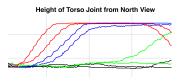


Analysis of Lifting Activity to Facilitate Creation of Al Approaches that Recognize Worker Safety and Independence PI / Presenter: Natasha Banerjee, Terascale All-sensing Research Studio (TARS), Clarkson University

FW-HTF-P: Investigating Acceptability in the Workforce of Collaborative Robots that Provide and Request Assistance on an As-Needed Basis Award #2026559, Co-Pls: Zhaleh Semnani-Azad, Todd Perry, Collaborator: Sean Banerjee

Goal: All that enables robotic assistants to perform data-driven detection of when workers need help during lift, and to provide desired type of assistance.


- Lifting injuries accounted for 9.8% of occupational injuries in 2019¹.
- Lost time due to injuries impacts women and older workers².
- Fear of robotic replacements is prevalent in individuals with lower education³, blue- and white-collar workers in manufacturing^{4,5}, and females and individuals of color³.
- Hypothesis: Robotic assistants more likely to be trusted and accepted if they simultaneously ensure physical safety and preserve independence.

Multimodal Study of Lift Performance for Future Technology on Al-Driven Detection of Assistance Need

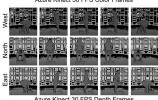
- Multi-viewpoint multi-modal data collected from 24 subjects performing 40 randomized lifts with identical packages weighing 0, 15, 30, and 45 lb.
- Subjects interact on a non-blind day when subjects are pre-informed of weights and a blind day when subjects lack prior weight knowledge.
- Data recorded includes subject ratings of effort on scale of 1 to 5, and preand post-guess of weight lifted on blind day.

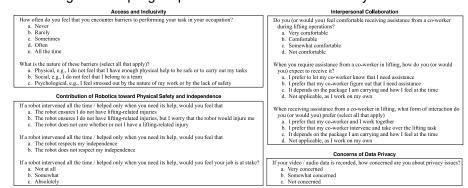
Findings from Multimodal Study (Currently Under Review)

- Correlation of 0.809 and 0.804 between effort and actual weight on blind and non-blind day. 94.4% accuracy of subjects correctly guessing weight.
- 71 / 77% and 77 / 81% accuracy using convolutional networks on joint time series / thermal handprint after lift for binary weight and effort detection.

- .

lb 45


• Findings inform continued research on fusing multimodal multi-viewpoint data to provide person-aware detection of need for assistance for improved inclusivity and awareness of worker safety and independence.



Large-Scale Questionnaire-Based Survey of Workers and Managers on Perception of Need-Aware Robotics in Future Work Environments

- Responses acquired from 424 workers (265 male, 148 female, 11 prefer not to mention)
- 94 surveys acquired from USA, 152 from Canada, 146 from UK, and 32 from Australia
- Manager surveys are currently under way
- Following is a sampling of questions assessed in the survey:

 Currently evaluating collected data to understand robotic trust dependent on dimensions of physical safety, independence, job security, and ethics of data privacy.

Broader Impacts

 Work has supported rural Upstate New York students, first generation college goers, students of color, and a female non-traditional student.

Austin Dykeman Noah V

1

et Kaur Joseph J

References

- 1 U.S. Bureau of Labor Statistics (2019). https://stats.bls.gov/
- 2. King et al. (2009). Work-related musculoskeletal disorders and injuries: differences among older and younger occupational and physical therapists. J. Occupational Rehabilitation, 19, 274–283.
- 3. McClure (2018). "You're Fired," says the robot: The rise of automation in the workplace, technophobes, and fears of unemployment. Social Science Computer Review, 36(2),139–156.
- 4. Dekker et al. (2017). Fear of robots at work: the role of economic self-interest. Socio-Economic Review, 15(3), 539-562.
- 5. Smith and Anderson (2014). Al, robotics, and the future of jobs. Pew Research Center, 6.