Cross-View Geo-Localization: Ground-to-Aerial Image Matching

Mubarak Shah

shah@crcv.ucf.edu

Center for Research in Computer Vision University of Central Florida

http://www.crcv.ucf.edu

Geo-Localization

- Pixel-Wise Geo-Localization
 - Given a query image, geo-localize each pixel by aligning an image with the geodetically accurate reference image.

- Image-Based Geo-Localization
 - Given a query image, determine its GPS location by matching it with geo-tagged reference images.

Contents

- Pixel-Wise Geo-localization
 - Geodetic Alignment of Aerial Video Frames
- Image-Based Geo-Localization
 - Same View (Street-View to Street-View)
 - Generalized Maximum Clique (PAMI, 2014)
 - Constraint Dominant Sets (PAMI, 2017)
 - Cross-View Geo-Localization
 - Bird's Eye-View to Street View (CVPR, 2017)
 - Aerial to Ground View (ICCV, 2019)

Geodetic Alignment of Aerial Video Frames

Y. Sheikh, S. Khan, M. Shah and R. Cannata 2003

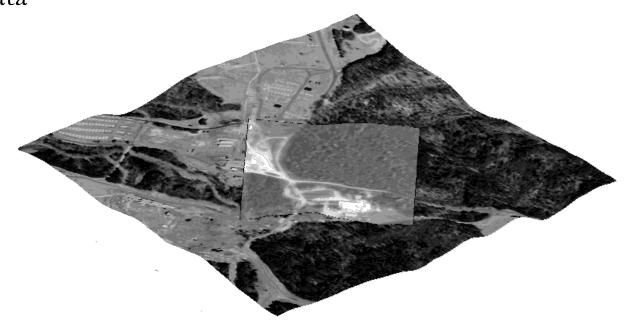
Associate Professor CMU/FaceBook

Data Overview

Aerial Video Data

Reference Data

Telemetry

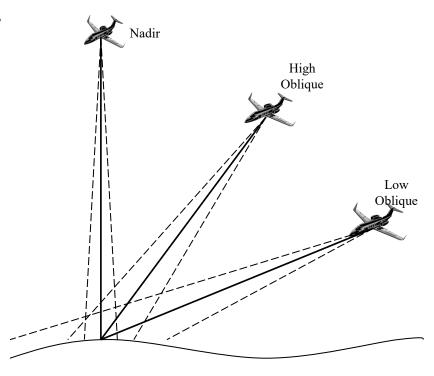


Different Viewpoints

Nadir

High Oblique

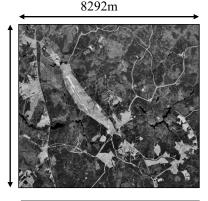
Low Oblique



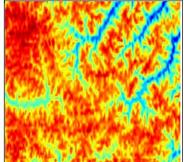
Aerial Video Imagery

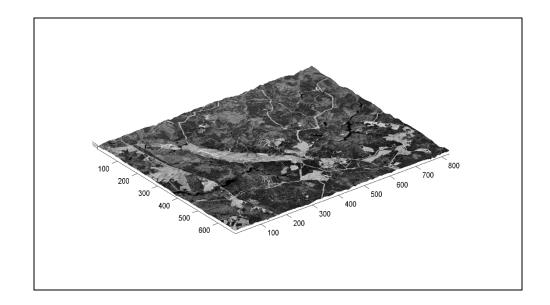
Reference Data

 $\begin{array}{c} \text{DOQ} & 6856 \text{ m} \\ \text{(Digital Ortho Quad} \end{array}$



DEM
(Digital Elevation Map)





Telemetry Data

Vehicle Longitude

Vehicle Latitude

Vehicle Height

Vehicle Heading

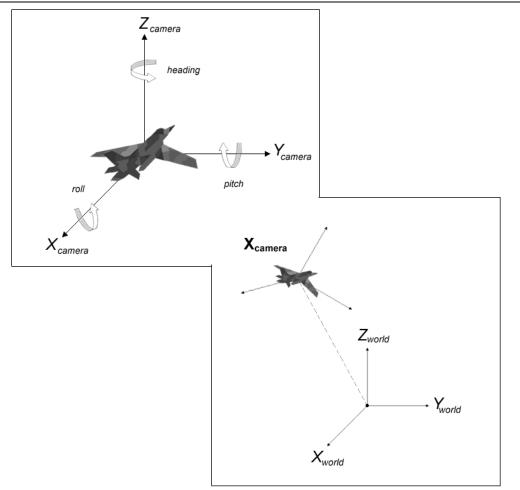
Vehicle Roll

Vehicle Pitch

Camera Elevation Angle

Camera Scan Angle

Camera Focal Length



Sensor Model

$$\begin{aligned} \mathbf{X_{camera}} &= [X_{camera} \quad Y_{camera} \quad Z_{camera}]^{\mathrm{T}} \\ \mathbf{X_{world}} &= [X_{world} \quad Y_{world} \quad Z_{world}]^{\mathrm{T}} \\ \mathbf{X_{camera}} &= \Pi_t \mathbf{X_{world}} \end{aligned}$$

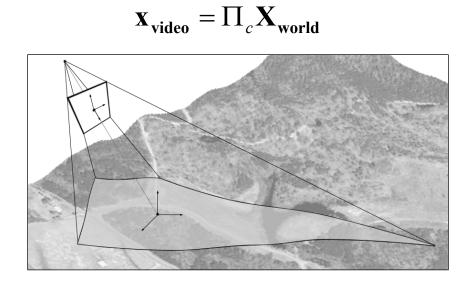
 $\prod_{t} = f$ (camera elevation, camera scan, vehicle pitch, vehicle roll, vehicle heading, vehicle elevation)

$$\Pi_t = \begin{bmatrix} \cos \omega & 0 & -\sin \omega & 0 \\ 0 & 1 & 0 & 0 \\ \sin \omega & 0 & \cos \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \tau & \sin \tau & 0 & 0 \\ -\sin \tau & \cos \tau & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & -\sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ \sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \beta & \sin \beta & 0 \\ 0 & -\sin \beta & \cos \beta & 0 \\ 0 & -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \Delta T_x \\ 0 & 1 & 0 & \Delta T_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sensor Model

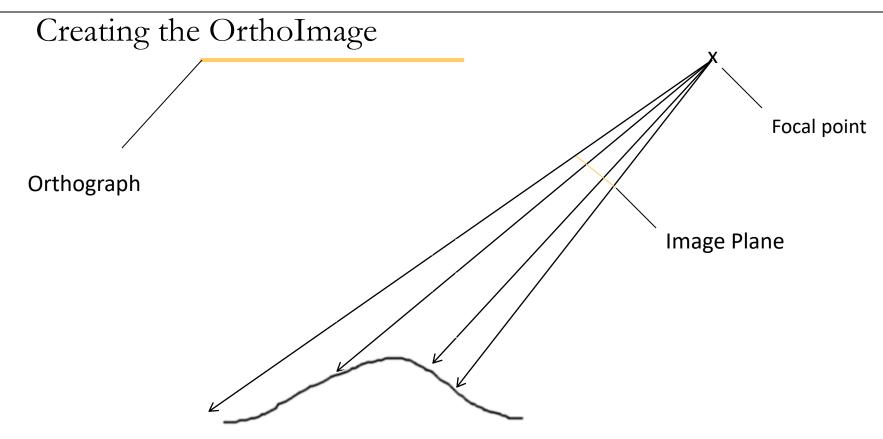
$$\Pi_{c} = P\Pi_{t}$$

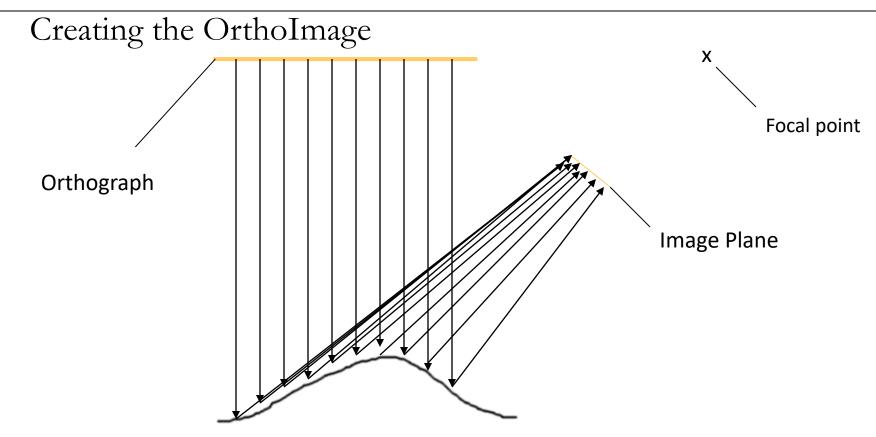
$$\Pi_{c} = PG_{y}G_{z}R_{y}R_{x}R_{z}T$$



