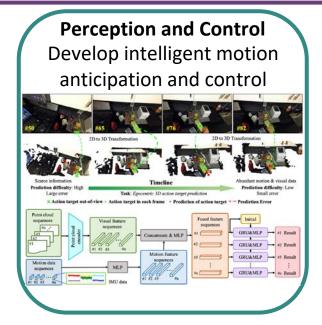
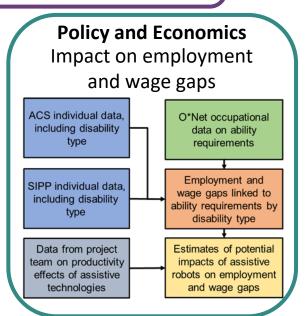
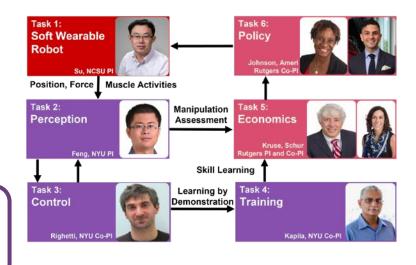


2026622 - Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots


Hao Su¹ hsu4@ncsu.edu, Chen Feng² cfeng@nyu.edu, Ludovic Righetti², Vikram Kapila², Douglas Kruse³ dkruse@smlr.rutgers.edu, Lisa Schur³, Hazen-Alle Johnson³, Mason Ameri³


¹North Carolina State University, ²New York University, ³Rutgers University


PErCeptive and Adaptive SOft (PECASO) Wearable Robots

Scope: modeling, perception, and control of soft wearable robots to provide physical assistance and skill training for people with physical disabilities in work.

Wearable Robot Design of lightweight and compliant soft wearable Wearable Camera Shoulder Exo Module Elbow Exo Module Wrist Exo Module

Impact: the convergent efforts of these multiple activities have the potential to enhance employment, inclusion and integration of people with physical disabilities in job tasks that are relevant to retail, warehouse, and manufacturing.