

R²Former: Unified *R*etrieval and *R*eranking Transformer for Place Recognition

Sijie Zhu^{1,2}, Linjie Yang¹, Chen Chen², Mubarak Shah², Xiaohui Shen¹, Heng Wang¹ ¹ByteDance ²Center for Research in Computer Vision, University of Central Florida

Visual Geo-localization/Place Recognition

Query Image from Unknown Location

Retrieved Image

Reference Images from Known Locations

Retrieval + Reranking

RANSAC

RANSAC

$$\begin{bmatrix} x_1 & y_1 & \widehat{x_1} & \widehat{y_1} \\ \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & \widehat{x_n} & \widehat{y_n} \end{bmatrix}$$

Only take x,y coronates as input. (Geometric Information)

RANSAC is not optimal for reranking

Correlation/similarity and attention information are not considered.

RANSAC is not optimal for reranking

	Latenc	y per Query	Memory Foo	Memory Footprint (GB) \downarrow			
	Extraction Retrieval Reranking		MSLS Val	1M Images			
ResNet101 + NetVLAD [3,6]	9.60	2.33	N/A	4.79	244.14		
Patch-NetVLAD-s [26]	9.29	0.08	952.85	37.60	1917.29		
Patch-NetVLAD-p [26]	9.36	0.19	8377.17	908.30	46315.85		
TransVPR [53]	6.20	0.07	1757.70	22.72	1158.53		

>1 s >1000GB

A Unified Solution with Only Transformers

CNN Local Features

Transformer Tokens End-to-end Learnable 🗸 Χ• **Beyond Geometry** Transformers (**Retrieval**) Selected **Patch Pairs** Real-time Deployment ✓ Χ. Transformers (**Reranking**) **Reranking Score** (b) Our Unified Framework

UCF

Attention Map

Performance on Major Datasets

	MSLS Val [55]		MSLS	LS Challenge [55]		Pitts30k [50]			Tokyo 24/7 [49]				
	R@ 1	R@5	R@10	R@1	R@5	R@10		R@1	R@5	R@10	R@1	R@5	R@10
NetVLAD [3]	60.8	74.3	79.5	35.1	47.4	51.7		81.9	91.2	93.7	64.8	78.4	81.6
SFRS [23]	69.2	80.3	83.1	41.5	52.0	56.3		89.4	94.7	95.9	85.4	91.1	93.3
SP-SuperGlue [15,44]	78.1	81.9	84.3	50.6	56.9	58.3		87.2	94.8	96.4	88.2	90.2	90.2
Patch-NetVLAD [26]	79.5	86.2	87.7	48.1	57.6	60.5		88.7	94.5	95.9	86.0	88.6	90.5
TransVPR [53]	86.8	91.2	92.4	63.9	74.0	77.5		89.0	94.9	96.2	79.0	82.2	85.1
Ours	89.7	95.0	96.2	73.0	85.9	88.8		91.1	95.2	96.3	88.6	91.4	91.7

+9.1%

Top-1 Result on MSLS Challenge

Jan. 1, 2050, midnight UTC

End

MSLS Place	recognition	challenge
------------	-------------	-----------

Organized by mlop - Current server time: Oct. 30, 2022, 7:07 p.m. UTC

Current
Image-to-Image
Sept. 25, 2021, midnight UTC

ŧ	User	Entries	Date of Last Entry	recall@5 ▲
1	SijieZhu	1	03/14/23	0.88 (1)
2	changxinyuan.cxy	11	07/27/22	0.82 (2)
3	izquierdo	9	05/18/23	0.80 (3)
1	gberton	2	04/21/22	0.80 (4)
5	sobremesa	10	03/01/22	0.77 (5)
5	Jincheng2	3	10/16/22	0.77 (6)
7	MAX-OTW3	9	10/16/22	0.76 (7)
3	lijinchengECN	3	10/10/22	0.74 (8)
9	Cheng	15	10/22/22	0.74 (9)
0	qilongwu	5	04/04/23	0.74 (10)
1	jiang_163	4	05/23/23	0.73 (11)
2	lib2000	4	02/20/22	0.71 (12)
3	LSL10	3	04/07/23	0.69 (13)
4	Jincheng_LI	5	10/10/22	0.67 (14)
5	haiyang_hit	11	05/06/23	0.51 (15)

Computational Efficiency

	Feature Dim \downarrow		Latenc	y per Query	Memory Footprint (GB) \downarrow		
	Global	Local	Extraction	Retrieval	Reranking	MSLS Val	1M Images
ResNet101 + NetVLAD [3,6]	65536	N/A	9.60	2.33	N/A	4.79	244.14
Patch-NetVLAD-s [26]	512	936×512	9.29	0.08	952.85	37.60	1917.29
Patch-NetVLAD-p [26]	4096	2826×4096	9.36	0.19	8377.17	908.30	46315.85
TransVPR [53]	256	1200×256	6.20	0.07	1757.70	22.72	1158.53
Ours	256	500 imes (128+3)	8.81	0.07	202.37	4.79	244.01

×4.7 Faster

22% Cost

Comparison with Other Reranking Methods

	R@ 1	R@5	R@10
No Reranking	79.3	90.8	92.6
RANSAC [19]	84.9	93.0	94.5
RRT [48]	81.2	91.9	93.1
CVNet [32]	73.4	86.8	91.4
Ours	89.7	95.0	96.2

CVNet (Correlation Verification)

Transformer Token vs CNN Local Feature

	Architecture	R@1	R@5	R@10
	ViT-Small	79.3	90.8	92.6
Durs w/o Doronking	ResNet50 + GeM	79.6	90.9	92.6
Refanking	ViT-Base	84.9	92.7	94.5
Ours w/ RANSAC	ViT-Small	84.9	93.0	94.5
	ResNet50 + GeM	84.3	91.4	93.0
	ViT-Base	87.0	93.0	94.6
	ViT-Small	89.7	95.0	96.2
Ours	ResNet50 + GeM	88.4	93.6	95.3
	ViT-Base	90.0	95. 1	96.9

Interpretability

(a) Image Pair

(b) Selected Tokens

(c) RANSAC Matched Local Pairs

(d) Ours Top-20 Highlighted Local Pairs

UCF

Case Study

Summary

- A unified retrieval and reranking framework for place recognition employing only transformers, which demonstrates that vision transformer tokens are comparable and sometimes better than CNN local features in terms of reranking or local matching.
- A novel transformer-based reranking module that learns to attend to the correlation of informative local feature pairs. It can be combined with either CNN or transformer backbones with better performance and efficiency than other reranking methods, e.g. RANSAC.

Code: <u>https://github.com/Jeff-Zilence/R2Former</u>