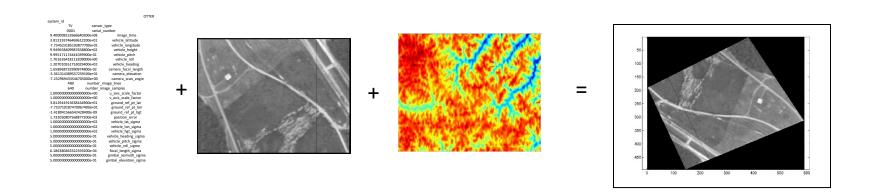
- Bringing both imageries onto a common view projection (**Bridging the gap**)
- Accounts for gross misalignment
- Not accurate due to telemetry noise

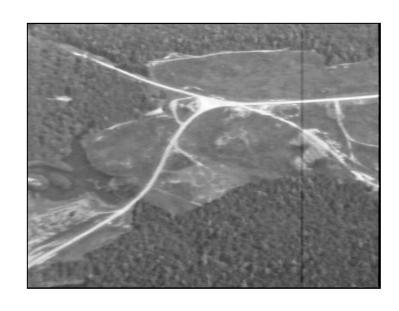
Rectification

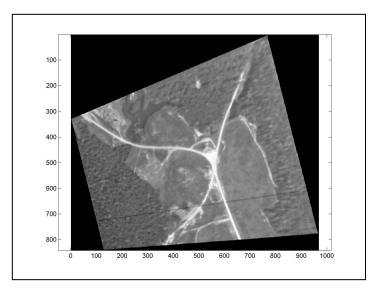


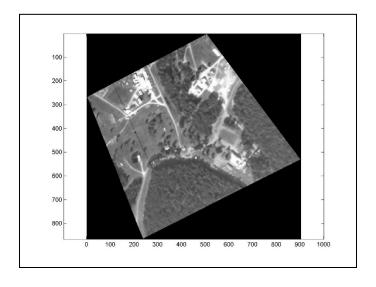


Sensor File + Mission Images + Reference Eniv. = Orthorectification









Reference Image (DOQ)

Contents

- Pixel-Wise Geo-localization
 - Geodetic Alignment of Aerial Video Frames
- Image-Based Geo-Localization
 - Same View (Street-View to Street-View)
 - Generalized Maximum Clique (PAMI, 2014)
 - Constraint Dominant Sets (PAMI, 2017)
 - Cross-View Geo-Localization
 - Bird's Eye-View to Street View (CVPR, 2017)
 - Aerial to Ground View (ICCV, 2019)

Geo-localization Using Image Matching

No Meta-Data (Telemetry)

No Sensor Model

- No Geodetically Accurate Reference Image
 - Only Geo-tagged images

Image level coarse geo-localization

"Where Am I?"

> Problem:

Image Localization

Mere Visual Information(Images) Location in Terms of λ (Lon.) and ϕ (Lat.)

"Where Am I?"

Problem:

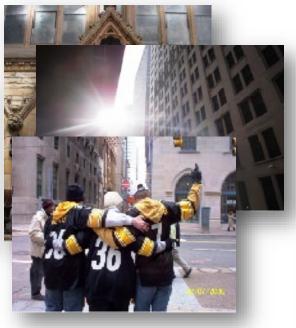
Image Localization

Mere Visual Information(Images) Location in Terms of λ (Lon.) and ϕ (Lat.) φ =40.4419, λ =-79.9986

Google Maps Street View Dataset

- ➤ Reference Set: GSV ~100k
- > Test Set:
 - > 521 GPS- Tagged from Pittsburgh, PA and Orlando, FL.
 - Downloaded From Flickr, Panoramio, Picasa, etc.

picasa.google.com



Panoramio.com

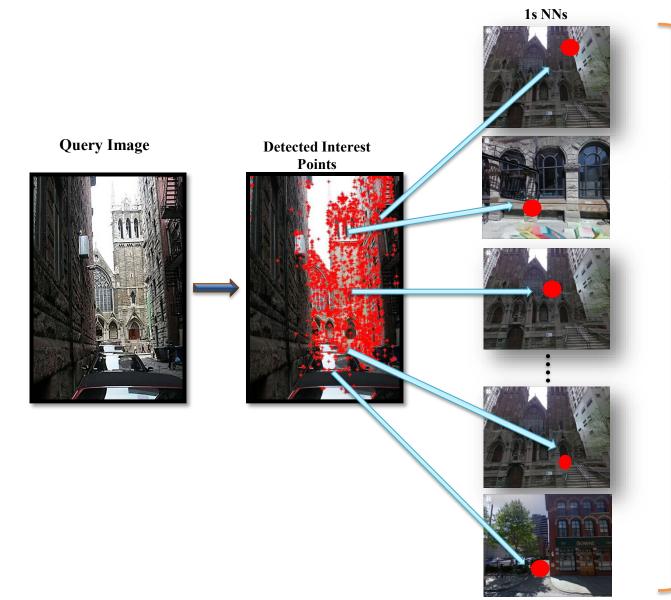
Flickr.com

Image Geo-localization Based on Multiple Nearest Neighbor Feature Matching Using Generalized Graphs.

> Amir Zamir and Mubarak Shah In *T-PAMI*, 2014.

Asst Professor; EPFL

I: Localization Recognition Using Local Features

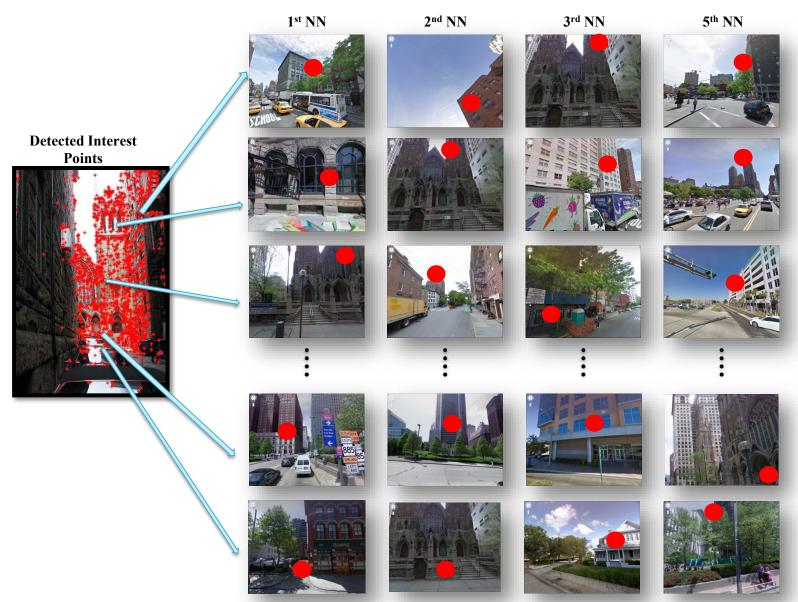


Voting

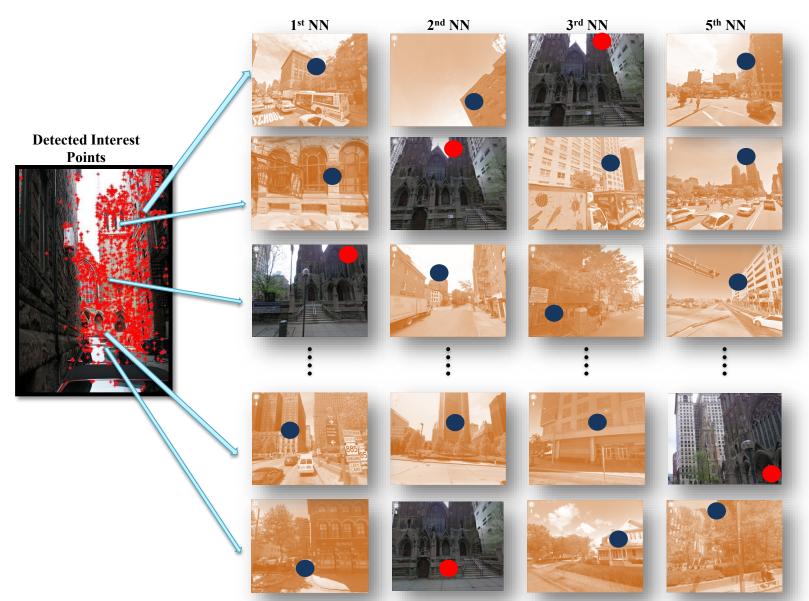
Number of Votes
2
9
0
•
4

Match

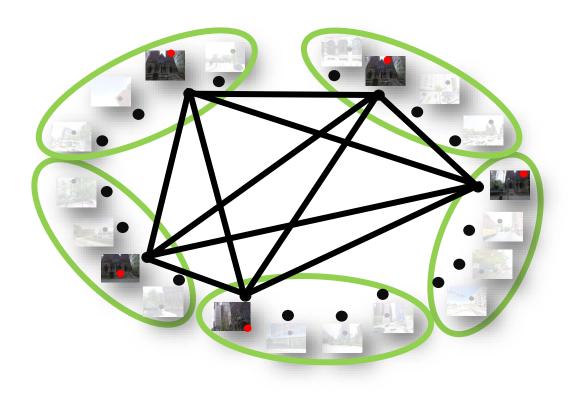
Using Multiple Nearest Neighbors



Using Multiple Nearest Neighbors

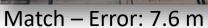


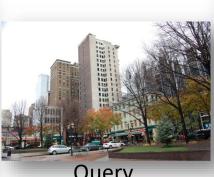
Generalized Minimum Clique



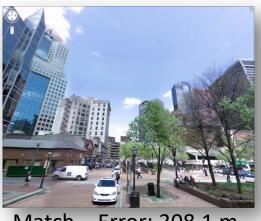
Subset of NNs with maximum agreement in local and global features

