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Problem: Cross-view Geolocalization (CVGL)
Input:
1. Ground: Visual, lidar, radar sensors

2. Aerial: Visual, semantic, infrared, elevation orthomaps

Output:
Georegistered location (+orientation)

Map data: Bing Maps 2023, © Vexcel Imaging
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Problem: Cross-view Geolocalization (CVGL)

Large-Area CVGL Metric CVGL
Search region Large (e.g. city-scale) Small (< ~100m)
Approach Image Retrieval Pose estimation
Prediction Target image patch (~10-100m)

Probabilistic
Metric pose
(Non-)Probabilistic

Metrics Recall Recall, mean position error
Datasets CVUSA [1], CVACT [2], VIGOR [3], … ???

Two categories of approaches:
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Metric Cross-view Geolocalization

M
ap data: Bing M

aps 2022, ©
 Vexcel Im

aging

Ours [4] OrienterNet [5] SliceMatch [6]

Example predictions from CVPR2023 papers:



Metric Cross-view Geolocalization

Features Properties

Local feature descriptors (e.g. SURF [7])
Raw data (e.g. NMI [8])

– Invariance       Discriminance
– Unmatched surface areas
– Transformation between PV and BEV

Semantic: Buildings [9,10], roads + trajectory 
[11,12], lane markings [13,14], vertical 
structures, …

– Invariance Discriminance
– Requires presence of semantic classes
– Transformation between PV and BEV

End-to-end learned [4,5,6,17,18] + Invariance       Discriminance
+ Transformation between PV and BEV can be 
learned
– Data and ground-truth collection

Categories of approaches based on extracted features:
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Example: Local feature descriptors

Projected 
ground image

Aerial image

1. Project to BEV via homography

2. Extract & match SURF features

From: Vehicle ego-localization by matching in-vehicle camera images to an aerial image (Noda et al., 2011) [7]
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Example: Prototype
1. Visual SLAM (ORB-SLAM)

2. Semantic segmentation

3. Iterative closest points

Vehicle Data: KITTI      Map data: OpenStreetMaps
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End-to-end Metric CVGL

1. With range-scanners
• First: Rsl-net: Localising in satellite images from a radar on the ground

Tang et al. RA-L 2020
• Ours: Continuous self-localization on aerial images using visual and lidar sensors

Fervers et al. IROS 2022

2. Vision-only (without range-scanners)
• Related: Image retrieval methods [19][20], regression [3]
• First: Beyond cross-view image retrieval: Highly accurate vehicle localization using satellite image

Shi et al. CVPR 2022
• Ours: Uncertainty-aware Vision-based Metric Cross-view Geolocalization

Fervers et al. CVPR 2023



Main Contributions:

1. Propose end-to-end trainable model for vision-based metric CVGL

2. State-of-the-art performance even in zero-shot setting

3. Improved ground-truth for multiple datasets

Code and ground-truth available at https://fferflo.github.io/projects/vismetcvgl23
11

Uncertainty-aware Vision-based Metric Cross-view 
Geolocalization, Fervers et al., CVPR 2023 [4]

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging

https://fferflo.github.io/projects/vismetcvgl23


(a) Feature extraction
• ConvNeXt [1] + simple decoder
• Shared weights for ground images

(b) Perspective View to Bird’s Eye View (PV2BEV)
• Cross-attention: BEV point pillars projected onto PVs 

(with deformable offsets)
• Self-attention: SegFormer [2] block

(c) Predict 3-DoF Pose Distribution
• Cross-Correlation (via FFT)

12

Model Summary
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Data

Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes No ?

We consider the following datasets:
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Data
We consider the following datasets:

Accurate georegistration? Problems:
• Invalid geo-pose of vehicle
• Invalid geo-registration of aerial images
• Hard to verify

Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) ?

Google Maps, Bing Maps, Stratmap, DCGIS, MassGIS
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Data – How to verify georegistration accuracy?

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging

Vehicle data: Ford AV dataset

Is this registration accurate?
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Data – How to verify georegistration accuracy?

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging

Vehicle data: Ford AV dataset

Is this registration accurate? è yes
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Data – How to verify georegistration accuracy?

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging

Vehicle data: Ford AV dataset

Is this registration accurate? è no
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Data
We consider the following datasets:

Accurate georegistration? Problems:
• Invalid geo-pose of vehicle
• Invalid geo-registration of aerial images
• Hard to verify

Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) ?
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Data
We consider the following datasets:

Accurate georegistration? Problems:
• Invalid geo-pose of vehicle
• Invalid geo-registration of aerial images
• Hard to verify
• Can manually produce georegistration when lidar points are available

Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) Manual labelling: 
Single frames
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Data
We consider the following datasets:

Accurate georegistration? Problems:
• Invalid geo-pose of vehicle
• Invalid geo-registration of aerial images
• Hard to verify
• Can manually produce georegistration when lidar points and trajectories are available

Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) Manual labelling: 
Trajectories
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Pseudo-labels
Model:
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Pseudo-labels
Model: Steps:

1. Manually label subset of data
2. Train pseudo-label model on subset
3. Predict labels for all samples
4. Optimize using least squares

a) Use inter-frame transforms with high confidence
b) Use model predictions with low confidence

(5.   Verify) 
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Data
We consider the following datasets:
Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) Manual labelling: 
Trajectories
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Data
We consider the following datasets:
Datasets from Examples Camera Lidar Trajectories Aerial images Accurate Georeg.

Large-Area 
CVGL

CVUSA, CVACT, 
VIGOR, …

Yes No No Yes ?

Autonomous 
driving

KITTI, Ford AV, 
Nuscenes, …

Yes Yes Yes (Yes) Manual labelling
Pseudo-labelling
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Data – Without Pseudo-labels

Map data: Bing Maps © 2022 TomTom, © Vexcel ImagingMap data: Bing Maps © 2022 TomTom, © Vexcel Imaging



26

Data – With Pseudo-labels

Map data: Bing Maps © 2022 TomTom, © Vexcel ImagingMap data: Bing Maps © 2022 TomTom, © Vexcel Imaging
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Data – Invalid data samples
Remove data samples with low prediction confidence of pseudo-label model

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging

Tunnel: Out-of-date data:

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging
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Data

SD: Average scene duration. Data-frames are divided into disjoint cells with size 100m x 100m to measure aerial coverage.



Recall on Ford AV (search region: ~28m, 20°):

cross-area:         train/test data from non-overlapping regions
cross-vehicle:     train/test data captured with different camera setup lateral recall

longitudinal recall
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Results
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Predictions on Ford AV (search region: ~28m, 20°):

Front
Camera

Back
Camera

Model
Prediction

Results

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging
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Tracker on Ford AV (10x speed):

Aerial image (lidar scans shown for visualization only)

Front Camera

Results
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Feature Visualization – Ford AV

Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging
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• Related works:
a) Low-level
b) High-level semantic
c) High-level end-to-end

• Novel model for vision-based metric CVGL

• State-of-the-art performance even in zero-shot setting

• Improved ground-truth for multiple datasets
1. Pseudo-labels
2. Automated data-pruning

• Code and ground-truth available online:

https://fferflo.github.io/projects/vismetcvgl23

Conclusion

https://fferflo.github.io/projects/vismetcvgl23
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