Where We Are and What We're Looking At

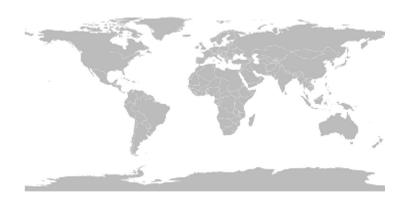
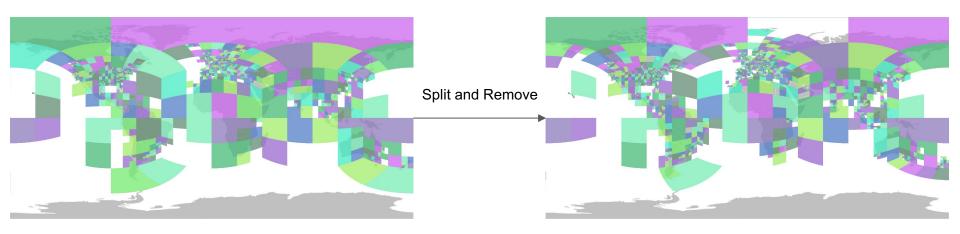

Brandon Clark, Alec Kerrigan, Parth Kulkarni, Vicente Cepeda, Mubarak Shah

Image Geo-localization

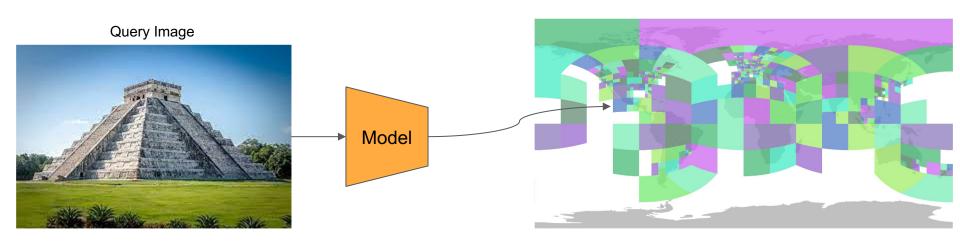
- Geo-localization deals with predicting the GPS Coordinates of a query Image
- This task has been explored with two main techniques
 - Retrieval
 - Classification

???



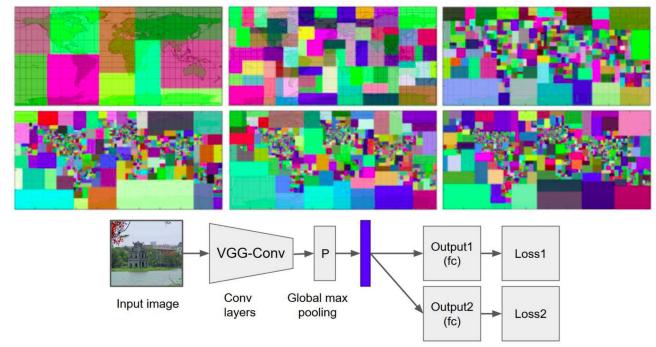
Retrieval

Match features from a query image to images in a reference database Reference Use the matched image's GPS as your prediction Database Reference **Features** Query Image Query Features Model Model

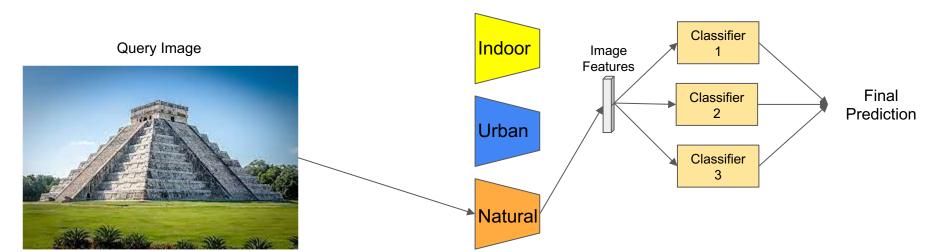

Classification

- Project the Earth onto a cube with each side as a class
- Split classes that are "too large" into 4 new smaller classes
 - \circ "Too large" is defined by having more than t_{max} training images inside of it
- Remove classes that are "too small"
 - \circ "Too small" is defined by having more than t_{min} training images inside of it

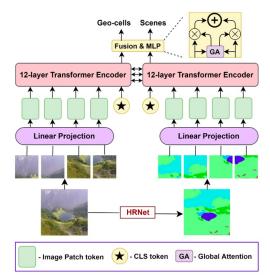
Classification


- Split Earth into geographic classes based on the training set
- Predict which class an image belongs to

