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ABSTRACT
I recently consulted for a very big Common Lisp project having
more than one million lines of code (including comments). Let’s call
it “System X” in the following. System X suffered from extremely
long compilation times; i.e., a full recompile took about 33:17 min-
utes on a 3.1 GHz MacBook Pro Intel Core i7 with SSD and 16 GBs
of RAM, using ACL 10.1. It turns out that a number of macros were
causing an exponential code blowup. With these macros refactored,
the system then recompiled in 5:30 minutes — a speedup by a factor
of ≈ 6. In this experience report, I will first illuminate the problem,
and then demonstrate two potential solutions in terms of macro
refactoring techniques. These techniques can be applied in related
scenarios.
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1 INTRODUCTION
Macros and the ability to program language extensions in the lan-
guage itself is one of the most beloved and powerful features of
many members of the Lisp family, and especially in Common Lisp
[8], which has been coined a programmable programming language
by John Foderaro. The availability of the full programming lan-
guage at macro expansion / compile time makes Common Lisp
an ideal implementation platform for Domain Specific Languages
[6, 9], and always has been (i.e., Lisp was an early target platform
for object-oriented programming concepts [3]). Unlike macros in
most other programming languages, Common Lisp allows macros
to be defined in the same language. Thanks to its homoiconicity,
it offers a unified “programs as data” representation and allows
the construction, manipulation, and most importantly, computa-
tion of macro expansions in the language itself. The full power of
the language is always available – not only at runtime, but also at
macro-expansion (“compile”) time [4, 5, 7].

As always, with great power comes great responsibility: macros
can be a double-edged sword. This is especially true in languages
like Common Lisp, where the main development mode is not the
traditional “edit — full recompile – debug” cycle, but an interactive,
dynamic one, based on incremental redefinition, evaluation, and
compilation. Unintended consequences of changes to the code base,
especially macros, can sometimes be left unnoticed for a longer
time period if full recompiles of the system are delayed. This holds
true especially in larger projects with bigger teams. Once compi-
lation times exceed half an hour, full recompilation is avoided by
the developers during daily development, and a build system will

usually be entrusted to deliver new base images overnight, contain-
ing the changes of multiple developers. Of course, regressions will
be recorded and monitored on a daily basis. But even if build times
and the size of the fast load (FASL) files are reported by the build
system, it might not be entirely clear which changes increased the
build time — after all, the build system might just have had a bad
night and was busy performing backups as well, and so on and so
forth.

Consequently, tracing back unintended system behavior to (no
longer so recent) changes to the code base can becomemore difficult.
For this reason, incremental compilation of Common Lisp code can
become a drawback. I advise that developers should not only check
for unintended changes in semantics and functional characteristics
of the system caused by their code changes, but also to the non-
functional characteristics (e.g., FASL sizes and build time). And
especially for macros.

I recently had the opportunity to work on “System X”, which
is a very large, multiple decades in-the-making Common Lisp sys-
tem with over one million lines of code. System X suffered from
extremely long compilation times: a full compile required 33:17
minutes on a 3.1 GHz MacBook Pro Intel Core i7 using an SSD
and 16 GBs of RAM, using ACL 10.1. It turned out that three badly
engineered macros were causing an exponential code blowup. With
these macros refactored, a full recompile is possible in 5:30 minutes
— a speedup by a factor of ≈ 6.

In this experience report, I will first illuminate the problem,
and then demonstrate two possible solutions in terms of macro
refactorings. The effectiveness of the refactoring methods is not
only demonstrated by the 6 fold reduction in compilation time, but
also in terms of FASL size reductions. The used methodology can
be applied in related scenarios. I conclude with some advice.

2 THE PROBLEM
The problems of System X are easily illustrated with a few synthetic
examples. Consider the context-establishing with-bad macro in
Figure 1. Like many with-macros, it utilizes a special variable (here,
*a*) with dynamic scope to control the runtime behavior beyond its
lexical scope. In the example, the binding of the dynamic variable
*a* determines if with-bad macro’s expansion prints x or (1+ x).

This macro serves to illustrate the problem of exponential macro
expansion. Frequently, with-macros are nested, which can obscure
the magnitude of such problems from developers. For example, the
macro might be part of a framework for website HTML genera-
tion and, as such, contain macros such as with-head, with-body,
with-table, and so on. Not only will complex web pages contain
many deeply nested occurrences of these macros, but it might also
be the case that certain common design elements of such pages
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Figure 1: Macro with exponential macro expansion

Figure 2: Macro with linear macro expansion

(common headers, footers, and navigation menus) have been aggre-
gated into even higher-level macros, which are then being used in
other macros, and so forth.

It should be noted that Common Lisp does not contain a
macroexpand-all recursive macroexpansion facility; only
macroexpand-1 is offered. This provides a single level of macro
expansion. However, third-party solutions are available. I used one
of these packages to diagnose the problems in System X [1, 2].

