Information Extraction with
HMMs and Shrinkage

Dayne Freitag Andrew Kachites McCallum
Just Research Just Research
Pittsburgh, PA 15213 Pittsburgh, PA 15213
dayne@justresearch.com meccallum@justresearch.com
Abstract

“Information extraction” refers to the process of converting text
documents to structured content summaries. Such summaries can
be presented to users or be used by software agents engaged in
text mining. This paper advocates the use of HMMs for informa-
tion extraction. The HMM state transition probabilities and word
emission probabilities are learned from labeled training data. As
in many learning problems, however, the lack of sufficient labeled
training data hinders the reliability of the model. The key con-
tribution of this paper is the use of relationships between HMM
states and a statistical technique called “shrinkage” in order to sig-
nificantly improve estimation of the HMM emission probabilities
in the face of sparse training data. In experiments on seminar an-
nouncements and Reuters acquisitions articles, shrinkage is shown
to reduce error by up to 40%, and the resulting HMM outperforms
a state-of-the-art rule-learning system.

1 Introduction

The Internet makes available a tremendous amount of text that has been generated
for human consumption; unfortunately, this information is not easily manipulated
or analyzed by computers. Information extraction is the process of filling fields in a
database by automatically extracting fragments of human-readable text. Examples
include extracting the location of a meeting from an email message, or the name of
the acquired company from a news article about a company takeover.

This paper advocates the use of hidden Markov models (HMMs) for information
extraction. HMMs have been applied with significant success to many language-
related tasks, including part-of-speech tagging [Kupiec, 1992] and speech recognition
[Rabiner, 1989]. Because HMMs have foundations in statistical theory, there is a rich
body of established techniques for learning the parameters of an HMM from training
data and for classifying test data. In our work HMM state-transition probabilities



and word emission probabilities are learned from labeled training data. However,
as in many learning problems, large amounts of training data are required to learn
a model that generalizes well. Since training data must usually be painstakingly
labeled by hand, it is often difficult to obtain enough, and the small quantities
of available training data limit the performance of the learned extractor. (When
learning tasks in which the output is the identity of the hidden states, several studies
have shown that incorporating unlabeled data with Baum-Welch only degrades
performance [Kupiec, 1992; Seymore, McCallum, & Rosenfeld, 1999].)

The key contribution of this paper is the integration of a statistical technique called
shrinkage into information extraction by HMMs. In our approach, shrinkage is
used to learn more robust HMM emission probabilities in the face of limited train-
ing data. The technique works by “shrinking” parameter estimates in data-sparse
individual states towards the estimates calculated for data-rich conglomerations of
states in ways that are provably optimal under the appropriate conditions. Shrink-
age has been widely used in statistics and language modeling, including in HMMs
for acoustic modeling in speech recognition [Lee, 1989)].

In our approach to information extraction, the HMM forms a probabilistic gener-
ative model of an entire document from which sub-segments are to be extracted.
In each HMM, a subset of the states are distinguished as “target” states, and any
words of the document that are determined to have been generated by those states
are part of the extracted sub-sequence.

We describe experiments on two real-world data sets: on-line seminar announce-
ments and Reuters newswire articles on company acquisitions. Results show that
shrinkage consistently improves the performance over smoothing by absolute dis-
counting. The HMM also out-performs a state-of-the-art rule-learning system.

2 HMDMs for Information Extraction

A HMM is a finite state automaton with stochastic state transitions and word emis-
sions [Rabiner, 1989]. Associated with each of a set of states, S = {s1,---,s,},
is a probability distribution over the words in the emission vocabulary V =
{w1, -, wyp}. The probability that state s; will emit word w € V is written P(w|s;).
Similarly, the probability of moving from state s; to state s; is written P(s;|s;).

The models we use for information extraction have the following four characteris-
tics: (1) Each HMM extracts just one type of field (such as “purchasing price”).
When multiple fields are to be extracted from the same document (such as “pur-
chasing price” and “acquiring company”), a separate HMM is constructed for each
field. (2) They model the entire document, and thus do not require pre-processing
to segment document into sentences or other pieces. (3) They contain two kinds
of states, background states and target states. Target states are responsible for the
text to be extracted. (4) They are not fully connected. The restricted transition
structure, which we construct manually, captures context that helps improve ex-
traction accuracy. Given a model and all its parameters, information extraction is
performed by using the Viterbi algorithm to determine the sequence of states that
was most likely to have generated the entire document, and extracting the words
that were associated with designated “target” states.