Geo-localization Results





Match – Error: 6.9 m

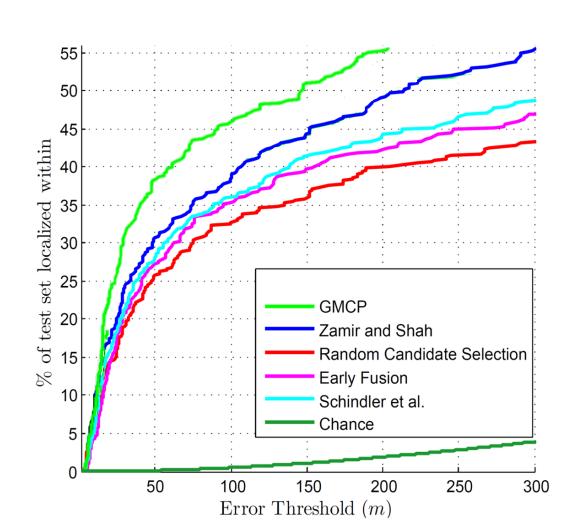


Match - Error: 308.1 m

Query

Match – Error: 59.3 m

Geo-localization Results



Limitations

- GMCP selects exactly one NN per query feature; sensitive to outliers
- A very simple voting scheme
- GMCP is a binary-variable NP hard problem

Image Geo-Localization Using Constraint Dominant Sets

Eyasu Mequaanint, Qualcom

Eyasu Zemene, Yonatan Tariku Tesfaye, Haroon Idrees, Andrea Prati, Marcello Pelillo, and Mubarak Shah

T-PAMI, 2017.

Yonatan Tariku., Qualcom

Haroon Idrees, RetailNext

Goal

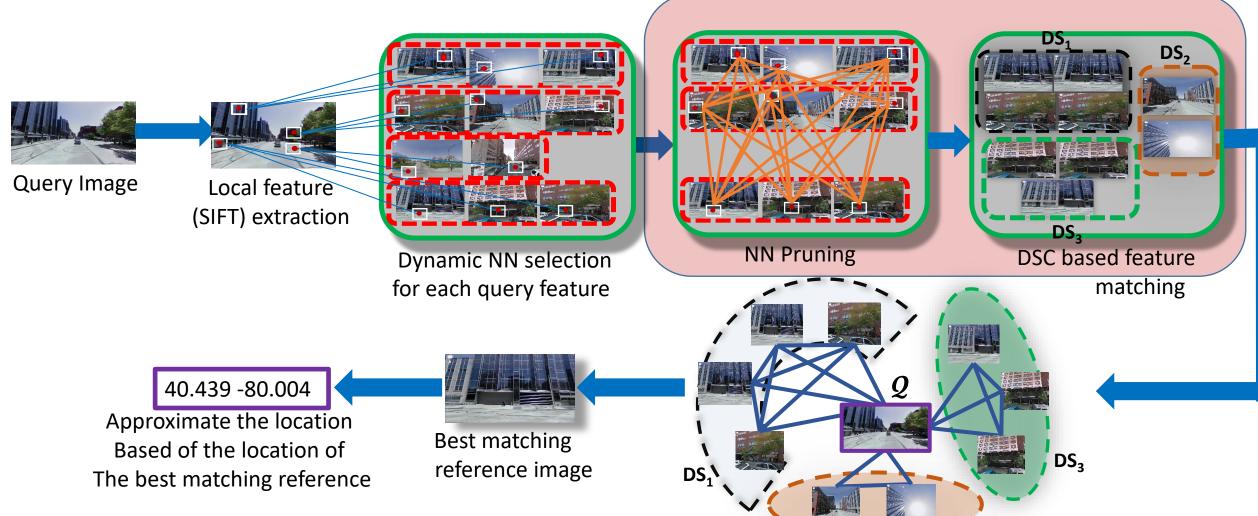
Fast

Accurate

Handle outliers

Scalable to large scale

Approach

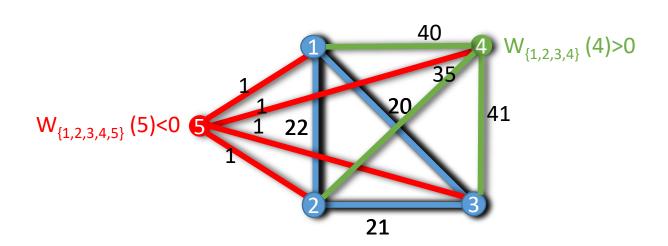


Post-Processing using constrained Dominant sets

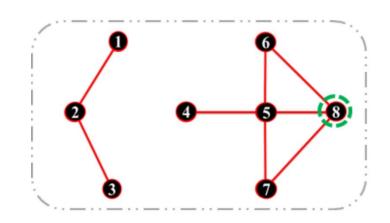
Dominant Sets

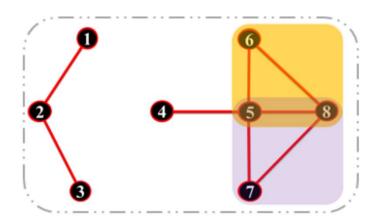
- Dominant set is an edge-weighted generalization of a clique
- Dominant set is a subset of vertices, which is
 - Coherent and
 - Compact

Dominant Sets



Constraint Dominant Sets





Dominant Sets

- Edge-weighted generalization of maximal cliques
- Given a (symmetric) affinity A, consider,

maximize
$$f(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

subject to $\mathbf{x} \in \Delta$

Where
$$\Delta = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1 \text{ and } x_i \ge 0, \text{ for all } i = 1, \dots, n\}$$

- If x is a local maximizer, its support, $\sigma(x)$, is a dominant set
- DS's caputer both *internal* and *external* coherence conditions for a cluster

M. Pavan and M. Pelillo, "Dominant sets and pairwise clustering," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 29, no. 1, pp. 167–172, 2007.

Constrained Dominant Sets (CDS)

Given a query $Q \subseteq V$ and a parameter $\alpha > 0$, define the following parameterized family of quadratic program:

maximize
$$f_Q^{\alpha} = x^T (A - \alpha I_Q) x$$

Subject to $x \in \Delta$

Where I_Q is the diagonal matrix whose **diagonal elements are set to 1** in correspondence to the vertices contained in $V \setminus Q$ and to 0 otherwise.

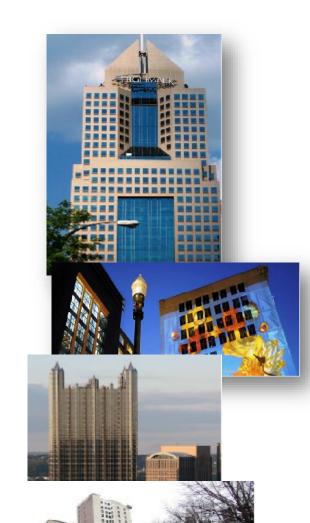
Experimental Results

Dataset I: Orlando & Pittsburgh:

- Reference images:
 - 102K Google street view images from Pittsburgh, PA and Orlando, FL
- Test Set:
 - 644 GPS-Tagged unconstrained images
 - Downloaded From Flickr, Panoramio, Picasa, ...