Advantages of Classification Approach

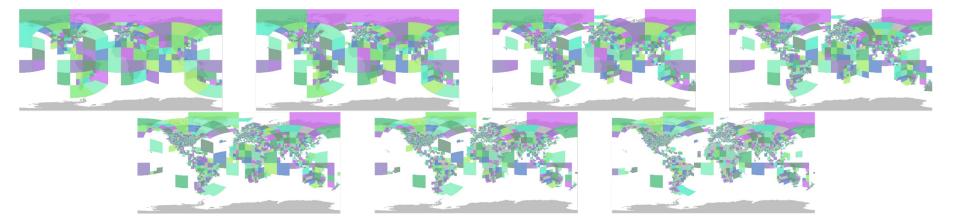

- Classification provides an immediate prediction with one forward pass
- Allows you to cover the entire Earth in cells
- Can use multiple hierarchies of cells to refine prediction

- Revisiting IM2GPS in the Deep Learning Era, Vo et. al. ICCV 2017
- Using multiple partitions of the Earth helps accuracy



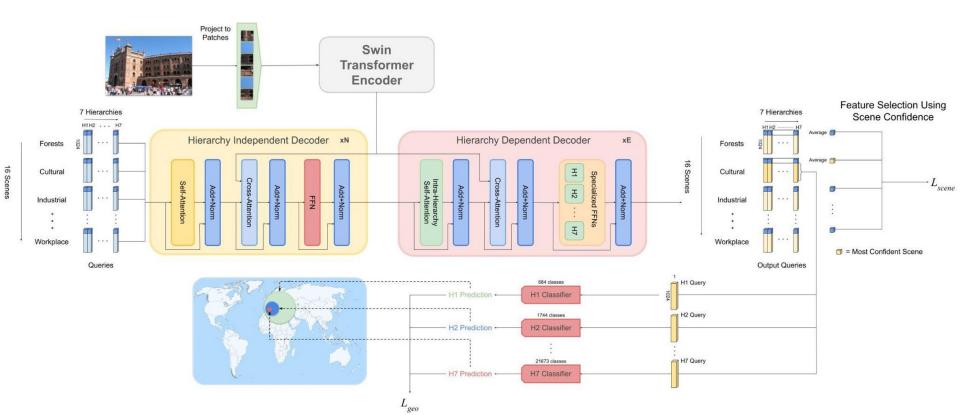
- Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification, Muller-Budack et. al. ECCV 2018
- Combine Hierarchical Predictions

- Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification, Muller-Budack et. al. ECCV 2018
- "Individual Scene Networks" (ISNs)
 - Training images are labelled as "Indoor", "Urban", or "Natural" by a trained model
 - Separate network for each scene label

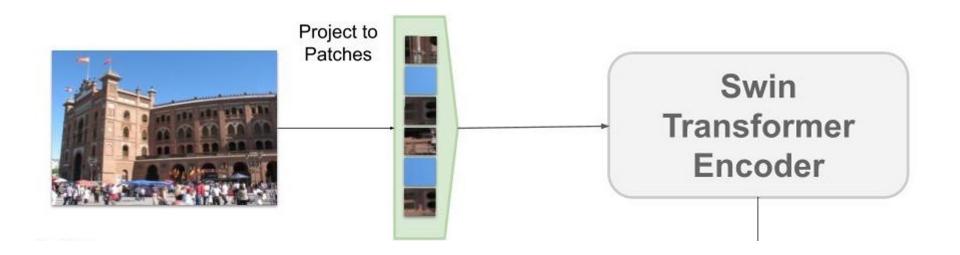


- Where in the World is this Image? Transformer-based Geo-localization in the Wild, Pramanick et. al. ECCV 2022
- First to use Transformers for Geo-classification (Translocator)
- Used Semantic Segmentation to improve accuracy

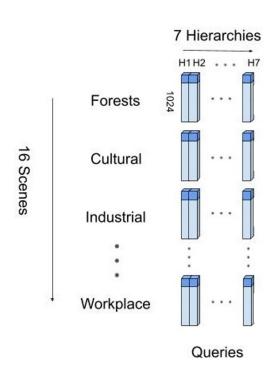
Our Approach: Hierarchies


- Previous works only get one set of features for a query image
 - Different hierarchies might need to look at different features
- Our approach extracts features for every geographic hierarchy used
 - 7 hierarchies
 - Ablations on 1, 3, 5, and 7 hierarchies

