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Query Image

Image geo-localization



Visual Geo-localization
Designed to be applied at a large global scale

Ground Image Geo-localization
Predicts the global position of ground images

Satellite Image Geo-localization
Predicts the global position of satellite images

Singe View Approaches

Cross View Approaches
Use both ground and satellite images to predict 

the global position of the ground images

Ground view object  Geo-localization
Predicts the global position of objects in 

ground images

Satellite view object Geo-localization
Predicts the global position of objects in 

satellite images

Image Geo-localization

Object Geo-localization

Image and Object Geo-localization

Daniel Wilson, Xiaohan Zhang, Waqas Sultani, Safwan Wshah, “Visual and Object Geo-localization: A Comprehensive Survey”, 
arXiv preprint arXiv:2112.15202



Image and Object Geo-localization

Visual localization
Designed to be applied at a small scale

Object Localization
Predicts position of the object within the image

Camera Pose Estimation
Predicts pose of camera locally

SLAM
Constructs a map of the surrounding 

environment, typically in real time
Daniel Wilson, Xiaohan Zhang, Waqas Sultani, Safwan Wshah, “Visual 
and Object Geo-localization: A Comprehensive Survey”, arXiv preprint 
arXiv:2112.15202



Image Geo-localization

Ground-view 
Geo-localization

Cross-view 
Geo-localization



Image Geo-localization

Object Geo-localization



Cross-view image geo-localization

Query Image

Reference database

Challenges in cross-view 
geo-localization:

• Drastic view changes

• Different capturing time

• Different object resolution
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Limitations

• The performance of cross-view geo-localization methods degrades on cross-
area benchmarks.

• Lack of ability to extract the spatial configuration of visual feature layout.

• Models overfit the low-level details from the training set.



Key Idea

ü Explicitly disentangle geometric information from the raw features

ü Learn the spatial correlations among visual features  from aerial and 
ground pairs

Xiaohan Zhang, Xingyu Li, Waqas Sultani, Yi Zhou, Safwan Wshah,  “Learning Disentangled Geometric Layout Correspondence 
for Cross-View Geo-localization”, AAAI 2023 (Oral).



Overview

ü GeoDTR module generates a set of geometric layout descriptors which produce a high quality 
latent representations.

ü Analysis the effect of data augmentation for improved cross-area cross-view  geo-localization 
performance.

ü To help geometric layout descriptor in exploring spatial information, we propose to employ 
counterfactual-based learning process.



GeoDTR Overview
1. CNN backbones extract raw features r"($) from input 

images &'
"($) augmented by Layout simulation and 

Semantic augmentation (LS).



2. r"($) are then passed to Geometric Layout Pathway

to get layout descriptors P"($) and Backbone Feature 

Pathway to produce latent feature '"($) by Frobenius

product.

1. CNN backbones extract raw features r"($) from input 

images ()
"($) augmented by Layout simulation and 

Semantic augmentation (LS).

GeoDTR Overview



3. A Counterfactual learning paradigm is adopted to 

generate a counterfactual descriptors !P#(%).

2. r#(%) are then passed to Geometric Layout Pathway

to get layout descriptors P#(%) and Backbone Feature 

Pathway to produce latent feature (#(%) by Frobenius

product.

1. CNN backbones extract raw features r#(%) from input 

images )*
#(%) augmented by Layout simulation and 

Semantic augmentation (LS).

GeoDTR Overview



Geometric layout extractor

Geometric Layout Extractor takes raw feature r
extracted by backbone as input. 
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Geometric Layout Extractor takes raw feature r
extracted by backbone as input. 

An embedding layer projects " into K subspaces. Then 
combined with index-aware position encoding and K embedding 
vectors to get E = ['(, '*, … ',].

A max pooling layer along channel is applied to obtain 
Saliency feature map "
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A max pooling layer along channel is applied to obtain 
Saliency feature map !

Finally, a transformer is applied to explore correlations in E. 
After the transformer, another embedding layer produces 
geometric layout descriptors P.

An embedding layer projects ! into K subspaces. Then 
combined with index-aware position encoding and K embedding 
vectors to get E = ['(, '*, … ',].

Geometric Layout Extractor takes raw feature r
extracted by backbone as input. 

Geometric layout extractor



Counterfactual-based learning process

!