Considering the macroexpansion of blowup containing four
nested with-bad occurrences in Figure 1, we can clearly see that
it is exponential in the size of the original definition, due to the
duplicated ,@body forms. In general, given a nesting depth of 𝑛, the
size of the expanded macro code is 2𝑛 . I even spotted with-macros
with more than two ,@body forms “in the wild”; in general, a with-
macro with𝑚 ,@body forms will expand to size𝑚𝑛 if nested𝑛 times.
This should clearly be avoided.

Sometimes, such an exponential macro is easy to fix. In the case
of Figure 1, it suffices to move the ,@body form into a local function
definition (flet) and call the local function in the two places at
runtime rather than duplicating the code. The expansion size of the

resulting with-good macro shown in Figure 2 is now linear in the
nesting depth rather than exponential.

Unfortunately, exponential macros are not always easily fixed.
For example, say the macro argument x in with-good was used
to establish lexical bindings for use within the ,@body instead of
just being an “input parameter” to the macro. In this case, a (let
((,x ...)) ... ,@body) would be used within the macro to
establish a corresponding lexical scope for ,x. Moreover, the con-
crete binding to ,x might depend on complex runtime and compile
time conditions. In particular, the value of ,x might depend on the
runtime value of *a*, which is unknown at compile time / macroex-
pansion time, and hence, cannot be anticipated by means of code
rewritings / transformations. It is thus important that the correct
lexical contexts are established, for example, via the local function’s
lambdalist.

Of such “more difficult” nature was the exponential macro that I
had to refactor in System X. Instead of revealing the details of this
macro I will use the synthetic example from Figure 3 in the follow-
ing. This macro has a similar complexity and serves to illustrate
the problems and possible solutions.
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Figure 3: The anti-pattern of an exponential with-macro as
found in System X

The idea behind with-bad-recording is to establish a context of
dynamic scope for keeping track of “instructions” that are being
recorded onto a stack; these instructions can be entries to a log file,
an output recording presentation history, etc. The “hidden” special
variable *recording-stack* (with dynamic scope) is used to keep
track of the values on the stack. This special variable is not supposed
to be visible to the user’s code (it is “internal”); instead, accessor
functions (or macros) such as (do-something-and-record x) are
used to work with it.

Moreover, for whatever reason, clients of with-bad-recording
also like to know whether the current invocation is toplevel, or
already part of a “nested” invocation at runtime; hence, a variable
nested-p can be passed in which is then bound to nil or t, respec-
tively. To decide this, another special variable *within-recording*
had been (maybe redundantly) introduced by the original author
of the macro. Again, this is an “internal” special variable which
should not be visible to the user code, hence, nested-p is supplied.
A use case is shown in test-bad-recording. Note that the run-
time value of n-p (i.e., ,nested-p in the macro) is not knowable
from the lexical definition, as test-bad-recording might occur
nested within another with-bad-recording context at runtime.
The use case shows that the stack holds (3 2 1) in the end.

Figure 4: Replacingmultiple ,@bodywith local function calls
broke the macro — see the compiler warning

Clearly, this macro now has the potential for an exponential macro
expansion, and test-bad-recording already suffers from this
blowup. Can we fix this macro in the same way as in Figure 2?

3 FIRST SOLUTION — REFACTORINGWITH
FLET

The first solution is a generalization of the idea we already discussed
in Section 2 — we replaced each ,@body by a call to a single local
function containing a single ,@body. We can use FLET or LABELS
for that.

A naive attempt of fixing with-bad-recording is shown in
Figure 4. This macro is now clearly broken, as ,@body refers to
,nested-p = n-p, which is not visible in the outer flet - hence the
compiler warning that this variable is now unbound. The obvious
solution is hence to make ,nested-p = n-p an argument of the
local function so that the required lexical variables for ,@body are
established by the local function. This is shown in Figure 5.

A further complication is introduced if the lexical variable is mod-
ified in one of the branches — consider the variation
with-bad-recording-v2 shown in Figure 6, where nested-p is
replaced by control-p. The value of control-p influences the
output, and it might be set from either within the user-supplied
,@body code, or from within the macro itself. Refactoring such a
macro then becomes less mechanical, and more care is needed to
ensure that the right lexical environments are established.
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Figure 5: Using local function variables to establish lexical
context — note that the dynamic context is still established
by the original branching structure

Figure 6: If lexical variables that are arguments to themacro
are modified, such as control-p, then refactoring becomes
more involved

In particular, we realize that the value of control-pmust be changed
from within the local function so that the call

Figure 7: Accommodating different macro branches in one
function with the branch-p argument