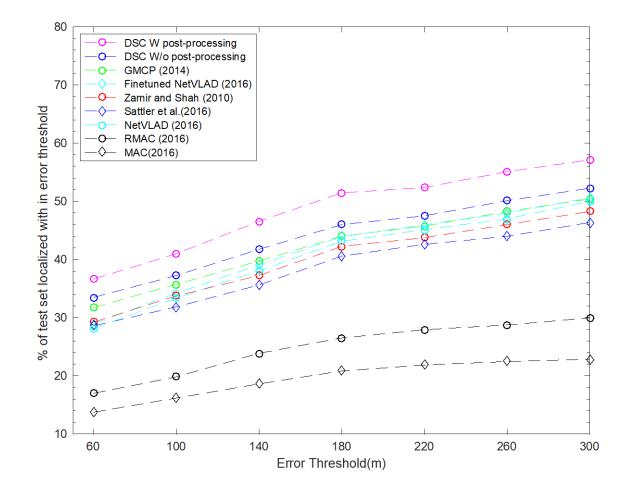
Dataset II: WorldCities Dataset: (NEW)*

- Reference images (300K Google street view images):
- 14 different cities from different parts of the world:
 - USA: Los Angeles, Phoenix, Houston, San Diego, Las Vegas, Dallas, Chicago
 - Australia: Sydney and Melbourne
 - Europe: Amsterdam, Frankfurt, Rome, Milan and Paris
 - Test Set
 - 500 GPS-Tagged unconstrained images
 - Downloaded From Flickr, Panoramio, Picasa...



Overall Results

• Dataset 2: WorldCities (14 different cities from Europa, North America, Australia)



Qualitative Image Localization Results

Match - Error: 70.01 m

Match – Error: 5.4 m

Query

Match - Error: 7.5 m

Match - Error: 62.7 m

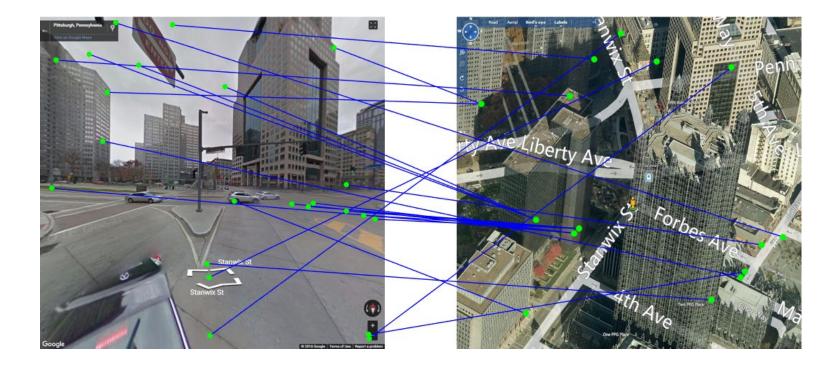
Qualitative Image Localization Results

Contents

- Pixel-Wise Geo-localization
 - Geodetic Alignment of Aerial Video Frames
- Image-Based Geo-Localization
 - Same View (Street-View to Street-View)
 - Generalized Maximum Clique (PAMI, 2014)
 - Constraint Dominant Sets (PAMI, 2017)
 - Cross-View Geo-Localization
 - Bird's Eye-View to Street View (CVPR, 2017)
 - Aerial to Ground View (ICCV, 2019)

Cross-View Challenges

- Images from different viewpoints are visually different
- The images may be captured with different lighting
- The mapping from one viewpoint to the other may be complex
- Traditional features e.g. SIFT, HOG etc. may be very different



Retrieval Features

- Local Features (SIFT) (same view)
- Buildings Features (cross view)

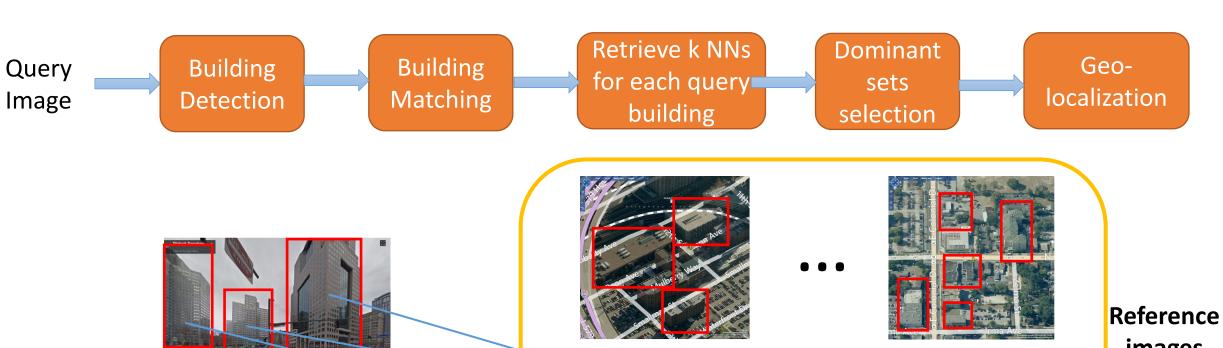
Cross-View Image Matching for Geo-localization in Urban Environments

Yicong Tian, Chen Chen, Mubarak Shah
Center for Research in Computer Vision,
University of Central Florida
CVPR-2017

Yicong Tian, Google

Chen Chen, UNC Charlotte

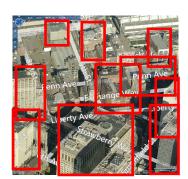
Proposed Approach



Query image (street view)

Ciberty A e

• • •



Reference images (bird's eye view)

Data Collection

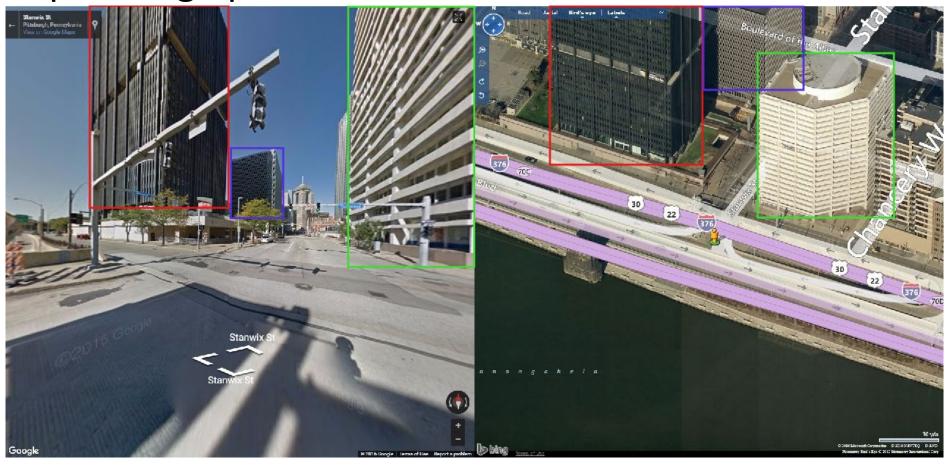
- A new dataset of street view and bird's eye view image pairs
 - Pittsburg
 - Orlando
- Generated a list of GPS coordinates along streets
- For each GPS location
 - Four pairs with different headings
 - Utilized <u>DualMaps</u>
 - Automatically saved screenshots
- Annotations
 - By four undergraduates and high school students
 - ~300 hours work in total

Data Collection - Pittsburg

• 1,586 GPS locations

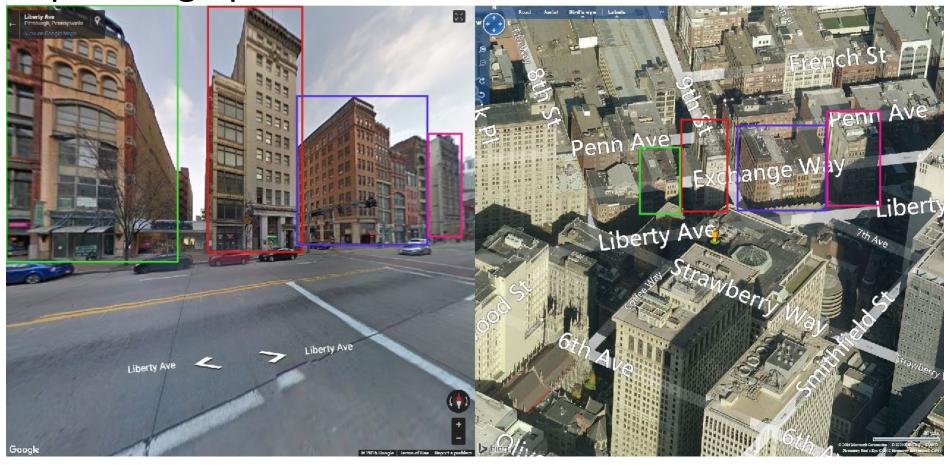
Data Collection - Pittsburg

Example image pair with annotations



Data Collection - Pittsburg

Example image pair with annotations

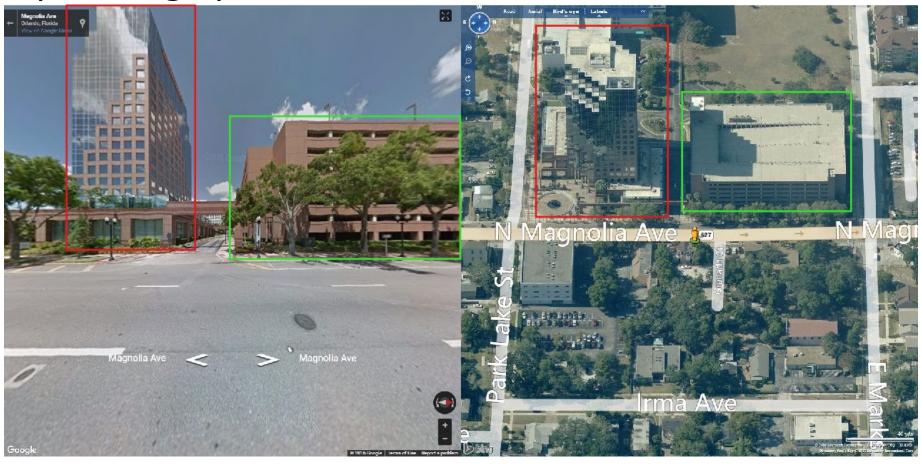


Data Collection - Orlando

• 1,324 GPS locations

Data Collection - Orlando

• Example image pair with annotations



Data Collection - Orlando

Example image pair with annotations

Proposed Approach

Building Detection (Faster R-CNN)