Figure 1 shows three example topologies. The model in Figure 1(a) is the simplest



Figure 1: Three example topologies. Source-less arrows indicate start state; double
circles indicate terminal state; hexagons indicate target states.

possible topology. In practice, we expect that context around the target state to
provide important clues in the search for target text. We can exploit some of these
clues by adding prefix and suffix states, as in Figure 1(b). Similarly, target fragments
can vary in length, and certain tokens may be more common at the beginning or
end of the fragments. If the object is to extract the name of a company for example,
the tokens “Inc” and “Corp” are almost certainly at the end of a fragment. We
can attempt to capture such structure by expanding the single target state into an
array of parallel paths of varying length. Figure 1(c) shows a set of target paths of
lengths one to four. In order to train a model, each token in a document is labeled
according to whether it is part of the target text. We require that only target states
emit such tokens, and only non-target states emit non-target tokens.

When the emission vocabulary is large with respect to the number of training ex-
amples, maximum likelihood estimation of emission probabilities will lead to poor
estimates, with many words inappropriately having zero probability. This can be
prevented by, for example, Bayes optimal parameter estimation in conjunction with
a uniform Dirichlet prior (Laplace smoothing). An alternative smoothing technique
that we have found to perform better when the number of zero-count words varies
widely from state to state is absolute discounting, commonly used in statistical lan-
guage modeling for speech recognition. (More complex methods like Good-Turing
fail with the extremely small per-state training sets we have.)

Both Laplace smoothing and absolute discounting calculate the word distribution
in a state using only the training data in the state itself. In the next section, we
discuss shrinkage, a method that leverages the word distributions in several related
states in order to improve parameter estimation.

3 Shrinkage

In many machine learning tasks there is a tension between constructing complex
models with many states and constructing simple models with only a few states. A
complex model is able to represent intricate structure of a task, but often results
in poor (high variance) parameter estimation because the training data is highly
fragmented. A simple model results in robust parameter estimates, but performs
poorly because it is not sufficiently expressive to model the data (too much bias).
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Figure 2: A shrinkage configuration that addresses data sparsity in contextual
states, showing shrinkage only for non-target states.

Shrinkage is a technique that balances these competing concerns by “shrinking”
parameter estimates from data-sparse states of the complex model toward the esti-
mates in related data-rich states of simpler models. The combination of estimates is
provably optimal under the appropriate conditions. Shrinkage has been extensively
studied in statistics [Carlin & Louis, 1996]. We employ a simple form of shrinkage
that combines the estimates in a weighted average, and learns the weights with EM.
In speech recognition this is called deleted interpolation [Jelinek & Mercer, 1980].

Shrinkage for HMMs and Information Extraction. Shrinkage is typically de-
fined in terms of a hierarchy representing the expected similarity between parameter
estimates, with the estimates at the leaves. We create such a hierarchy by defining
subsets of states that have word emission distributions we expect to be similar, and
declare them to share a common “parent” in a hierarchy of word distributions.

Figure 2 shows such a hierarchy. It depicts, for example, that all prefix states
are expected to have related word distributions—reflecting also the fact that in a
simpler model, all four prefix states might have been represented by a single state
that allowed up to four self-transitions. Internal nodes of the hierarchy can also have
parents, reflecting expectations about weaker similarity between groups of states,
and representing HMM emission distributions that are yet again more simple. At
the top of each hierarchy is the most unassuming of all word distributions, the
uniform distribution, which gives all words in the vocabulary equal probability.
Because the uniform distribution is included we no longer need to smooth the local
estimates with Laplace or absolute discounting.

We have compared several shrinkage hierarchy configurations. Given that we distin-
guish four classes of states—non-target, target, prefiz, and suffiz—the four shrink-
age configurations are as follows: None: No shrinkage; only absolute discounting
is used. Uniform: Instead of absolute discounting, all single-state distributions
are shrunk toward the uniform distribution. Global: The distributions of all target
states are shrunk toward a common parent, as well as the uniform distribution;
likewise for the non-target states with a different parent. Hierarchical: (Shown in
Figure 2.) Target distributions are handled in the same way as in global. Each of the
other classes of states—non-target, prefiz, and suffix—is shrunk toward a separate,
class-specific parent. The prefix and suffix parents are furthermore shrunk toward
a shared “context” grandparent. Finally, all non-target, prefiz, and suffix states are
also shrunk toward a single ancestor, shared among all states that are not target
states. Again, every state is also shrunk toward the uniform distribution.