Our Approach: Scenes


- Previous papers only use 3 scene labels (indoor, urban, natural)
 - Use the labels directly (ISNs) or predict the label (Translocator)
 - While these three labels are easily distinguishable, this can be taken to deeper levels
- We extract features for 16 different scene labels
 - Ablations on 0, 3, 16, 365

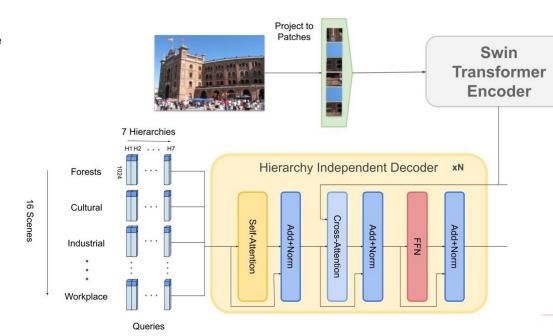
Model


Encoder

- Swin Transformer
- Pre-Trained on ImageNet
- Outputs 7x7x1024 Tensor

Decoder Queries (Hierarchy Queries)

- Each query is tasked to extract specific features
 - 7 Hierarchies * 16 Scenes = 112 Queries
- Dimension 1024
- Randomly initialized
- 0th channel is trained to be scene confidence

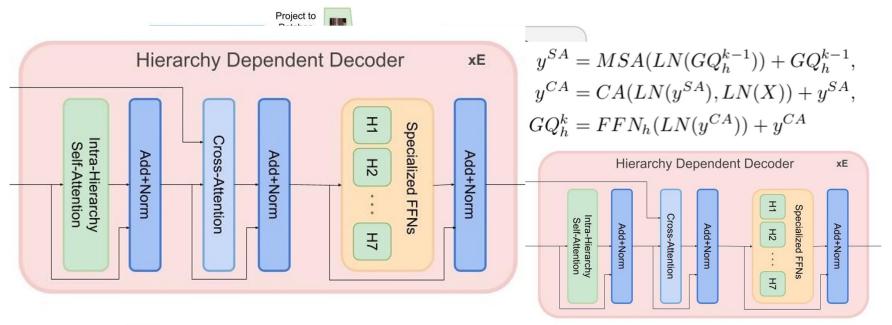


Hierarchy Independent Decoder

 Queries extract image features via Cross-Attention

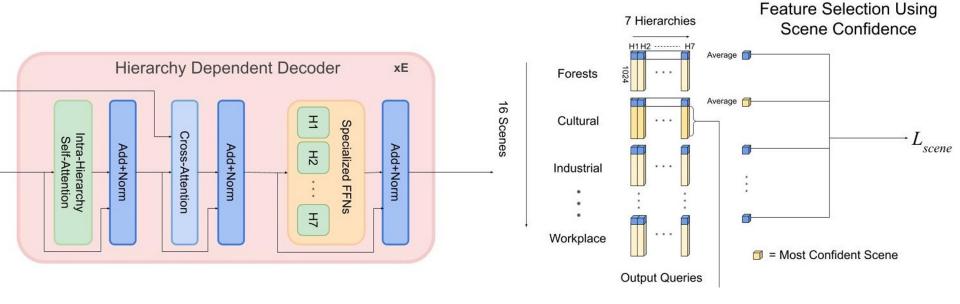
$$\begin{split} y^{SA} &= MSA(LN(GQ^{k-1})) + GQ^{k-1}, \\ y^{CA} &= CA(LN(y^{SA}), \\ GQ^k &= FFN(LN(y^{CA})) + y^{CA} \end{split}$$

$$\begin{split} y^{SA} &= MSA(LN(GQ^{k-1})) + GQ^{k-1}.\\ y^{CA} &= CA(LN(y^{SA}, LN(X)) + y^{SA},\\ GQ^k &= FFN(LN(y^{CA})) + y^{CA}. \end{split}$$