(process-recordings-v2 ,control-p) will get the value of
,control-p from the correct lexical scope. A possible solution
is shown in Figure 6; the branch-p argument is used to inform the
local function about the invocation context, and, based on its value,
the local function has to accommodate, or “emulate”, the different
runtime behaviors from the macro’s original branches. This might
not always be possible, but is rather trivial in this case.1

This wraps up the discussion of the first refactoring strategy. In
a nutshell, the original branching structure establishing different
lexical and dynamic scopes is maintained. A common ,@body form
must be found which is able to reproduce the original runtime be-
haviors, and it is placed within a local function. The required lexical
contexts are established by the local function and removed from the
original branching structure. Additional control parameters such
as branch-p are used to select branch-specific runtime behavior.
In particular, we maintain the branching structure of the original
macro in order to establish the right bindings for the special vari-
ables, and to set up the correct lexical contexts by calling the local
function accordingly.

A potential drawback of the refactoring pattern just discussed
is the introduction of additional local functions and the additional
runtime overhead of additional function calls.2

More severely, the (full) macro expansion of the refactored macro
now obfuscates the original structure of the macro — it is “inside
out” because we employed functional composition to implement
program sequencing; as can be seen in Figure 2, (princ 6) now
textually precedes (princ 3), contrary to the original definition.
In particular, the ,@body’s of the local functions are now “detached”
from the original branching structure, making the macro expansion
more difficult to understand.

If these are serious concerns, the following alternative refactor-
ing strategy can be applied.
1Please note that we are ignoring potential differences in the returned value of these
macros for now; usually, with- macros do not return values, but this is a convention
and not a strict requirement.
2It might be possible to declare these local functions as inline though.
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4 SECOND SOLUTION — REFACTORING
WITH PROGV

In the following, we are not using a local function that can be
called from different branches of the rewritten macro. Instead we
are trying to unify the original branching structure establishing
different lexical and dynamic contexts into one common structure.
It turns out that establishing the right (conditional) bindings for
the special variables is the biggest obstacle, and we will be using
progv for this purpose.

The following set of steps can be understood as a semantics-
preserving code rewriting procedure / transformer. We will apply
the following to the with-bad-recording macro to tame the ex-
ponential beast and rewrite it into a linear macro:

Step 1 Macroexpand / rewrite all branching special forms (unless,
when, cond, . . . ) into ifs (in our examples, this is already the
case, so the step doesn’t apply):
(if <condition>

(let ( <binding 11> ... <binding 1n> )
,@body)

(let ( <binding 21> ... <binding 2m> )
,@body))

Step 2 Ensure that all lets in all branches refer to the same
variables, and in the same order. If <binding ij> = (,var
val) and var is a macro argument, then all branches already
must contain a valid (,var val) binding. Otherwise, var
would be unbound in (some branches of) ,@body (e.g., the
macro was already defective in the first place).

If var is a special variable instead, i.e., *var*, then, in case
the branch did not contain a <binding> = (*var* val), we
introduce a “dummy” binding <binding> =
(*var* *var*) for now. The idea is to express that we intend
to not alter the binding of *var* dynamically. Note that this
is unproblematic where *var* is used as a “read only” vari-
able, but problematic in cases such as with-bad-recording,
where *recording- stack* is modified; see below for the
solution.
Hence, we now have the same number 𝑘 of (var val)

bindings in each let, with potentially (not necessarily) dif-
ferent val’s; note that𝑚𝑎𝑥 (𝑛,𝑚) ≤ 𝑘 ≤ 𝑛 +𝑚:
(if <condition>

(let ( (<var1 val11>) ... (<vark val1k>) )
,@body)

(let ( (<var1 val21>) ... (<vark val2k>) )
,@body))

Step 3 Next, we remove the different branches, establish all
the bindings in a single let, and recover the effects of the
<condition> by establishing different bindings within the
let binding forms itself. Since we removed the different
branches from the surrounding code by factoring in / mov-
ing the condition into the let lambda lists, we have also
eliminated the multiple ,@body occurrences:
(let ( ( <var1> (if <condition> <val11> <val21>) )

...
( <vark> (if <condition> <val1k> <val2k>) ))

,@body)

Figure 8: Shadowing *recording-stack* broke the macro

Step 4 So far so good — there is one problem though: this only
works for dynamically scoped variables that are used in a
“read only” fashion. As already mentioned, we have intro-
duced a “dummy” binding <binding> =
( *recording-stack* *recording-stack* ) to express
that we wish to leave the binding of *recording-stack*
untouched. But we changed it by establishing a new binding
frame — we “shadowed” the previously established binding.
With let/let*, there is no solution to this.

The effect is illustrated in Figure 8 — the refactored macro
is clearly broken now, as illustrated with the example call
(test-recording-v4). Instead of returning (3 2 1) like
in the original, we are now only getting the first value that
was pushed onto the stack: (1).