Shrinkage-Based Word Probabilities. Our new, shrinkage-based parameter
estimate in a leaf of the hierarchy (state of the HMM) is a linear interpolation



of the estimates in all distributions from the leaf to its root. Local estimates are
calculated from their training data by maximum likelihood (simple ratios of counts,
with no additions or discounting). The training data for an internal node of the
hierarchy is the union of all the data in its children.

We write the word probability estimates for the nodes on the path starting at state
sj as {P(w]s}), P(w]s}), ... (w|s )}, where P(w|s?) is the estimate at the leaf, and

(w|s’”) is the uniform distribution at the root. The interpolation weights among
these estimates are written {A, A}, ...A¥}, where sk Al = 1. The new, shrinkage-
based estimate for the probablhty of word w in state s; is written P(wls;), and is

the weighted average: P(wls;) = b, AiP(wls?).

Determining Mixture Weights. We derive empirically optimal weights, A;-,
among the ancestors of state s;, by finding the weights that maximize the likelihood
of some hitherto unseen “held-out” data, H. This maximum can be found by a
form of Expectation-Maximization (EM), where each word is assumed to have been
generated by first choosing one of the hierarchy nodes in the path to the root, say
s (with probability A}), then using that node’s word distribution to generate that
word. EM then maximizes the total likelihood when the choices of nodes made for
the various words are unknown. EM begins by initializing the A;’s to some initial
values, say )\§ = %, then iterating the E- and M-steps until the A;’s do not change.
In the E-step, we calculate, ﬂ;, the degree to which each ancestor ¢ predicts the
words in state s;’s held-out set, H;. In the M-step we derive new (and guaranteed
improved) weights by normalizing the §’s:

ASP (wysh) o)

E-step: f; = Z )\mP( |s]) M-step: )\’ E B

wiEH;

(1)

While correct and conceptually simple, this method makes inefficient use of the
available training data by carving off a held-out set. We fix this problem by eval-
uating the E-step with each individual word occurrence held out in turn. This
method is very similar to the “leave-one-out” cross-validation commonly used in
statistical estimation.

4 Experiments

We present experimental results on nine information extraction problems from two
corpora: a collection (485 documents) of seminar announcements posted to local
newsgroups at a large university, and a collection (600 documents) of articles de-
scribing corporate acquisitions taken from the Reuters dataset [Lewis, 1992]. Both
of these datasets, as well as the IE problems defined for them, are described in detail
in previously published work [Freitag, 1999]. For each problem we report perfor-
mance averaged over five random splits of the corresponding corpus into training
and testing sets of equal size. Let IV be the number of test documents that contain
a target fragment, M the number of documents for which the learner predicts a tar-
get fragment, and C the number of these predictions that exactly identify a target
fragment. Precision (P)is C/M, and recall (R) is C/N. We measure performance
in terms of F1, a metric common in information retrieval, which is the harmonic
mean of P and R, i.e. 2/(1/P + 1/R).



Context | Paths | Shrinkage || speaker | location | stime | etime

1. 1 1 None 0.431 0.797 0.943 | 0.771
2. 10 1 None 0.363 0.558 0.967 | 0.746
3. 4 1 None 0.460 0.653 0.960 | 0.716
4. 4 1 Uniform 0.499 0.660 0.971 | 0.840
5. 4 1 Global 0.558 0.758 0.984 | 0.589
6. 4 1 Hier. 0.531 0.695 0.976 | 0.565
7. 4 4 None 0.513 0.735 0.991 | 0.814
8. 4 4 Uniform 0.614 0.776 0.991 | 0.933
9. 4 4 Global 0.711 0.839 0.991 | 0.595
10. 4 4 Hier. 0.672 0.850 0.987 | 0.584

Table 1: F1 performance with various topologies and shrinkage configurations.

The performance of an algorithm is measured document by document. If the task is
to extract the start time of a seminar from an announcement, we assume that there
is a single correct answer (perhaps presented several different times in the same
or superficially different ways). We ask whether a learner’s single best prediction
exactly identifies one of the fragments representing the start time. If a learner’s
best prediction does not align exactly with an actual start time, as identified by the
human labeler, it is counted as an error.