- Street view images
 - Training: 6,682 images
 - With 15,648 annotated boxes
 - Test: 1,903 images
- Bird's eye view images
 - Training: 6,968 images
 - With 39,511 annotated boxes
 - Test: 1,916 images
- Each model takes 10 hours to train

Proposed Approach

Building Matching

- Train a Siamese network
- In the learned feature space,
 - Matching image pairs are close to each other
 - Unmatched image pairs are far apart
- Contrastive loss

$$\mathcal{L}(x,y,l) = \frac{1}{2}lD^2 + \frac{1}{2}(1-l)\max(0,(m-D^2))$$

I: label (1 or 0)

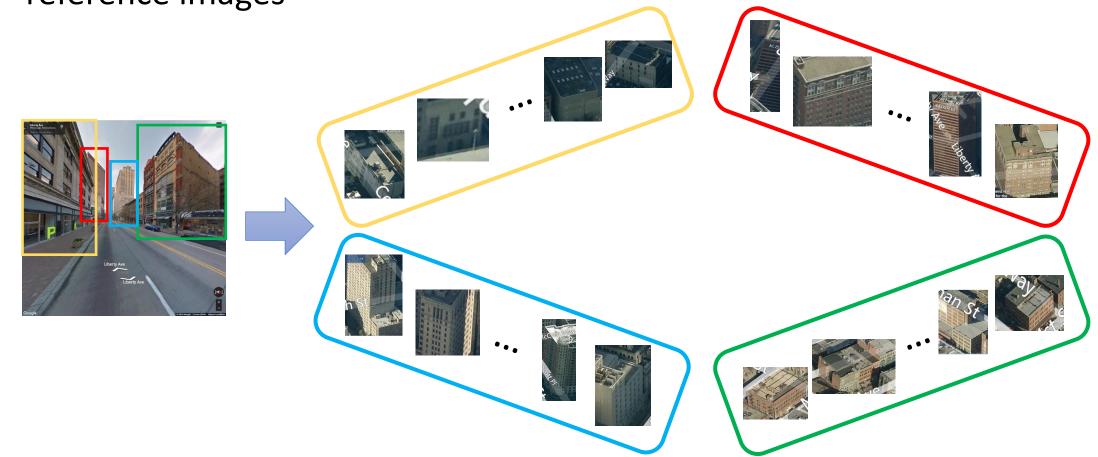
D²: square of Euclidean distance between features

m: margin

Proposed Approach

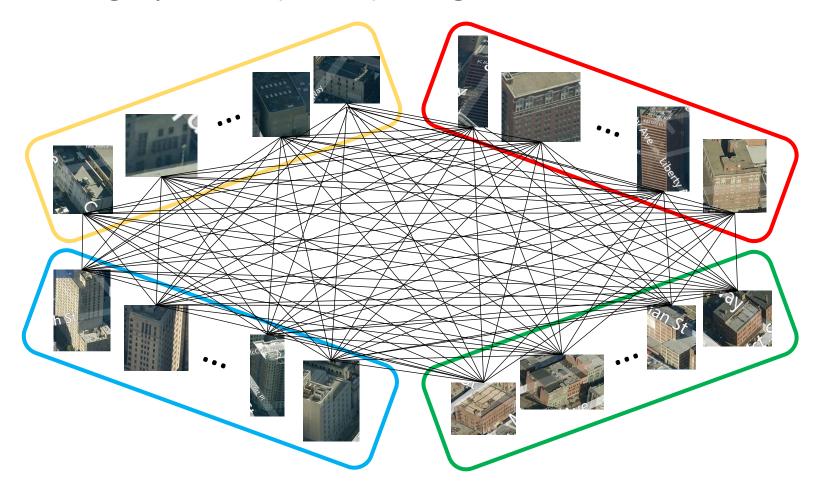
Geo-localization Using Dominant Sets

 For each building in the query image, select k nearest neighbors from reference images



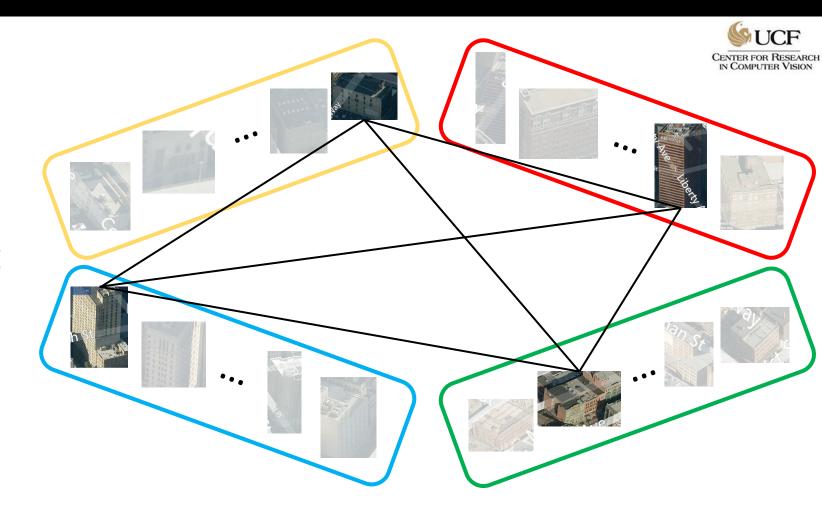
Geo-localization Using Dominant Sets

• Build a graph $G = (V, E, \omega)$ using selected reference buildings



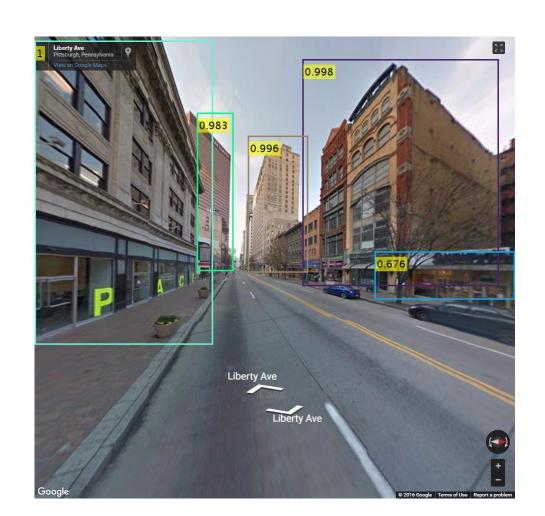
Geolocalization

- The nodes in dominant set form a coherent set
- At most one node is selected from each cluster