However, the code rewritings have brought us onto the
right track. We only need to avoid shadowing in cases were
we do not wish to alter a dynamic variable. Fortunately,
there is a solution to this in Common Lisp, and one has to
congratulate the designers of Common Lisp for anticipating
such a scenario: progv can do the job as follows:
(progv

(when alters-*var*
(list '*var*))

(list val)

If alters-*var* = T, the form is equivalent to (progv
’(*var*) (list val)) hence establishing a new binding
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Figure 9: The rewritten linear with-macro— thanks to progv

for *var*. Otherwise, if alters-*var* = NIL, then the form
is equivalent to (progv nil (list val)), leaving *var*
unchanged.

Hence, the final step involves “splitting up” the single let
(or let*), and reestablishing the “problematic” special bind-
ings via progv instead, in the manner just described. Since
this step is hard to templatize, let’s look at the final rewritten
example macro in Figure 9 instead. As can be seen from the
test invocation, it behaves correctly, and its expansion is
clearly linear.

Even though context establishing macros are usually not used for
their return values, it is nevertheless advisable to accommodate
for such, and so we did in Figure 9. Inspecting all use cases of the
macro in the source code of a very large system such as System X
to identify such use cases is more time consuming than to cater for
such cases correctly from the beginning. Hence, the rewrittenmacro
in Figure 9 also returns the same values as the original (utilizing
multiple-value-list and values).

5 EFFECTIVENESS OF THE TECHNIQUES
We counted the number of macro function invocations (“macro ex-
pansion calls”) that occurred during a full recompilation of System

Figure 10: A macro that cannot be refactored using the dis-
cussed techniques

X and compared the results between the original and the PROGV
refactored versions.3

For the original version, we counted 12816 + 2431 + 2432 =

17679 calls for our three critical exponential macros. Compared to
882+530+531 = 1466 invocations for the refactored version, with
a ratio of 17679/1466 = 12.05. Referring to the𝑚𝑛 notation from
Section 2, we have𝑚 = 2 (two ,@body’s), and can hence assume an
average nesting depth of about 𝑙𝑜𝑔212.05 ≈ 3.6 = 𝑛.

The biggest FASL size reduction was observed for a file that
shrank from 53MBs to only 2MBs— a factor of 26.5! Since 𝑙𝑜𝑔226.5 ≈
4.7 we can assume a more deeply nested use of the exponential
macros there.

These are rough estimates, but the numbers speak a clear lan-
guage: for large Lisp systems, the impact of even moderately deeply
nested (i.e., 3 ≤ 𝑛 ≤ 5) exponential macros can be catastrophic in
terms of compilation time and FASL sizes.

6 LIMITATIONS OF THE TECHNIQUES
Whereas these refactoring patterns should cover a large region of
exponential with- cases in practice, they are far from offering a
complete solution. An example of a macro that cannot be refac-
tored with the so-far discussed techniques is shown in Figure 10.
Essentially, the problem is that the else branch establishes a lexical
context for ,control-p, but the then branch doesn’t, and that it is

3Obviously, the FLET-based technique will yield the same results.
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impossible to know at compile time which branch will be active. A
solution akin to progv would be needed, but for lexical variables.

7 CONCLUSION
I presented techniques for refactoring exponential macros into
linear ones. From my experience with System X, I learned that
three (not overly carefully designed) macros can suffice to severely
(i.e., exponentially) affect compilation time and FASL size.

It is not entirely fair to blame the original designers of these
macros for causing so much trouble in the later life of System X.
Each project starts small, and the macros were originally doing fine.
Only later in System X’s life cycle did the effects of exponential
macro expansion degrade its compilation time (and corresponding
FASL file sizes) drastically. Incremental development and compila-
tion, over-night build systems, multiple developers, and a focus on
functional rather than non-functional system characteristics were
all factors that contributed to code that grew like a malignant can-
cer. The power of Common Lisp macros can be a double-edged
sword and needs to be handled with diligence and delicacy. For-
tunately, Common Lisp is also powerful enough to offer a cure to
these problems, as we tried to illustrate in this Experience Report.
We hope that our experience will help other developers to avoid
such situations in their own projects.

Could some of this rewriting process be automated? For sure,
compilers could warn about potentially expensive macro expan-
sions, or try to identify exponential expansion. A
macroexpand-all as part of a Common Lisp IDE would certainly
help as well. Interestingly, the code rewriting techniques described
in Sections 3 and 4 seems straight-forward enough that it might
be possible to automate, at least for certain macro patterns (but
might be undecidable in general). This could be interesting future
research, and I would appreciate any pointers and feedback from
the Lisp community — surely, this problem is not new, yet I wasn’t
able to find papers that would cover this topic. I hope that this
report will fill this gap, and also raise awareness in Common Lisp
developers for such issues.
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