Hierarchy Dependent Decoder

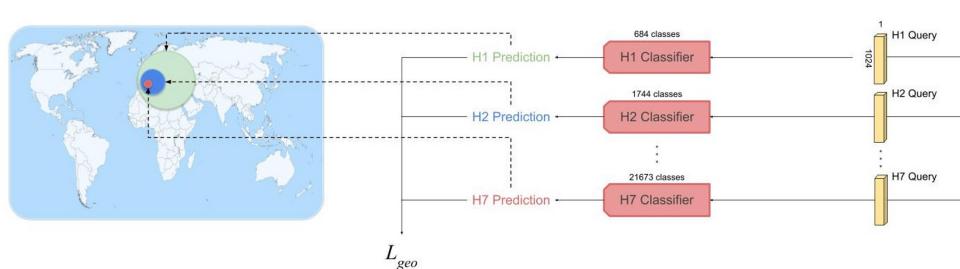
$$y^{SA} = MSA(LN(GQ_h^{k-1})) + GQ_h^{k-1},$$

$$y^{CA} = CA(LN(y^{SA}), LN(X)) + y^{SA},$$


$$GQ_h^k = FFN_h(LN(y^{CA})) + y^{CA}.$$

- Allows queries to specify which hierarchy they represent
- Self-Attention and FFNs are specific to each hierarchy

Scene Selection


- Average 0th Channel for each scene
- Highest value is the selected scene

Classification

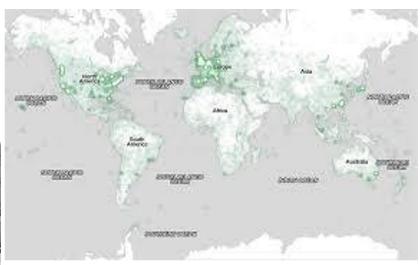
- Selected queries go to their specified classification layers
- Predictions from each hierarchy are used to make a final prediction

$$p(\hat{X}|C_a^{H_7}) \; = \; p(\hat{X}|C_a^{H_7}) * p(\hat{X}|C_b^{H_6}) * \dots * p(\hat{X}|C_g^{H_1}),$$

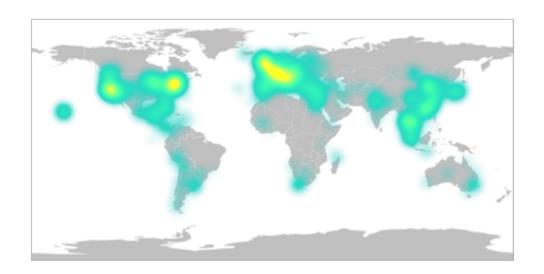
Model and Training Information

- 6 layers of Hierarchy Independent Decoder
- 2 layers of Hierarchy Dependent Decoder

Hyperparameter	Value

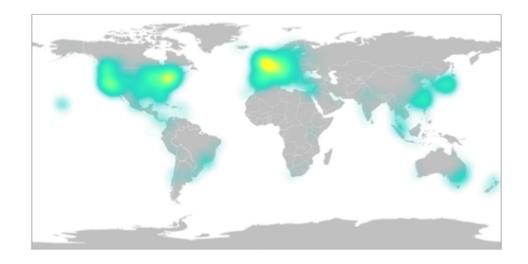

Training Dataset

- MediaEval Places 2016 (MP16)
 - 4.7M Images with GPS from Yahoo and Flickr
 - Subset of YFCC100M
 - Uncurated dataset



Testing Datasets

- Im2GPS
 - ~300 Images
- Im2GPS3k
 - ~3k Images
- Curated sets of landmarks

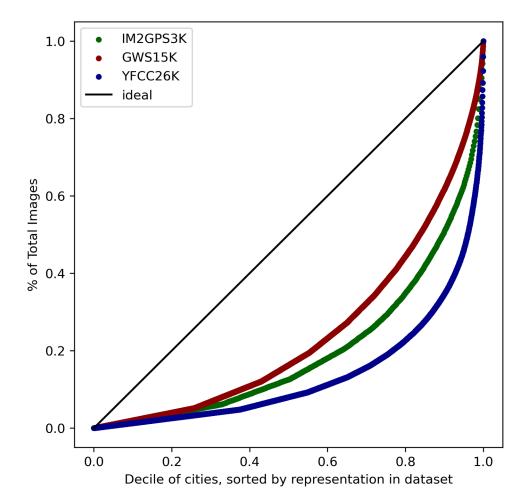


Testing Datasets

- YFCC4k
 - ~4k Images
- YFCC26k
 - ~26k Images
- Uncurated
- Subset of YFCC100M

New Dataset

- There's a problem with existing test sets
 - Landmarks or iconic places are simply a memory task
 - Flickr photos are from random social media users, so many images don't even have geolocalizable information
 - Not evenly distributed across the Earth
- How do we fix this
 - Collect random images from Google Street View
 - Ensures the image is geo-localizable
 - Can evenly distribute the images over the Earth


