patrick Cousot École Normale Supérieure, Paris Jin Song Dong National University of Singapore

José-Luiz Fiadeiro University of Leicester

Kokichi Futatsugi JAIST Chris George UNU-IIST

Ian HayesUniversity of QueenslandEric HehnerUniversity of TorontoRajeev JoshiJet Propulsion LaboratoryJoseph KiniryUniversity College DublinYassine LakhnechUniversité Joseph FourierGary LeavensUniversity of Central Florida

Zhiming Liu UNU-IIST

Peter Manolios Northeastern University
Tiziana Margaria University of Potsdam
David Naumann Stevens Institute

Peter O'Hearn Queen Mary, University of London

Ernst-Rüdiger Olderog University of Oldenburg Wolfgang Paul Saarland University

Augusto Sampaio Federal University of Pernambuco

Mark Utting Waikato University

Jian Zhang Chinese Academy of Sciences

Local Organization

Eric Hehner University of Toronto

Publicity Chair

Richard Paige

University of York

External Reviewers

Oliver R. Athing Stephen Bloom Ben Chambers Chunqing Chen Zhenbang Chen Yuki Chiba

Antonio Cisternino Dermot Cochran Robert Colvin Márcio Cornélio Jed Davis Peter Dillinger Brijesh Dongol Fintan Fairmichael Yuzhang Feng Sibylle Fröschle Daniel Gaina Radu Grigore Bhargay Gulavani

Yu Guo Mark Hillebrand Viliam Holub Georg Jung
E.-Y. Kang
Ioannis Kassios
Weiqiang Kong
Yang Liu

Charles Morisset
Masaki Nakamura
Zhaozhong Ni
Kazuhiro Ogata
Stan Rosenberg
Andreas Roth
Joseph Ruskiewicz
Gerhard Schellhorn
Norbert Schirmer
Zhong Shao
Leila Silva
Graeme Smith
Volker Stolz
Jun Sun

Jun Sun Aaron Turon Kapil Vaswani Xian Zhang

Table of Contents

Keynote Talks (Abstracts)	
Readable Formal Proofs	1
From Verification to Synthesis	2
Verification, Least-Fixpoint Checking, Abstraction	3
Combining Tests and Proofs	4
Logics	
Propositional Dynamic Logic for Recursive Procedures	6
Mapped Separation Logic	5
Unguessable Atoms: A Logical Foundation for Security	80
Combining Domain-Specific and Foundational Logics to Verify Complete Software Systems	4
Tools	
JML4: Towards an Industrial Grade IVE for Java and Next Generation Research Platform for JML	0
Incremental Benchmarks for Software Verification Tools and	
Techniques	34
Case Studies	
Verified Protection Model of the seL4 Microkernel	9

XII Table of Contents

Verification of the Deutsch-Schorr-Waite Marking Algorithm with Modal Logic	115
Bounded Verification of Voting Software	130
Methodology	
Expression Decomposition in a Rely/Guarantee Context	146
A Verification Approach for System-Level Concurrent Programs	161
Boogie Meets Regions: A Verification Experience Report	177
Flexible Immutability with Frozen Objects	192
Verisoft	
The Verisoft Approach to Systems Verification	209
Formal Functional Verification of Device Drivers	225
Verified Process-Context Switch for C-Programmed Kernels	240
Paper from VSTTE 2005	
Where Is the Value in a Program Verifier?	255
Author Index	263