Table 1 presents the results of experiments with ten different model topologies and
shrinkage configurations. Two trends deserve particular notice. First, in general,
performance increases with context size and, especially, path count. Compare,
for example, Rows 1, 3, and 7, all of which use absolute discounting instead of
shrinkage. Note, however, that among the larger models using absolute discounting
none performs better than the simplest model (Row 1) on all four tasks. In other
words, model elaboration often degrades performance, presumably because of data
sparsity. The second salient trend is that shrinkage clearly ameliorates data sparsity.
Simply shrinking state emission estimates toward the uniform distribution appears
superior to absolute discounting. With the exception of one of the four tasks (etime),
“Global” shrinkage (Rows 5 and 9) leads to the best performance. On speaker, global
shrinkage reduces the error of the corresponding no-shrinkage model by 40%.

We attribute the large performance differences on the etime task to the relative
infrequency of this field; it appears in only about half of the documents. The
decreased etime performance in Rows 5, 6, 9, and 10 is due to a large number of
predictions for documents in which etime does not appear. Observing that stime
and etime tend to occur in close proximity, we experimented with a model designed
and trained to extract stime and etime at the same time; the model had two sets
of context and target states, one for each field. Using this model along with global
shrinkage, we observed an F1 performance for etime of 0.849 which, while not
the best across all models, nevertheless improves upon the models using absolute
discounting.

It is interesting to ask how the distribution of mixture weights varies as a function
of a state’s role in the model. Table 2 shows, for sample runs on each of the
four seminar announcement tasks, how much weight is placed on the local token
distribution of each of four prefix states. The “global” shrinkage configuration is
used in this case. = Note how the local weight tends to decline with increasing



Distance | speaker | location | stime | etime
1 0.84 0.84 0.92 0.95
2 0.81 0.90 0.98 0.98
3 0.73 0.80 0.85 0.95
4 0.65 0.74 0.86 0.93

Table 2: Local mixture weights along the prefix path as a function of distance from
the target states.

speak. loc. stime | etime acq purch | acqabr | diramt | status
SRV 0.703 | 0.723 | 0.988 | 0.839 | 0.343 | 0.429 | 0.351 0.527 0.380
HMM | 0.711 | 0.839 | 0.991 | 0.595 | 0.309 | 0.481 0.401 0.553 0.467

Table 3: F1 of SRV and a representative HMM on nine fields from two domains,
the seminar announcements and corporate acquisitions.

distance from the target text, agreeing with our intuition that the most consistent
patterns are the closest. Also, local weight decreases in proportion to the difficulty
of the field, as reflected in F1 results. Clearly, the two time fields tend to occur in
very predictable contexts.

Table 3 compares performance of a fixed model (the one listed in Row 9 of Table 1)
on nine information extraction problems with the performance of SRV, a consis-
tently strong rule-learning algorithm described elsewhere [Freitag, 1999]. On all
but etime and acq, the HMM obtains a higher F1 score than SRV. Note, however,
that it is a simple matter to design a model that outperforms SRV on the etime
task (as described in the previous paragraph or shown in Row 8 of Table 1).

5 Related Work and Conclusions

HMMs have been previously applied to information extraction by methods that
differ from our approach in various ways. Seymore, McCallum, & Rosenfeld present
an effort to learn HMMs state/transition structure [1999]. Unlike this paper, the
approach uses a single HMM to extract many fields which are densely packed in
moderately structured text (such as research paper references and headers). Leek
applies HMMs to the problem of extracting gene locations from biomedical texts
[Leek, 1997]. In contrast with the models we study, Leek’s models are carefully
hand-engineered for the task—both the general topology (which is hierarchical and
complex), and the language models of individual states. The Nymble system [Bikel
et al., 1997] uses HMMs to perform “named entity” extraction as defined by MUC-
6. All different fields to be extracted are modeled in a single HMM, but to avoid
the resulting difficult structure-learning problem, there is a single state per target
and the state-transition structure is completely connected.

This paper has demonstrated the ability of shrinkage to improve the performance
of HMMs for information extraction. The tension between the desire for complex
models and the lack of training data is a constant struggle here (as in many machine
learning tasks), and shrinkage provides a principled method of striking a balance.
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