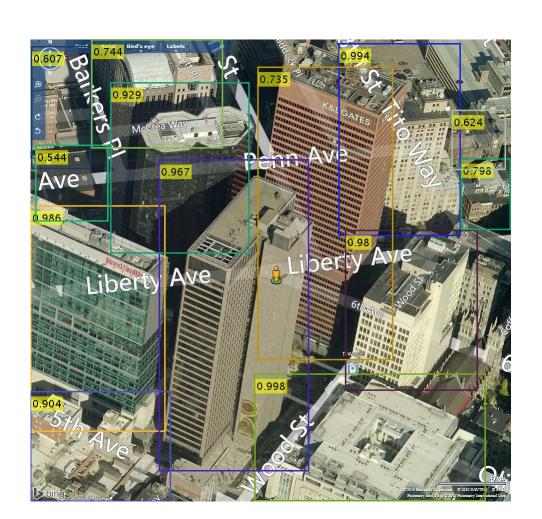


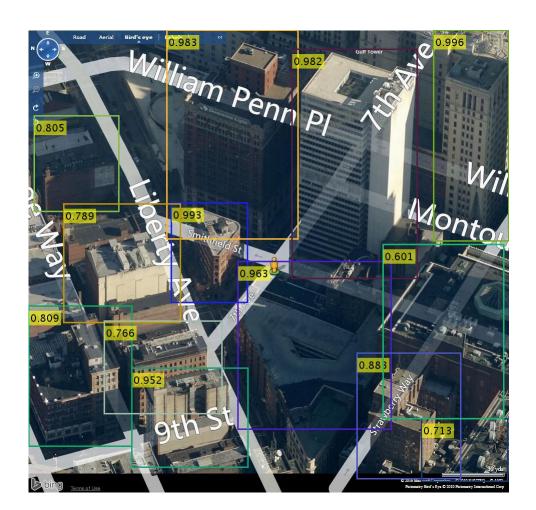
Experimental Results

Building detection in street view images



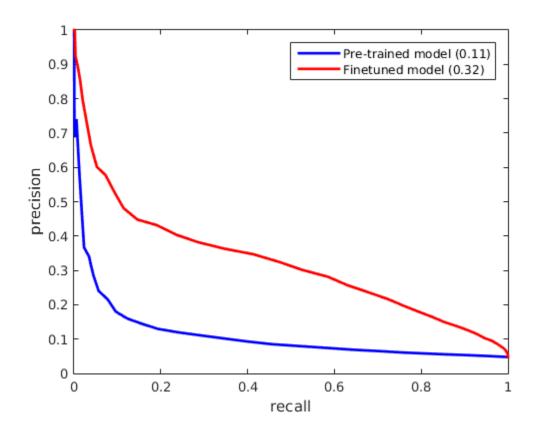
Building detection in bird's eye view images



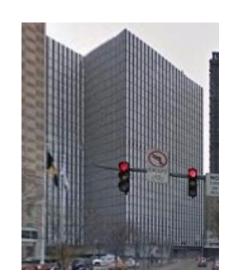


Building matching

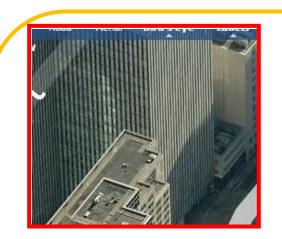
• Precision-recall curve on test image pairs



Building matching



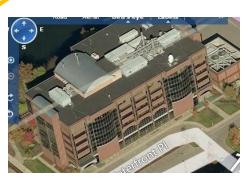
Query image (street view)

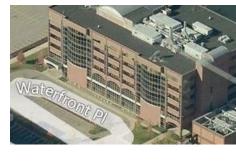


From ~40,000 candidate image patches (Buildings) (bird's eye view)

Building matching

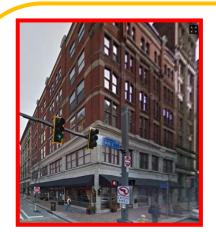
Query image (street view)

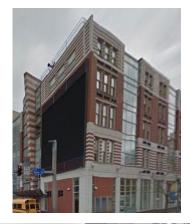




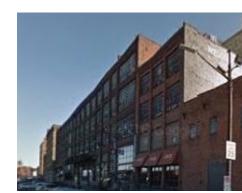
Building matching

Query image (bird's eye view)





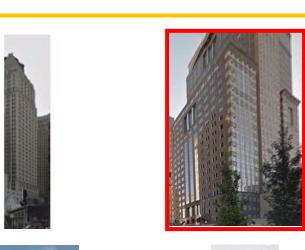




From ~10,000 candidate image patches (Buildings) (street view)

Building matching

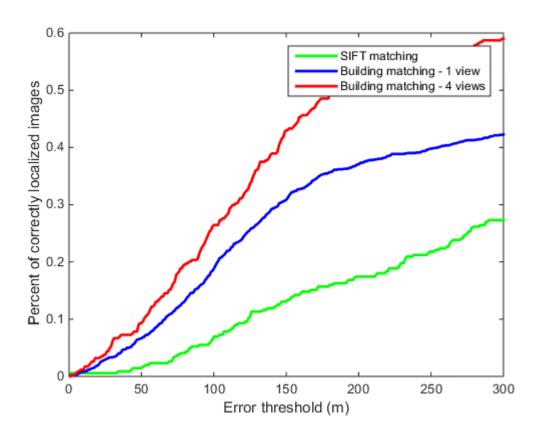
Query image (bird's eye view)



From ~10,000 candidate image patches (Buildings) (street view)

Geo-localization

- Query image: street view
- Reference images: bird's eye view
- k: 100



Summary

Geo-localization Using Cross View Image Matching

- Detect Buildings
- Match Buildings
- Retrieve k-nearest neighbors for each query
- Dominant Set Selection

Cross-View Image Matching for Geo-localization in Urban Environments

Yicong Tian, Chen Chen, Mubarak Shah
Center for Research in Computer Vision, University of Central Florida

CVPR-2017

Retrieval Features

- Local Features (SIFT)
- Building Features
- Global Image Features

Bridging the Domain Gap for Ground-to-Aerial Image Matching

Krishna Regmi

Krishna Regmi & Mubarak Shah University of Central Florida

https://www.youtube.com/watch?v=gmAhQXCYCEQ&list=PLd3hlSJsX_lkSnnrMtzsMHl1q6vimipvp&index=1

Introduction

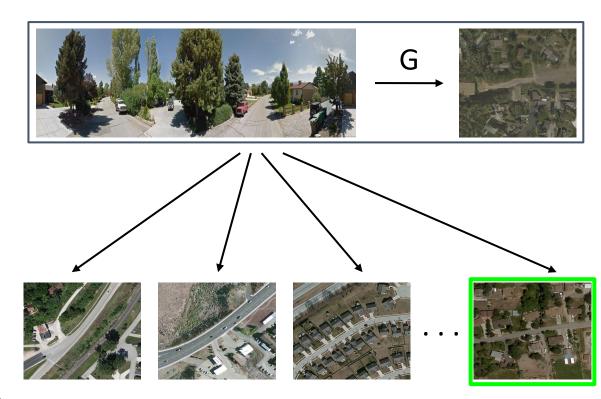
Cross-view image matching

Drastic viewpoint differences

Bridge the domain gap - use GANs (synthesize target-view images)