Google World Streets 15k (GWS15k)

- 1. Pick a Country with probability based on surface area
- 2. Pick a town or city in that country
- 3. Pick a random coordinate within 5Km of the town/city

Lorenz Curve

- Helps show fairness of datasets
- 1. Sort Cities based on # of images
- 2. Take bottom 10% of Cities
- Plot the % of Total images on the y-axis

Results

Results on Im2GPS

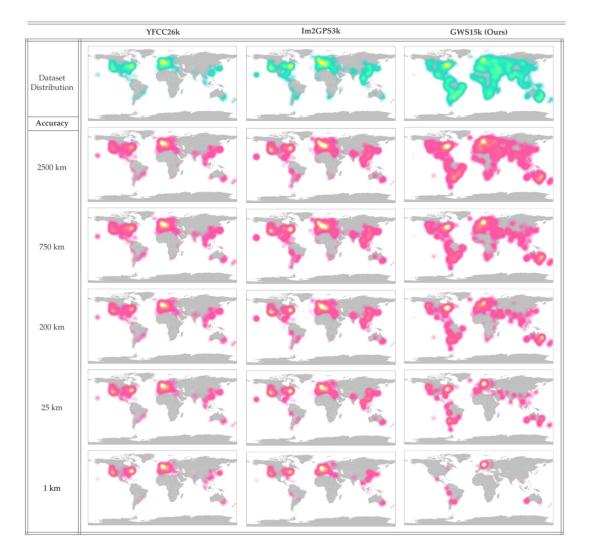
		Distance $(a_r [\%] @ km)$						
Dataset	Method	Street	City	Region	Country	Continent		
		1 km	$25~\mathrm{km}$	200 km	$750\mathrm{km}$	2500 km		
	Human [21]	_	_	3.8	13.9	39.3		
	[L]kNN, $\sigma = 4$ [21]	14.4	33.3	47.7	61.6	73.4		
	MvMF [5]	8.4	32.6	39.4	57.2	80.2		
	PlaNet [22]	8.4	24.5	37.6	53.6	71.3		
Im2GPS	CPlaNet [15]	16.5	37.1	46.4	62.0	78.5		
[4]	ISNs (M, f, S_3) [11]	16.5	42.2	51.9	66.2	81.0		
	ISNs (M,f^*,S_3) [11]	16.9	43.0	51.9	66.7	80.2		
	Translocator	19.9	48.1	64.6	75.6	86.7		
	Ours	22.1	50.2	69.0	80.0	89.1		

Results on Im2GPS3k

		Distance $(a_r [\%] @ km)$						
Dataset	Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km		
	[L]kNN, $\sigma = 4$ [21]	7.2	19.4	26.9	38.9	55.9		
	PlaNet [†] [22]	8.5	24.8	34.3	48.4	64.6		
Im2GPS	CPlaNet [15]	10.2	26.5	34.6	48.6	64.6		
3 k	ISNs (M, f, S_3) [11]	10.1	27.2	36.2	49.3	65.6		
	ISNs (M,f^*,S_3) [11]	10.5	28.0	36.6	49.7	66.0		
[<mark>21</mark>]	Translocator	11.8	31.1	46.7	58.9	80.1		
	Ours	12.8	33.5	45.9	61.0	76.1		

Results on YFCC4k

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street	City	Region	Country	Continent	
		1 km	25 km	200 km	750 km	2500 km	
	[L]kNN, $\sigma = 4$ [21]	2.3	5.7	11.0	23.5	42.0	
	PlaNet [†] [22]	5.6	14.3	22.2	36.4	55.8	
	CPlaNet [15]	7.9	14.8	21.9	36.4	55.5	
YFCC	ISNs $(M, f, S_3)^{\ddagger}$ [11]	6.5	16.2	23.8	37.4	55.0	
4k	ISNs $(M,f^*,S_3)^{\ddagger}$ [11]	6.7	16.5	24.2	37.5	54.9	
[<mark>21</mark>]	Translocator	8.4	18.6	27.0	41.1	60.4	
	Ours	10.3	24.4	33.9	50.0	68.7	