"

# is obtained from $ by geometric layout extractor



Counterfactual-based learning process

!

"
# $ is the Frobenius product of % and &.



!

"
#

$%(" = (")

An intervention *+(, = -,) is applied on , which 
replaces " into randomly sampled vectors -,.

Counterfactual-based learning process
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&'(" = *")

A counterfactual latent feature %# can 
be produced via ! and "̂.

Counterfactual-based learning process
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&'(" = *")

Since "̂ is randomly sampled, there is 
no causal relation between ! and "̂.

Counterfactual-based learning process



!

"
#

!

"̂

%#&'(

)*(" = -")

A counterfactual loss is 
applied on # and %# to 
maximize the distance as 
follow,

&'( = log(1 + 456[|(, %(|:])

Counterfactual-based learning process



Data augmentation

• Usually break the correspondence 
between aerial-ground pairs and 
incapable to provide diverse layout.

Aerial image Ground image



• No sufficient attention on the 
low-level details.

Aerial image Ground image (Cropped)

• Usually break the correspondence 
between aerial-ground pairs and 
incapable to provide diverse layout.

Data augmentation



ü Layout simulation

ü Semantic augmentation
LS techniques

Data augmentation



• Layout simulation aims to generate aerial-ground pairs with unseen 
layouts by using geometric transformations that satisfy the following 
requirements:

I. The generated aerial-ground pairs should keep the correspondence.

II. The generation process must maintain the low-level details.

Layout simulation



Rotation

Layout simulation



Layout simulation

Rotation



Layout simulation

FLIP

Aerial image
Polar transformed aerial image

Ground image



Layout simulation

FLIP

Aerial image
Polar transformed aerial image

Ground image



• Semantic augmentation modifies the low-level features in aerial and 

ground images separately by randomly adjusting or applying:

• Brightness

• Contrast

• Saturation

• Gaussian blur 

• Image grayscale

Semantic augmentation
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Training objectives

1. Counterfactual loss :
!"#
$(&) = log(1 + ./0[|#3(4), 6#3(4)|7])

2. Soft margin triplet loss :

!9:;<=>9 = log(1 + .?[|#@
4,#@3|7 /|#@

4,#A3|7])

3. Total loss :
! = !9:;<=>9 + !"#

$(&)



Implementation details

• A ResNet-34 is employed as backbone.

• ! and " are set to 10 and 5 respectively.

• The model is trained on a single Nvidia V100 GPU for 200 epochs with an AdamW optimizer.

• The number of descriptors # is set to 8.

• Our code can is open-sourced at https://gitlab.com/vail-uvm/geodtr



Experiments Setup

CVUSA:

• 35,532 training pairs 

• 8,884 testing pairs.

CVACT :

• 35,532 training pairs 

• 8,884 validation pairs (CVACT_val).

• 92,802 testing pairs (CVACT_test).

Evaluation Metrics:

Similar to existing methods, we choose to use recall 

accuracy at top ! ("@!) for evaluation purposes. 

We use "@1, "@5, "@10, and "@1%.



Experiment – CVUSA same-area



Experiment – CVACT same-area



Experiment – Cross-area



Experiment – LS on other methods



Learned descriptors visualization



Summary

1. GeoDTR disentangles geometric information from raw features to better captures the 

correspondence between aerial and ground images.

2. Layout simulation and semantic augmentation (LS) techniques improve the 

performance  of GeoDTR (as well as other existing models) on cross-area experiments.

3. A novel counterfactual-based learning schema guides GeoDTR to better grasp the 

spatial configurations and therefore produce better latent feature representations.





Limitations

• Cross-view image geo-localization heavily rely on panoramic query images. 

• Limited field-of-view (FOV) images are more common than panoramas. 

(a) Panoramic images coverage (b) Limited FOV images coverage



Cross-View Image Sequence 
Geo-localization

Xiaohan Zhang, Waqas Sultani, Safwan Wshah , Cross-View Image Sequence Geo-localization, WACV 2023



Motivation

• Cross-view image geo-localization heavily rely on panoramic 

query images. 

• Limited field-of-view (FOV) images are more common than 

panoramas. 

• Sequence of limited FOV images expands the range of visibility 

of a single limited FOV image.

• We propose to geo-locate sequences of limited FOV images 

instead of panoramas.