Joint Feature Learning and Feature fusion

Multi-scale feature aggregation

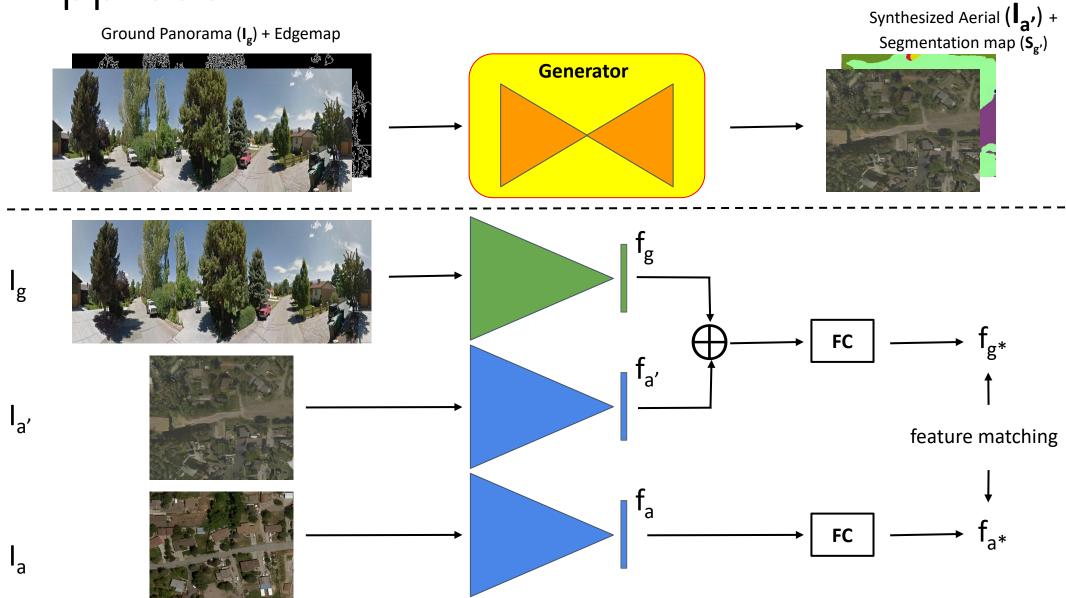


Our Approach

Cross-view image synthesis followed by

Joint Feature Learning and Feature Fusion

Our Approach

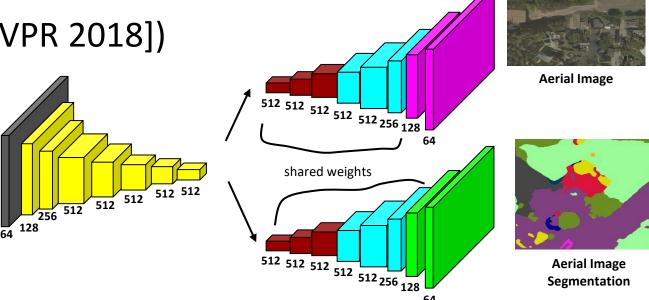


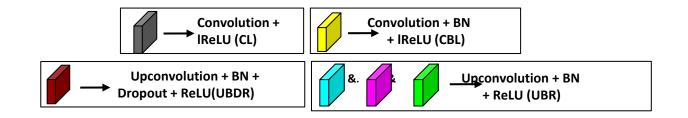
Generator Architecture

Encoder-decoder architecture

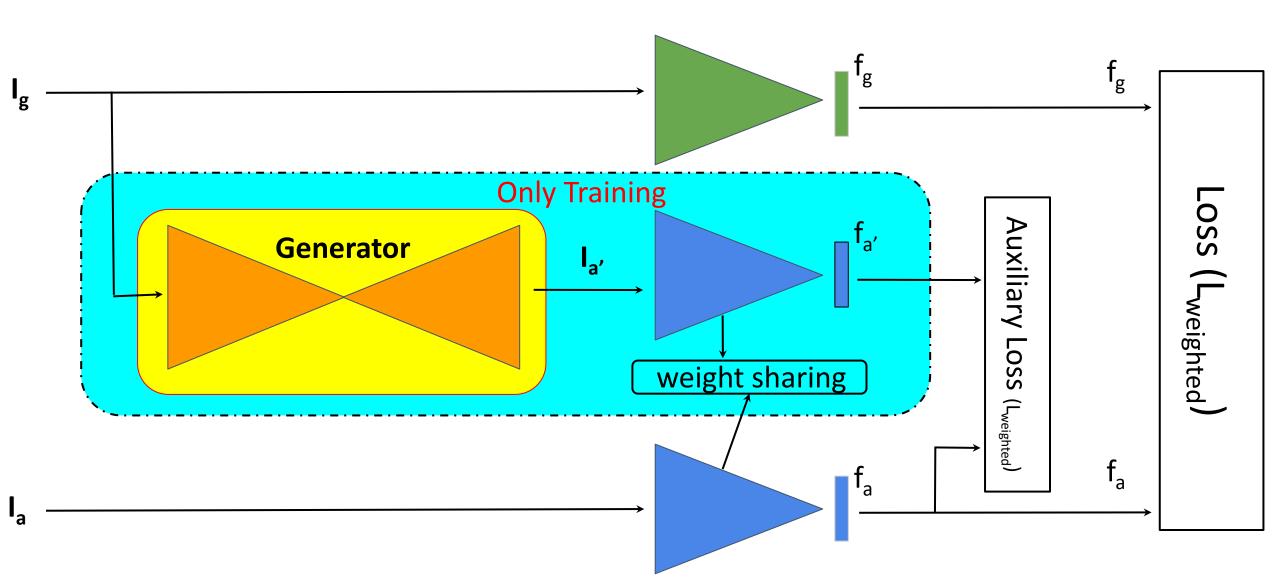
(X-Fork, Regmi & Borji [CVPR 2018])

Ground Panorama + Edgemap

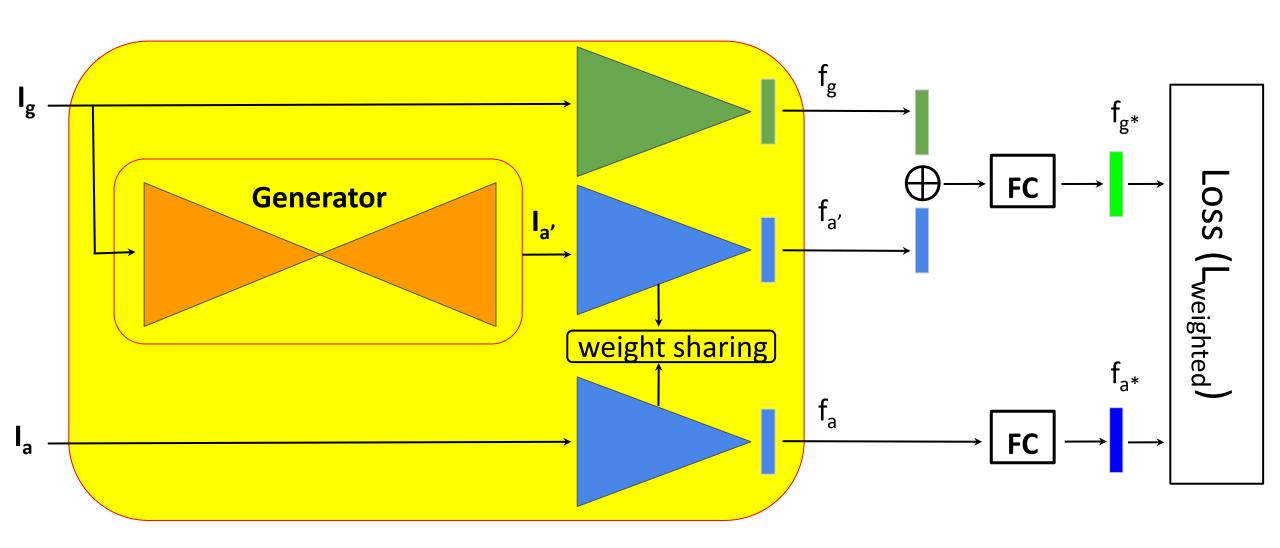




Joint Feature Learning



Feature Fusion



Loss Functions

Triplet Loss:
$$L_{triplet} = max(0, m+d_p-d_n)$$
 $= max(0, m+d) \;\;\; ext{where, d} = d_p$ - d_n

Soft-Margin Triplet Loss: $L_{soft} = ln(1+e^d)$

Weighted Soft-Margin Triplet Loss: $L_{weighted} = ln(1 + e^{lpha d})$

Loss for Joint Feature Learning:

$$L_{joint} = \lambda_1 L_{weighted}(I_g, I_a) + \lambda_2 L_{weighted}(I_{a'}, I_a)$$

Datasets

Satellite - ground panorama pairs

CVUSA Dataset:

Train/Test: 35,532/8,884 pairs

Covers rural areas

UCF OP Dataset: (Orlando Pittsburgh)

Train/Test: 1,910/722 pairs

Newly collected

Covers urban areas

GPS info available

Results: CVUSA Dataset

Quantitative Results (CVUSA Dataset)

Method	Top-1	Top-10	Top-1%
Two-stream baseline $(I_{a'}, I_a)$	10.23%	35.10%	72.58%
Two-stream baseline (I_q, I_a)	18.45%	48.98%	82.94%
Joint Feat. Learning $(I_{a'}, I_a)$	14.31%	48.75%	86.47%
Joint Feat. Learning (I_g, I_a)	29.75%	66.34%	92.09%
Feature Fusion	48.75%	81.27%	95.98%
Workman et al. [41]	_	-	34.3%
Zhai et al. [46]	_	-	43.2%
Vo and Hays [39]	_	-	63.7%
CVM-Net-I [18]	22.53%	63.28%	91.4%
CVM-Net-II [18]	11.18%	43.51%	87.2%

Recall Accuracy (CVUSA Dataset)