Results on YFCC26k

		Distance $(a_r [\%] @ km)$						
Dataset	Method	Street	City	Region	Country	Continent		
		1 km	25 km	200 km	750 km	$2500~\mathrm{km}$		
	PlaNet [‡] [22]	4.4	11.0	16.9	28.5	47.7		
VECC	ISNs $(M, f, S_3)^{\ddagger}$ [11]	5.3	12.1	18.8	31.8	50.6		
26k	ISNs $(M, f^*, S_3)^{\ddagger}$ [11]	5.3	12.3	19.0	31.9	50.7		
	Translocator	7.2	17.8	28.0	41.3	60.6		
[18]	Ours	10.1	23.9	34.1	49.6	69.0		

Results on GWS15k

			Dista	$nce (a_r [\%])$	@ km)	
Dataset	Method	Street	City	Region	Country	Continent
		1 km	25 km	200 km	750 km	2500 km
GWS	Translocator*	0.5	1.1	8.0	25.5	48.3
$15\mathbf{k}$	Ours	0.7	1.5	8.7	26.9	50.5

Accuracy Distribution

Ablation Study on GeoDecoder Depth

			Dista	@ km)		
Dataset	Depth	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km
*	3	11.9	32.9	45.0	59.5	75.4
Im2GPS3k	5	12.5	33.3	45.2	60.1	75.9
[21]	8	12.8	33.5	45.9	61.0	76.1
	10	12.5	33.2	45.2	60.1	76.2
- 5	3	9.7	23.5	33.4	49.3	68.3
YFCC26k	5	9.9	23.6	33.8	49.6	68.5
[18]	8	10.1	23.9	34.1	49.6	69.0
	10	10.0	23.7	33.6	50.1	69.2

Ablation Study on Scene Prediction Method

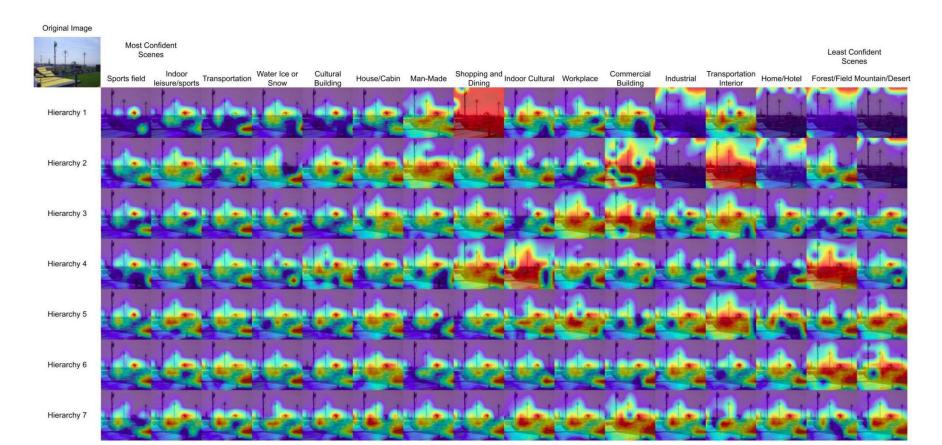
			@ km)			
Dataset	Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km
I2CDC2L	No Scene Prediction	11.7	31.5	42.3	57.0	72.3
Im2GPS3k [21]	Scene Prediction [12]	12.2	32.8	44.3	59.5	75.8
	Ours	12.8	33.5	45.9	61.0	76.1
VECC14.	No Scene Prediction	9.4	22.9	32.6	48.0	65.4
YFCC26k [18]	Scene Prediction [12]	9.7	23.2	33.0	48.8	67.0
	Ours	10.1	23.9	34.1	49.6	69.0