(a) Panoramic images coverage

(b) Limited FOV images coverage



Dataset

• Covers more than 500 km of road in Vermont, USA.

• Various coverage area, urban, suburban, highway, etc. 

• Dataset contains 118,549 ground images and forms 

38,863 satellite-sequence pairs.

• The dataset does not contain panoramic images.

Dataset coverage area



Samples from our dataset



Samples from our dataset



Sequence Formation

Road

represents the ground image locations

Driving direction



Sequence Formation
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VGG16 VGG16 VGG16 VGG16

Soft Margin Weighted 
Triplet Loss

Layer Normalization
Multi-head Self Attention

Layer Normalization
Feed Forward

!×

Temporal Feature Aggregation 
Module (TFAM)

Proposed Model

Average 
Pooling #$%&

VGG16#'()

Ground-level 
image sequence

Satellite image
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Layer Normalization
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Sequential Dropout

Dropout frame 
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Average 
Pooling

Soft Margin Weighted 
Triplet Loss
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Mask
Layer Normalization

Multi-head Self Attention

Layer Normalization
Feed Forward
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Testing – using the full sequence

(×



Average 
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Mask
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Layer Normalization
Feed Forward

!"#$ !%&'

Inferencing

Filling 0s from 
position 0 to 

position 1
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Ground-level 
image sequence

Satellite imageTemporal Feature 
Aggregation Module
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Testing – simulating sequence length=3

Filling 0s from 
position 0 to 
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Ground-level 
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Satellite image
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Average 
Pooling

Soft Margin Weighted 
Triplet Loss

VGG16 VGG16 VGG16 VGG16

VGG16
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Multi-head Self Attention

Layer Normalization
Feed Forward
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Testing – simulating sequence length=1

Filling 0s from 
position 0 to 

position 5

Ground-level 
image sequence

Satellite image

)×



Baseline Methods:
• SAFA (center) : Training on using center 

image as query and testing on query center 
image only. 

• SAFA (sequence) : Training on using center 
image as query and testing on query 
sequence by feature averaging.

• VIGOR: Training on a query sequence in 
which center image is considered as 
“positive” and other images are “semi-
positive”.

Evaluation Metric:
We choose to use recall accuracy at top !
("@!) for evaluation purpose.
"@! measures the probability of the ground 
truth aerial image ranking within the first !
predictions given a query image. In the 
experiments, 
We evaluate for:
"@1, "@5, "@10, and "@1%.

Experiments



Experiments

R@1 R@5 R@10 R@1%

VIGOR 0.54% 2.52% 4.48% 18.55%

SAFA(center image as query) 0.68% 2.92% 5.06% 21.81%

SAFA(sequence as query) 0.63% 2.83% 5.03% 21.51%

Ours w/o Sequential Dropout 1.39% 6.50% 10.45% 32.42%

Ours 1.80% 6.45% 10.36% 34.38%



Ablation Studies

# of TFAMs # of Heads R@1 R@5 R@1%
0 0 0.91% 4.49% 26.69%
2 2 1.45% 6.22% 31.84%
4 2 1.40% 6.34% 32.97%
4 4 1.51% 6.27% 32.93%
6 4 1.59% 6.02% 32.14%
6 8 1.80% 6.45% 34.38%

# of dropout 
images

R@1 R@5 R@1%

1 1.40% 6.08% 31.89%

3 1.51% 6.64% 34.34%

5 1.63% 6.41% 34.40%

6 1.80% 6.45% 34.38%



Variant Sequence Lengths

Recall@1 Recall@5

Recall@10 Recall@1%



Qualitative Results

Blue boarder indicates ground truth

Top-5 predictionsQuery sequence



Sample results
Top-5 predictionsQuery sequence

Blue boarder indicates ground truth



Summary

1. A new end-to-end approach for cross-view image sequence geo-localization.

2. Put forward a novel large-scale cross-view image sequence geo-localization 

dataset. 

3. Propose a new sequential dropout technique to regularize the model to predict 

coherent features on sequences of different lengths.

Code and dataset are available at https://gitlab.com/vail-uvm/seqgeo



Codes

• https://zxh009123.github.io/

• https://gitlab.com/vail-uvm/geodtr

• https://gitlab.com/vail-uvm/seqgeo

https://zxh009123.github.io/
https://gitlab.com/vail-uvm/geodtr


Thanks