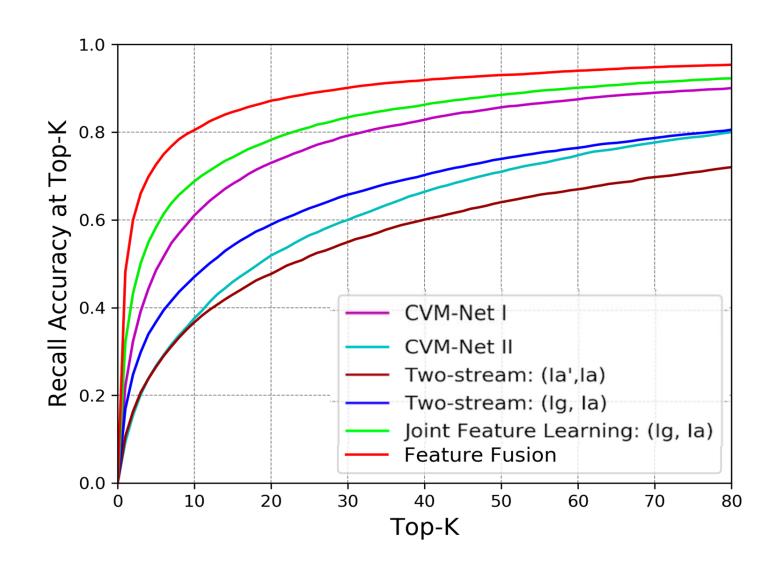
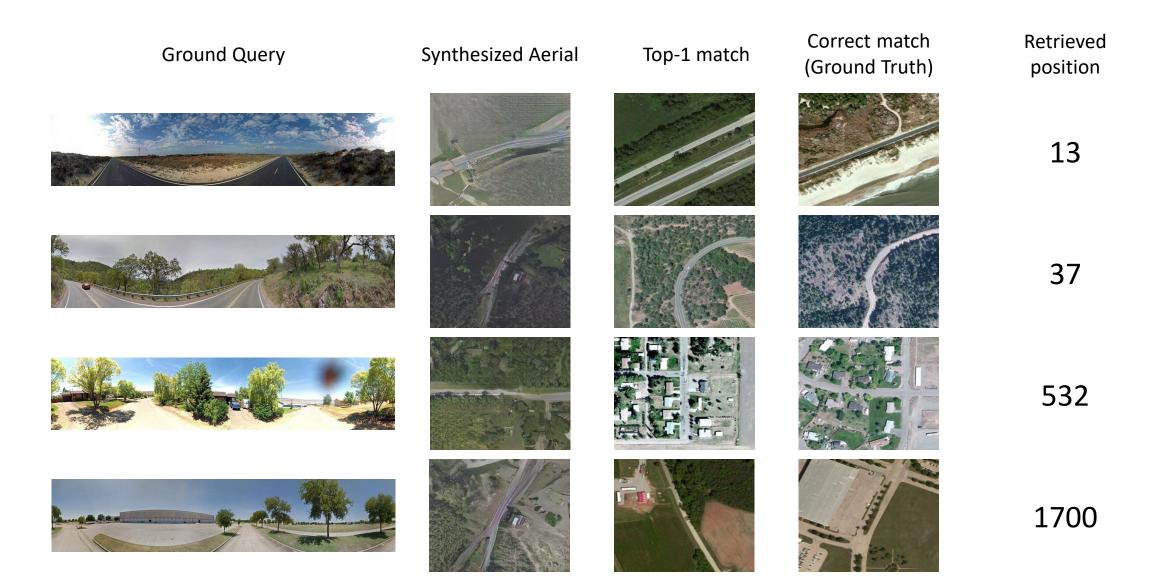


Image Retrieval (CVUSA Dataset)

Synthesized **Ground Query** Top matches (top 1 – top 5 from left to right) Aerial

Failure Cases



Results: OP Dataset

Retrieval Performance (OP Dataset)

Two-stream (I_g, I_a) Joint Feat. Learning Feature Fusion					
30.61%		38.36%		45.57%	

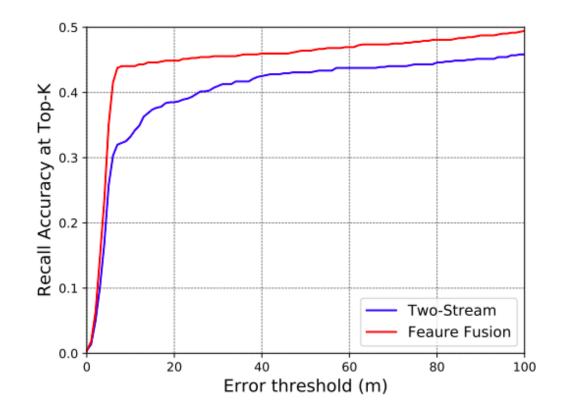


Image Retrieval (OP Dataset)

Ground Query

Top matches (top 1 – top 5 from left to right)



 $0.0 \, \mathrm{m}$

11.08 m

44.33 m

254.90 m

69.32 m

2.25 m

161.17 m

12.35 m

21.19 m

521.67 m

4.44 m

111.39 m

9.58 m

1246.39 m

424.53 m

4.75 m

m

81.91 m

Aerial-to-Ground (A2G) Image Matching

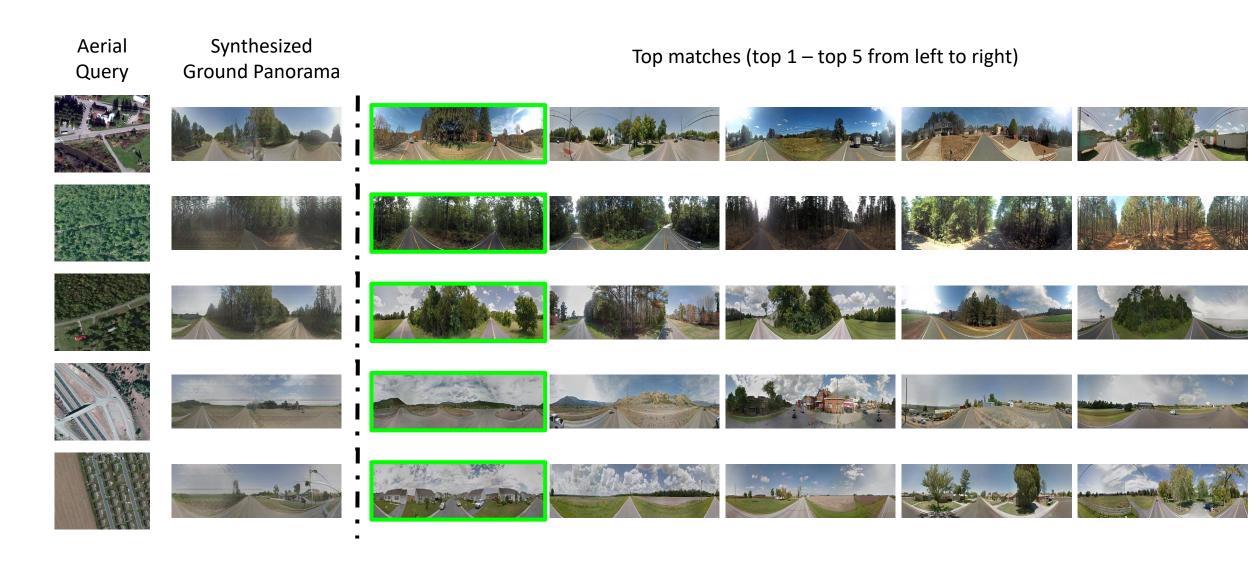
Reverse problem

Synthesize the ground panorama from aerial image

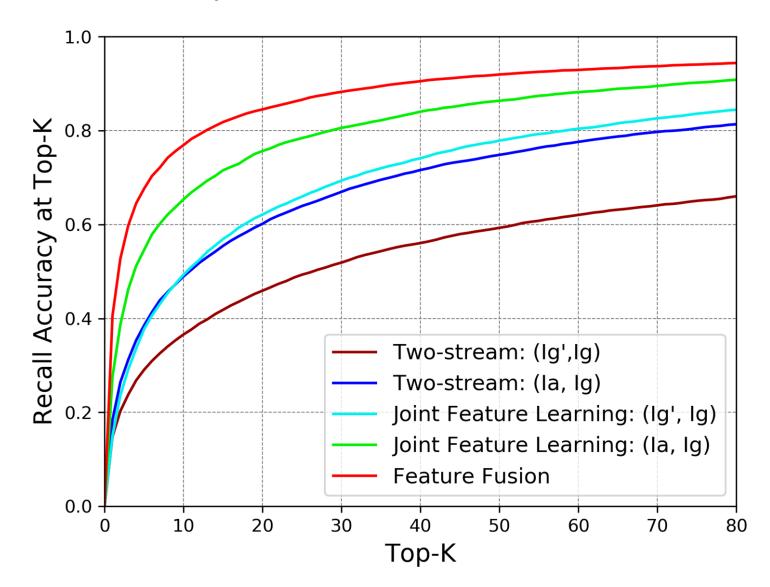
Quantitative Results - A2G (CVUSA Dataset)

Method	Top-1	Top-10	Top-1%
Two-stream baseline $(I_{g'}, I_g)$	15.04%	37.31%	67.99%
Two-stream baseline (I_a, I_g)	16.99%	47.06%	82.11%
Joint Feat. Learning $(I_{g'}, I_g)$	16.46%	50.26%	86.26%
Joint Feat. Learning (I_a, I_g)	27.39%	65.29%	91.46%
Feature Fusion	44.99%	79.37%	95.66%

Image Retrieval - A2G (CVUSA Dataset)



Recall Accuracy - A2G (CVUSA Dataset)



Summary

- Novel and practical approach to cross-view image matching
- Domain gap is bridged by synthesized images
- Significant improvement on Top-1 and Top-10 accuracies over SOTA on CVUSA.
- This approach can be used for other view transformation tasks where the transformations can be in horizontal or vertical directions.

Bridging the Domain Gap for Ground-to-Aerial Image Matching

Krishna Regmi

Krishna Regmi & Mubarak Shah University of Central Florida

Summary

- Pixel-Wise Geo-localization
 - Geodetic Alignment of Aerial Video Frames
- Image-Based Geo-Localization
 - Same View (Street-View to Street-View)
 - Generalized Maximum Clique (PAMI, 2014)
 - Constraint Dominant Sets (PAMI, 2017)
 - Cross-View Geo-Localization
 - Bird's Eye-View to Street View (CVPR, 2017)
 - Aerial to Ground View (ICCV, 2019)

Thank You