Ablation Study on Number of Scenes

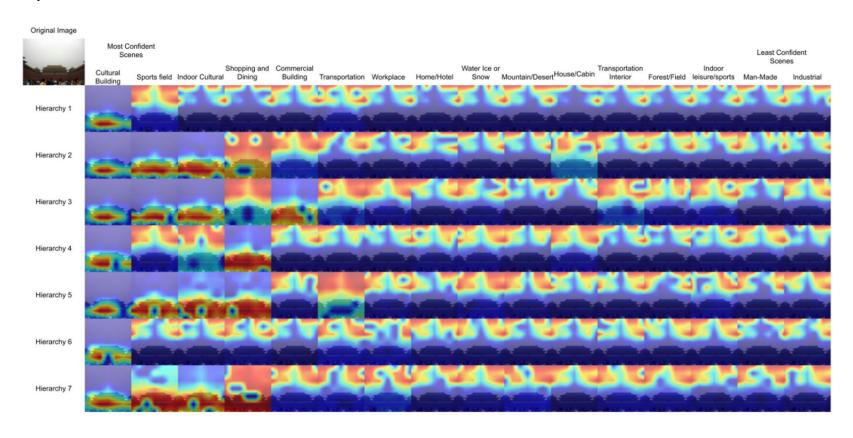
			Dista	$\mathbf{nce}\left(a_{r}\left[\%\right]\right)$	@ km)	
Dataset	# of Scenes	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km
Im2GPS3k	0	11.8	30.4	46.2	58.3	77.6
1m2GP83k [10]	3	12.0	31.7	47.0	59.8	78.4
	16	12.2	32.0	47.9	60.5	79.8
	365	11.9	31.8	47.2	58.5	78.6
YFCC26k	0	8.0	19.8	30.1	44.6	62.2
	3	8.4	20.5	31.0	46.0	64.8
[<mark>9</mark>]	16	8.7	21.4	31.6	47.8	66.2
	365	8.5	21.6	30.2	46.4	64.9

Ablation Study on Hierarchy Dependent Decoder

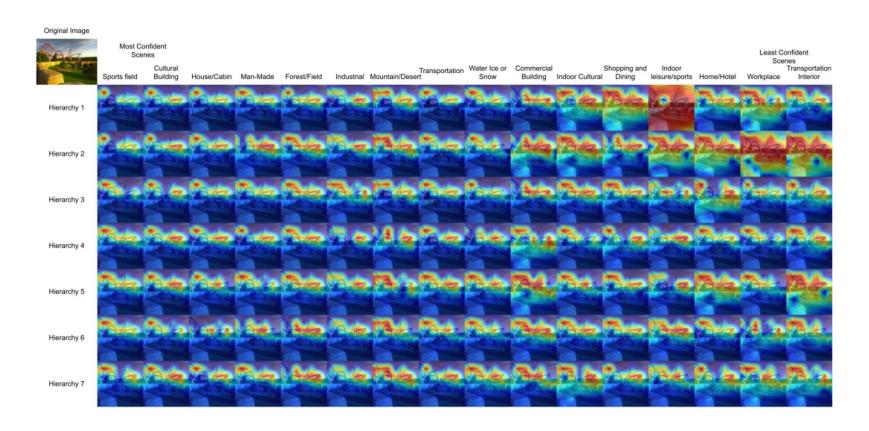
Dataset		Distance $(a_r [\%] @ km)$							
	Layers	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km			
Im2GPS 3k [21]	0	12.2	33.2	45.5	60.3	75.8			
	2	12.8	33.5	45.9	61.0	76.1			
	4	12.8	33.4	45.0	60.7	75.6			
	6	12.6	33.2	44.5	59.9	75.3			
YFCC26k [18]	0	9.7	23.5	33.8	49.2	68.7			
	2	10.1	23.9	34.1	49.6	69.0			
	4	9.9	23.4	33.6	49.0	68.3			
	6	8.7	22.6	33.0	48.6	67.6			


Ablation Study on Encoder Type

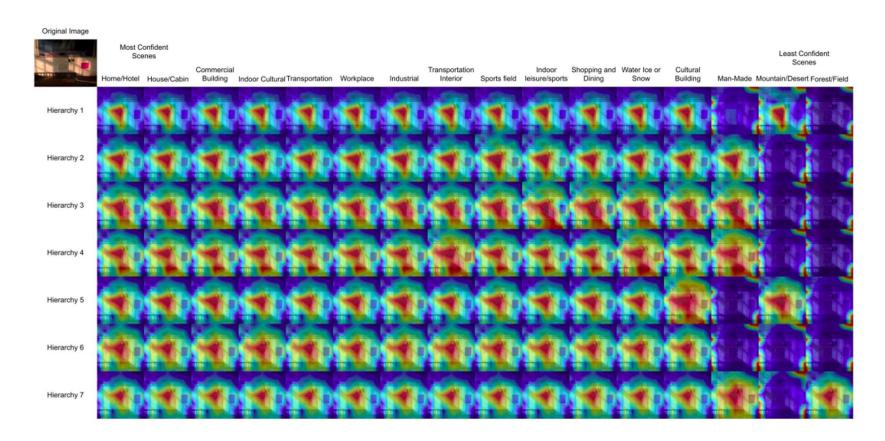
Dataset		Distance $(a_r [\%] @ km)$						
	Model	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km		
YFCC26k [18]	ViT	6.9	17.3	27.5	40.5	59.5		
	Swin	9.6	22.3	33.6	48.0	67.5		
	Ours (ViT)	8.7	21.4	31.6	47.8	66.2		
	Ours (Swin)	10.1	23.9	34.1	49.6	69.0		

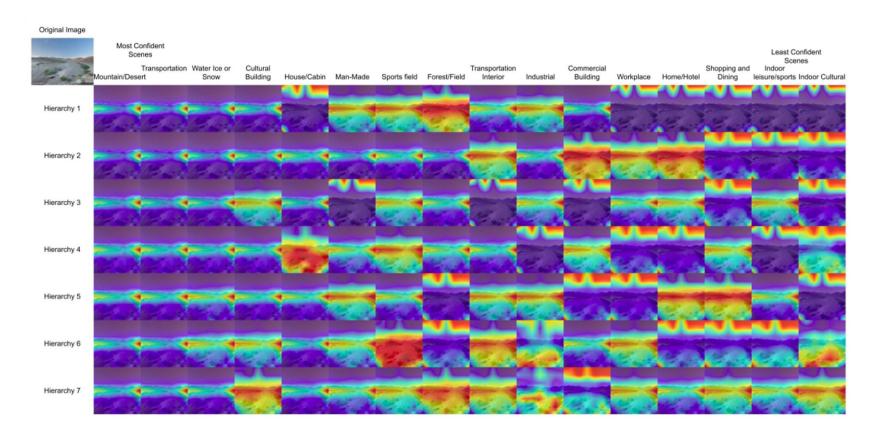

Ablation Study on Number of Hierarchies

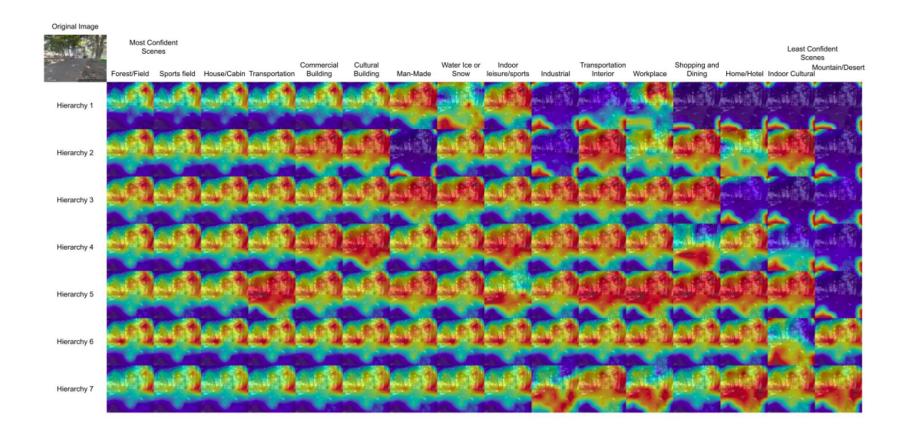
		Distance (a _r [%] @ km)						
Dataset	# of hierarchies	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km		
Im2GPS3k [10]	1	9.8	29.6	41.1	56.4	73.5		
	3	12.8	34.5	46.1	61.5	76.7		
	5	13.4	34.4	45.4	61.1	76.1		
	7	14.3	34.8	45.7	61.3	76.0		
YFCC26k [9]	1	6.7	18.2	29.0	45.2	64.0		
	3	10.1	24.3	34.7	50.1	67.8		
	5	10.2	24.1	34.8	50.0	67.7		
	7	10.8	23.5	34.0	49.3	67.4		
GWS15k	1	0.0	0.9	5.7	21.8	44.0		
	3	0.2	1.3	7.9	25.4	49.4		
	5	0.6	1.7	8.1	24.3	48.0		
	7	0.2	1.0	6.9	22.7	46.2		


Qualitative Results Im2GPS3k

Qualitative Results Im2GPS3k


Qualitative Results Im2GPS3k


Qualitative Results YFCC26k


Qualitative Results YFCC26k

Qualitative Results GWS15k

Qualitative Results GWS15k

GWS15k Images Predicted <1Km

GWS15k Images Predicted <25Km

GWS15k Images Predicted <200Km

GWS15k Images Predicted <750Km

GWS15k Images Predicted <2500Km

GWS15k Images Predicted >3000Km

